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Key Points

• EHBP1L1 promotes
nuclear polarization
and subsequent
enucleation of
erythroblasts in
coordination with
Rab10, Bin1, and
dynamin.

• EHBP1L1 maintains
the proper morphology
and structural stability
of erythrocytes.
Cell polarity, the asymmetric distribution of proteins and organelles, is permanently or

transiently established in various cell types and plays an important role in many physiological

events. epidermal growth factor receptor substrate 15 homology domain-binding protein 1–like

1 (EHBP1L1) is an adapter protein that is localized on recycling endosomes and regulates

apical-directed transport in polarized epithelial cells. However, the role of EHBP1L1 in

nonepithelial cells, remains unknown. Here, Ehbp1l1−/− mice showed impaired erythroblast

enucleation. Further analyses showed that nuclear polarization before enucleation was

impaired in Ehbp1l1−/− erythroblasts. It was also revealed that EHBP1L1 interactors Rab10,

Bin1, and dynamin were involved in erythroblast enucleation. In addition, Ehbp1l1−/−

erythrocytes exhibited stomatocytic morphology and dehydration. These defects in erythroid

cells culminated in early postnatal anemic lethality in Ehbp1l1−/− mice. Moreover, we found the

mislocalization of nuclei and mitochondria in the skeletal muscle cells of Ehbp1l1−/− mice, as

observed in patients with centronuclear myopathy with genetic mutations in Bin1 or dynamin

2. Taken together, our findings indicate that the Rab8/10-EHBP1L1-Bin1-dynamin axis plays an

important role in multiple cell polarity systems in epithelial and nonepithelial cells.
Introduction

Cell polarity is a fundamental feature of cells characterized by the asymmetric morphology and distri-
bution of organelles and molecules, such as proteins and lipids. The establishment of cell polarity is
indispensable for diverse cellular events in various cell types.1 There are multiple cell polarity systems
that are categorized into 2 types: permanent cell polarity (eg, apicobasal polarity in epithelial cells) and
transient cell polarity (eg, front-rear polarity in migrating cells). Defects in these polarity systems result in
embryonic lethality and tumor progression.2

The nuclei are asymmetrically positioned in various cell types.3 For instance, in muscle fibers, the nuclei
are positioned at the periphery. In addition, the position of the nuclei changes dynamically when
transient cell polarity is established. This dynamic establishment of cell and nuclear polarity is also
observed during mammalian erythropoiesis, a process by which erythrocytes are generated from
erythroid progenitors.
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Early erythroid progenitors, burst-forming units-erythroid, differen-
tiate into erythroblasts in several differentiation stages.4 In eryth-
roblasts, nuclei become condensed and asymmetrically positioned
during differentiation and are eventually extruded, which produces
reticulocytes and pyrenocytes.5 Finally, reticulocytes mature into
erythrocytes through membrane remodeling and the removal of
organelles and macromolecules, such as proteins and nucleic
acids. Erythroblast enucleation is a complex process coordinated
by multiple regulators, such as epigenomic regulators,6,7 Rho
GTPases,8,9 cytoskeletal proteins,9-12 and cell polarity regula-
tors.13,14 Previous studies have shown that membrane trafficking is
a crucial mechanism that regulates the dynamic process of
enucleation.15-17 However, the detailed molecular mechanisms
underlying the role of membrane trafficking in erythroblast enucle-
ation remain unknown.

Rab proteins are Ras-like small GTPases that play essential roles in
membrane trafficking. We previously found that Rab8-deficient
mice exhibit defects in apical transport in intestinal epithelial
cells.18,19 Our subsequent study identified epidermal growth factor
receptor substrate 15 homology domain-binding protein 1-like 1
(EHBP1L1) as a Rab8 effector protein that regulates epithelial
apical transport.20 EHBP1L1 interacts with Rab8 on recycling
endosomes and recruits Bin1 and dynamin, which generate
membrane curvature and sever the curved membrane to create
vesicles, respectively. However, the role of EHBP1L1 in non-
epithelial cells remains unknown.

Here, we found that the loss of EHBP1L1 caused defects in
nuclear polarization and subsequent enucleation during terminal
erythropoiesis. Downregulation of Rab10, which is another
EHBP1L1-binding Rab protein, Bin1, and dynamin also impaired
erythroblast enucleation. In addition, enucleated erythrocytes in
EHBP1L1-deficient (Ehbp1l1−/−) mice exhibited stomatocytic
morphology. These deficiencies culminated in lethal anemia with
excessive hemolysis in Ehbp1l1−/− mice. Furthermore, we found
mislocalized nuclei and mitochondria in the muscle fibers of
Ehbp1l1−/− mice, as observed in patients with centronuclear
myopathy with genetic mutations in Bin1 or dynamin 2. Taken
together, our findings suggest that the Rab8/10-EHBP1L1-Bin1-
dynamin axis plays an important role in multiple cell polarity sys-
tems in epithelial and nonepithelial cells.

Methods

Mice

Ehbp1l1−/− mice were developed in our laboratory.20 ICR mice
were purchased from Japan SLC and CLEA Japan. All the mice
were maintained under specific pathogen-free conditions in an
animal facility at Osaka University. The experimental protocols
were approved by the Institutional Committee for Experiments
using animals (01-004-010) and recombinant DNA (04421). The
genotypes of the mice were identified by polymerase chain react-
ion (F: GACAAAGAAAAGAGCTCCAGAGACC; R: CCTTGA-
CAGTCCAATACAAGACCTG), followed by digestion with PstI.

Flow cytometry

Fetal livers were dispersed in Iscove modified Dulbecco medium
(Wako, 098-16465) by gentle pipetting. The cell suspension was
passed through a 77 μm filter paper and further through a 25 μm
25 JULY 2023 • VOLUME 7, NUMBER 14
filter paper. The cells were stained with fluorescently labeled anti-
bodies and 5 μg/mL Hoechst 33342 (Sigma-Aldrich, B2261). For
staining with Annexin V, the cells were washed with Annexin V binding
buffer (10 mM N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid,
140 mM NaCl, and 2.5 mM CaCl2) and then stained with FITC-
conjugated Annexin V (BioLegend, 640906). The fluorescently
labeled antibodies are listed in supplemental Table 1. For intracellular
staining of EHBP1L1, after cell-surface staining, the cells were fixed
with 3% paraformaldehyde for 20 minutes. The fixed cells were
incubated in a permeabilization buffer (0.1% saponin and 5% normal
donkey serum in phosphate-buffered saline) for 20 minutes. The cells
were then stained with an anti-EHBP1L1 antibody20 in a per-
meabilization buffer for 45 minutes. An equal amount of rabbit IgG
(Wako, 148-09551) was used as a negative control. After washing,
the cells were stained with Alexa Fluor 488–conjugated donkey anti-
rabbit IgG (Invitrogen, A21206) in a permeabilization buffer for
45 minutes. The cells were analyzed using either a FACSCanto II (BD
Biosciences) or ImageStreamX MK II (Amnis) flow cytometer. Data
analysis was performed using the FlowJo (FlowJo) or IDEAS (Amnis)
software.

MEDEP-BRC5 cell analysis

MEDEP-BRC5 cells were obtained from RIKEN BRC (RCB2911).21

MEDEP-BRC5 cells were cultured in Iscove modified Dulbecco
medium, supplemented with 15% fetal calf serum, 1× ITS liquid
medium (Sigma-Aldrich, I3146), 50 μg/mL ascorbic acid (Sigma-
Aldrich, A4403), 0.45 mM α-monothioglycerol (Wako, 195-15791),
50 ng/mL recombinant mouse stem cell factor (BioLegend, 579706),
1 μM dexamethasone (Sigma-Aldrich, D4902), 2 mM GlutaMAX
(Gibco, 25050-061), 100 units per mL penicillin, and 100 μg/mL
streptomycin (Wako, 168-23191). For differentiation, 5 units per mL
erythropoietin (Kyowa Hakko Kirin) was added to the culture medium,
stem cell factor and dexamethasone were removed, and the cells
were cultured for 48 hours. Where indicated, dynasore (30 μM;
Calbiochem, 324410) and Dyngo-4a (30 μM; Selleck, S7163) were
added 24 hours before analysis. The differentiated cells were stained
with FITC-conjugated anti-CD71 and allophycocyanin-conjugated
anti-Ter119 antibodies, 5 μg/mL Hoechst 33342, and 50 μg/mL
propidium iodide (Dojindo, 341-07881), and analyzed using a
FACSCanto II flow cytometer. The fluorescently labeled antibodies
are listed in supplemental Table 1.

Statistics

Statistical analysis was performed using an unpaired t test with
Welch’s correction, one-way or two-way analysis of variance. A P
value of <.05 was considered to indicate a statistically significant
difference. All statistical analyses were performed using Prism 9
(GraphPad software).

Results

Loss of EHBP1L1 causes lethal anemia

We previously developed Ehbp1l1−/− mice using the CRISPR/
Cas9 system and reported that the mice died within a day of
birth.20 Here, we performed extended phenotypic analyses and
found that although Ehbp1l1−/− mice were born at the expected
Mendelian ratio (Figure 1A), all the mice were severely pale and did
not survive for more than 1 day after birth (Figure 1B-C). In addi-
tion, we found that the number of erythrocytes in the peripheral
EHBP1L1 REGULATES ERYTHROBLAST ENUCLEATION 3383
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Figure 1. Ehbp1l1−/− mice exhibit lethal anemia. (A) The numbers of progenies with the indicated genotypes from Ehbp1l1+/− intercrosses are shown. (B) Survival curves of

the progenies from Ehbp1l1+/− intercrosses are shown (Ehbp1l1+/+: n = 18, Ehbp1l1+/−: n = 47, Ehbp1l1−/−: n = 19). (C,E) Representative pictures of Ehbp1l1+/− and

Ehbp1l1−/− mice at P0 (the day of birth) (C) and E18.5 (E) are shown. (D,F) Total cell numbers in peripheral blood at P0 (D, Ehbp1l1+/+ shown as a solid green circle: n = 1,

Ehbp1l1+/− shown as open green circles: n = 5, Ehbp1l1−/−: n = 6) and E18.5 (F, Ehbp1l1+/+: n = 5, Ehbp1l1+/−: n = 9, Ehbp1l1−/−: n = 4) are shown. The data are presented as

the means ± standard error of the mean (SEMs). (G) Whole-cell extracts (WCEs) from fetal livers (FL) of E15.5 embryos with the indicated genotypes were analyzed by western

blotting using the indicated antibodies. (H) WCEs from Ehbp1l1−/− mouse embryonic fibroblasts transfected with pcDNA3 encoding EHBP1L1 isoform B, C, E, or X5 and WCEs

from E14.5 mouse FL were subjected to western blotting. ***P < .001, ****P < .0001 (unpaired t test with Welch’s correction in panel D; 1-way analysis of variance [ANOVA] in

panel F).
blood was significantly reduced in neonatal Ehbp1l1−/− mice
compared with Ehbp1l1+/+ and Ehbp1l1+/− mice (Figure 1D).
These results indicate that Ehbp1l1−/− mice exhibited severe
anemia. Anemia was also observed in Ehbp1l1−/− embryos at
embryonic day 18.5 (E18.5) (Figure 1E-F). Because Ehbp1l1+/−

mice did not exhibit these abnormalities, they were included as
control mice in this study.

Thirteen Ehbp1l1 mRNA isoforms that encode 12 protein isoforms
are listed in the NCBI database (supplemental Figure 1). Studies
with our anti-EHBP1L1 antibody, which was generated using the
purified EHBP1L1 proline-rich domain as an immunogen,20

showed that 4 isoforms were expressed in the fetal liver at E15.5
(Figure 1G). All isoforms were absent in the Ehbp1l1−/− fetal liver
(Figure 1G). By subcloning and DNA sequencing analysis, the
expressed isoforms were identified as B, C, E, and X5 (Figure 1H).

EHBP1L1 regulates enucleation during terminal

erythropoiesis

The developmental switching of β-globin gene expression is a
critical event during normal erythropoiesis.22 Gene expression of
embryonic (Hbb-bh1 and Hbb-y) and adult globins (Hbb-b1) was
normal in Ehbp1l1−/− mice (supplemental Figure 2A). When we
examined the peripheral blood using May-Grunwald Giemsa
staining, we observed many circulating nucleated cells in
Ehbp1l1−/− mice (Figure 2A). Flow cytometric analysis revealed
3384 WU et al
that these nucleated cells were erythrocytes, as they expressed the
erythrocyte marker, Ter119 (Figure 2B-C). During normal definitive
erythropoiesis in the perinatal period, the nuclei of orthochromatic
erythroblasts in the liver are extruded. To determine the role of
EHBP1L1 in the production of enucleated erythrocytes, we
examined the erythroid cell population at different stages of dif-
ferentiation in the fetal liver (supplemental Figure 2B). Burst-
forming units-erythroid differentiate into colony-forming units-
erythroid, which further differentiate into proerythroblasts. During
the differentiation of colony-forming units-erythroid into pro-
erythroblasts, the expression levels of Ter119 and CD117 gradu-
ally increase and decrease, respectively (supplemental Figure 2B).
Loss of EHBP1L1 did not affect the proportion and number of
these erythroblast progenitors on any of the tested embryonic days
(Figure 2D; supplemental Figure 2C). Proerythroblasts differentiate
into basophilic, polychromatic, and eventually orthochromatic
erythroblasts upon successive cell divisions.23 Because both cell
size and CD44 expression are reduced along this erythroblast
maturation continuum,24 we defined each erythroblast based on
these 2 parameters, such that the erythroblast ratio (basophi-
lic:polychromatic:orthochromatic) was 1:2:4 (supplemental
Figure 2B). We found that the proportion and number of ortho-
chromatic erythroblasts, but not basophilic and polychromatic
erythroblasts, were significantly higher in Ehbp1l1−/− mice than
control mice (Figure 2D-E; supplemental Figure 2C). In contrast,
those of enucleated cells were significantly decreased in
25 JULY 2023 • VOLUME 7, NUMBER 14
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Representative pictures are shown. The areas enclosed in the black squares were enlarged and are shown in the right panels. Scale bars: 10 μm. (B-C) The peripheral blood

collected frommicewith the indicated genotypeswas analyzed by flow cytometry (Ehbp1l1+/+: n = 5,Ehbp1l1+/−: n = 9,Ehbp1l1−/−: n = 4). Representative flow cytometry plots are shown.

(D-E) Fetal liver cells (FLCs) from control and Ehbp1l1−/− embryos were analyzed by flow cytometry. N =14 (E13.5), 16 (E14.5), 7 (E15.5), 3 (E16.5), 5 (E17.5), and 9 (E18.5) for control

embryos. N =5 (E13.5), 4 (E14.5), 5 (E15.5), 2 (E16.5), 4 (E17.5), and 3 (E18.5) for Ehbp1l1−/− embryos. The upper and lower flow cytometry plots in E show representative data for

Lin−Ter119highHoechst 33342+AnnexinV−erythroblasts andLin−Ter119high cells, respectively. (F-G) FLCs fromE13.5 ICRembryoswere analyzedby flowcytometry (n=4). Representative

flow cytometry plots of erythroid cells at distinct stages of erythropoiesis are shown. The mean fluorescence intensity (MFI) of EHBP1L1 staining was normalized based on that of control

rabbit IgG staining. The result is representative of 2 independent experiments. The data are presented as means ± SEMs for panels C-D,G. *P < .05; **P < .01; ***P < .001, ****P < .0001

(1-way ANOVA in panels C,G; unpaired t test with Welch’s correction in panel D). BFU-E, burst-forming units-erythroid; CFU-E, colony-forming units-erythroid; ProE, proerythroblasts.
Ehbp1l1−/− mice. We also found that EHBP1L1 expression grad-
ually increased during definitive erythropoiesis (Figure 2F-G;
supplemental Figure 2D), implying the crucial role of EHBP1L1
during terminal erythroid differentiation. These results indicate that
EHBP1L1 promotes the enucleation of erythroblasts without
affecting early erythroid differentiation.

EHBP1L1 regulates erythroblast enucleation by

promoting nuclear polarization

Erythroblast enucleation occurs on erythroblastic islands, consisting
of a central macrophage surrounded by erythroblasts. Extruded
25 JULY 2023 • VOLUME 7, NUMBER 14
nuclei, referred to as pyrenocytes, are engulfed by macrophages in a
manner dependent on the expression of phosphatidylserine.25 As
EHBP1L1 was systemically deleted in Ehbp1l1−/− mice, we exam-
ined whether EHBP1L1 has a cell-intrinsic role in regulating eryth-
roblast enucleation. We isolated Lin−Ter119−CD117+ erythroid
progenitors and differentiated them into erythrocytes in vitro. We
found that the enucleation of Ehbp1l1−/− erythroblasts was signifi-
cantly reduced in this in vitro culture system (Figure 3A-B), indicating
the erythroblast-intrinsic role of EHBP1L1 in enucleation.

During the final stage of erythroblast enucleation, F-actin is
reported to accumulate at the constriction site between the
EHBP1L1 REGULATES ERYTHROBLAST ENUCLEATION 3385
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extruding nucleus and reticulocyte, which is believed to drive
constriction of the plasma membrane.26 We observed that the
localization of F-actin was similar between control and Ehbp1l1−/−

erythroblasts (supplemental Figure 3A). Nuclear polarization before
the constriction of the plasma membrane is indispensable for
enucleation. To reveal the role of EHBP1L1 in this process, we
performed imaging flow cytometry. Nuclear polarization can be
assessed by measuring Δcentroid, which indicates the distance
between the geometrical centers of the nucleus and cell. We found
that the Δcentroid in orthochromatic erythroblasts was significantly
lower in Ehbp1l1−/− mice than in control mice (Figure 3C-E),
indicating impaired nuclear polarization in Ehbp1l1−/− erythro-
blasts. A similar reduction in Δcentroid was observed when cells
were treated with an inhibitor of phosphatidylinositol-3-kinase, as
described in a previous study (supplemental Figure 3B).14 These
results suggest that EHBP1L1 promotes nuclear polarity during
enucleation but does not generate forces to constrict the plasma
membrane.
3386 WU et al
The Rab10-EHBP1L1-Bin1-dynamin 2 axis regulates

erythroblast enucleation

We previously revealed that EHBP1L1 localizes to recycling
endosomes, where it bridges Rab8 and the Bin1-dynamin complex
to regulate apical transport.20 Here, we observed that EHBP1L1
was colocalized with CD71/transferrin receptor 1 (TfR1), which is
a marker for recycling endosomes, during erythroblast enucleation,
but was not colocalized with the lysosome marker LAMP2
(Figure 4A; supplemental Figure 4A). Cell-surface expression of
CD71 on enucleating erythroblasts was normal in the absence of
EHBP1L1 (supplemental Figure 4B). EHBP1L1 was also partially
colocalized with Rab8 (supplemental Figure 4C). Although these
results suggested that EHBP1L1 cooperates with Rab8 on recy-
cling endosomes to promote enucleation, the Rab8a/b double-
deficient mice that we previously developed did not exhibit an
anemic phenotype.18 We and others have shown that EHBP1L1
interacts with other Sec4/Rab8 subfamily members, such as
25 JULY 2023 • VOLUME 7, NUMBER 14
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Rab10, Rab13, and Rab15.20,27,28 Publicly available RNA
sequencing data of mouse erythroblasts at distinct stages of ter-
minal erythroid differentiation indicated the expression of Rab8b,
Rab10, and, to a lesser extent, Rab8a, but not Rab13 and Rab15
(supplemental Figure 4D) (GSE53983).29,30 The lack of or negli-
gible levels of Rab13 and Rab15 expression were confirmed by
RT-PCR analysis of in vitro–differentiated erythroblasts and mouse
fetal livers (supplemental Figure 4E). Therefore, we hypothesized
that EHBP1L1 would cooperate with Rab10 to regulate erythro-
blast enucleation. To test this hypothesis, we examined the locali-
zation of Rab10 in erythroblasts and found that it was colocalized
with CD71/TfR1 but not with LAMP2 (Figure 4B; supplemental
Figure 4F). We also observed the colocalization of Rab10 and
EHBP1L1 (Figure 4C). Although some proteins are evenly
distributed between reticulocytes and pyrenocytes after enucle-
ation, others exhibit uneven distribution between the 2 cell types.31

Most of EHBP1L1 and Rab10 were retained in reticulocytes
(Figure 4A-C). The distribution of Band3 and β1-integrin, which
mainly segregate into reticulocytes and pyrenocytes, respectively,
was not affected by the loss of EHBP1L1 (supplemental
Figure 4G-H), indicating that the loss of EHBP1L1 does not
cause a global defect in protein transport.

To delineate the role of Rab10 in erythroblast enucleation, we used
the mouse embryonic stem cell–derived erythroid progenitor cell
line MEDEP-BRC5, which undergoes efficient enucleation upon
the addition of erythropoietin (supplemental Figure 5A).21 We
confirmed the promoting effect of EHBP1L1 on enucleation in
MEDEP-BRC5 cells via shRNA-mediated knockdown (Figure 4D-
E; supplemental Figure 5B). Importantly, we found that the shRNA-
mediated knockdown of Rab10 resulted in a significant reduction
in enucleation efficiency (Figure 4D-E; supplemental Figure 5B).
Because the deletion of EHBP1L1 did not affect the localization of
Rab10 on CD71/TfR1-positive recycling endosomes (Figure 4F),
Rab10 probably lies upstream of EHBP1L1. Furthermore, we
found that enucleation was significantly inhibited by the knockdown
of Bin1, which is the downstream effector of EHBP1L1 (Figure 4G-
H; supplemental Figure 5C). Amphiphysin, a close family member
of Bin1, was expressed at very low levels in erythroblasts and
3388 WU et al
mouse fetal livers (supplemental Figure 4E). A previous study
reported that the inhibition of dynamin, which is another down-
stream effector of EHBP1L1, by the chemical inhibitor dynasore
reduced erythroblast enucleation efficiency.16 Because off-target
effects of dynasore have been reported,32 we used a different
dynamin inhibitor, Dyngo-4a, which has higher potency and a
distinct inhibitory mechanism.33 Similar to dynasore, Dyngo-4a
significantly inhibited enucleation (Figure 4I-J). Notably, the down-
regulation of Rab10, Bin1, and dynamin in MEDEP-BRC5 cells did
not affect their differentiation into Ter119high cells (supplemental
Figure 5D-F), suggesting that these proteins play dispensable
roles in early erythroid differentiation. Furthermore, enucleation
efficiency in the human embryonic stem cell–derived erythroid
progenitor cell line HUDEP-2 was significantly reduced by the
shRNA-mediated knockdown of EHBP1L1 (supplemental
Figure 5G-I), indicating the important role of EHBP1L1 in human
erythropoiesis. Because dynamin 2 was highly expressed in
erythroblasts (supplemental Figure 4E), these results suggest that
the Rab10-EHBP1L1-Bin1-dynamin 2 axis plays a critical role in
erythroblast enucleation.

Loss of EHBP1L1 results in excessive hemolysis

When we examined the morphology of erythrocytes in the
peripheral blood, we noted the presence of many stomatocytes,
which were characterized by a central biconcave slit in Ehbp1l1−/−

mice (Figure 2A). Stomatocytes are abnormal erythrocytes with an
abnormal intracellular water content.34 Although stomatocytes are
formed because of either overhydration or dehydration, Ehbp1l1−/−

enucleated erythrocytes were likely dehydrated, as they were more
resistant to osmotic stress (Figure 5A; supplemental Figure 6A).
On performing new methylene blue staining of the peripheral blood
to distinguish between reticulocytes and erythrocytes, we found
that erythrocytes, but not reticulocytes, exhibited stomatocytic
morphology (supplemental Figure 6B). In addition, in vitro–
differentiated enucleated cells, which are mostly reticulocytes, did
not show stomatocytic morphology (supplemental Figure 6C).
These results suggest that EHBP1L1 plays a role in maintaining the
morphology of mature erythrocytes.
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Figure 6. Mice transplanted with Ehbp1l1−/− hematopoietic cells exhibited impaired erythroblast enucleation and hemolytic anemia. FLCs from Ehbp1l1+/+ and

Ehbp1l1−/− E14.5 embryoswere transplanted into irradiated wild-typemice. (A) Total cell numbers in the peripheral blood at indicated days after transplantation (control: n = 5,Ehbp1l1−/−:

n = 4). (B-E) Peripheral blood (B-C) and bonemarrow cells (D-E) collected at indicated (B-C) and 35 days (D-E) after transplantation, respectively, were analyzed by flow cytometry (control:

n = 5,Ehbp1l1−/−: n = 4). Representative flow cytometry plots are shown (Lin− cells in panel D). (F-H,K) The livers collected 35 days after transplantationwere subjected to H&E staining (F),
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Representative pictures are shown. The areas enclosed in the black squares were enlarged (F,K). Arrows indicate stomatocytes (H). (I) A representative picture of the spleens collected

35 days after transplantation is shown. (J) The bilirubin concentration in the serum at indicated days after transplantation was determined by using the UnaG protein (control: n = 4
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Stomatocytes are observed in several types of inherited and
acquired hemolytic anemia.34 We found that the serum from
Ehbp1l1−/− mice exhibited a strong yellow color compared with
those from control mice (Figure 5B). We assumed that this was
because of an increase in indirect bilirubin caused by aberrant
hemolysis. To examine this possibility, we took advantage of UnaG,
which is a fluorescent protein that specifically binds to indirect
bilirubin,35,36 and found that serum indirect bilirubin was signifi-
cantly increased in Ehbp1l1−/− mice (Figure 5C). In addition, iron
deposition, which is one of the hallmarks of hemolytic anemia, was
substantially increased in the livers of Ehbp1l1−/− mice compared
with control mice (Figure 5D). These results indicate that
EHBP1L1 plays an important role in not only regulating erythroblast
enucleation but also maintaining the morphology and stability of
erythrocytes.

EHBP1L1 in hematopoietic cells is critical for

erythropoiesis

To further prove the role of EHBP1L1 in erythroblast enucleation
and in maintaining the morphology and stability of erythrocytes, we
transplanted either control or Ehbp1l1−/− fetal liver cells (FLCs)
into irradiated wild-type mice. The blood cell number in Ehbp1l1−/−

FLC-transplanted mice started to decrease 12 days after trans-
plantation (Figure 6A). In addition, nucleated erythrocytes started
to appear in the peripheral blood of Ehbp1l1−/− FLC-transplanted
mice 22 days after transplantation (Figure 6B-C). As the percent-
age of nucleated erythrocytes in the peripheral blood of these mice
was much lower than that in Ehbp1l1−/− mice (Figure 2B-C), we
examined the erythroid cell population in the bone marrow. We
found that enucleation was significantly impaired in Ehbp1l1−/−

FLC-transplanted mice (Figure 6D-E; supplemental Figure 7A).
Moreover, a large number of nucleated Ter119+ cells were accu-
mulated in the livers of Ehbp1l1−/− FLC-transplanted mice
(Figure 6F-G). This may be because of the disposal of abnormal
erythrocytes and iron recycling.37 Furthermore, we found that many
enucleated erythrocytes in Ehbp1l1−/− FLC-transplanted mice
exhibited stomatocytic morphology (Figure 6H). Ehbp1l1−/− FLC-
transplanted mice exhibited the following hallmarks of hemolytic
anemia: splenomegaly, high serum bilirubin levels, and substantial
iron deposition in the liver (Figure 6I-K). Disorganization of splenic
architecture with an increased number of erythroid cells was
observed in Ehbp1l1−/− FLC-transplanted mice, suggesting extra-
medullary hematopoiesis in response to anemia (supplemental
Figure 7B-C). Taken together, EHBP1L1 in hematopoietic cells
plays a crucial role in erythroblast enucleation and in maintaining
the morphology and stability of erythrocytes.

EHBP1L1 is involved in nuclear positioning in

skeletal muscle cells

Centronuclear myopathy is a congenital neuromuscular disorder
characterized by severe muscle weakness and hypotonia associ-
ated with centralized nuclei and a central accumulation of mito-
chondria in myofibers.38 Two downstream effectors of EHBP1L1,
Bin1 and dynamin 2, are the causative genes of this disease.39,40

Therefore, we examined the nuclear localization in myofibers from
Figure 6 (continued) and Ehbp1l1−/−: n = 4). Scale bars: 200 and 50 μm in enlarged pictu

means ± SEMs for panels A,C,E,J. **P < .01, ***P < .001, ****P < .0001 (2-way ANOVA in
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Ehbp1l1−/− embryos. HE staining of hindlimb muscles revealed
that the number of skeletal muscle cells with centralized nuclei was
significantly increased in Ehbp1l1−/− mice (Figure 7A). In contrast,
no apparent histological defects, including mislocalization of the
nucleus in the small intestine, brain, and retina, were observed in
Ehbp1l1−/− mice (supplemental Figure 8A-C). In addition, immu-
nofluorescence analysis using an antibody against COX4, a mito-
chondrial marker, showed a central accumulation of mitochondria
in Ehbp1l1−/− skeletal muscle cells (Figure 7B). Mitochondrial
localization in enucleating erythroblasts was unaffected by the
absence of EHBP1L1 (supplemental Figure 8D).41 These results
indicate that EHBP1L1 plays an important role in organelle posi-
tioning in a tissue- or cell-type–specific manner.

Discussion

Erythropoiesis is a complex, multistep process that involves the
differentiation of erythroid progenitors into mature erythrocytes.
This process is tightly regulated by several regulators, such as
cytokines and transcription factors. Defects in each of these reg-
ulators impair erythropoiesis at various stages of differentiation.
Here, we found that the loss of EHBP1L1 caused a defect in
erythroblast enucleation because of impaired nuclear polarization,
whereas it did not affect the early stages of erythropoiesis. In
addition, enucleated erythrocytes in Ehbp1l1−/− mice exhibited
stomatocytic morphology and were prone to hemolysis. Thus,
EHBP1L1 is a novel regulator of the late stages of erythropoiesis
(Figure 7C).

GATA1 and KLF1 are the master transcription factors that regulate
erythroid differentiation.42 Genome-wide transcriptome analyses
have shown that the expression of EHBP1L1 is reduced in Klf1−/−

fetal livers43,44 and increased by the inducible expression of
GATA1 in Gata1−/− erythroid cells.45 Furthermore, chromatin
immunoprecipitation followed by massively parallel sequencing
(chromatin immunoprecipitation-seq) for KLF1 and GATA1
showed that these transcription factors bind to the region near the
transcription start site of the Ehbp1l1 gene in erythroid cells.45-47

These results suggest that the expression of EHBP1L1 in
erythroid cells is directly regulated by these transcription factors.
Our results showed that the expression of EHBP1L1 in erythroid
cells gradually increased during erythropoiesis. Because KLF1 and
GATA1 are expressed and function in erythroid cells throughout
erythropoiesis, other layers of regulation probably contribute to the
gradual increase in EHBP1L1 expression.

Erythroblast enucleation is a complex sequential process in which
the nucleus becomes condensed and polarized to 1 side of
orthochromatic erythroblasts and is finally extruded. In enucleating
erythroblasts, multiple vesicles are observed in the cytosol, some of
which accumulate in the region near the extruding nucleus.15,16 In
addition, treatment with various inhibitors of membrane trafficking
and downregulation of clathrin-mediated endocytosis substantially
reduce the efficiency of enucleation.16,17 These observations
suggest that the provision of membranes to the cleavage site
facilitates nuclear extrusion, which occurs after nuclear polarization.
However, we found that the loss of EHBP1L1 impaired nuclear
res for panels F,K, 10 μm for panels G-H, 1 cm for panel I. The data are presented as

panels A,C,J; unpaired t test with Welch’s correction in panel E).
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polarization, indicating that membrane trafficking plays an important
role in not only nuclear extrusion but also nuclear polarization. The
surface area of the plasma membrane needs to be increased
during nuclear polarization, which is likely supported by membrane
trafficking. The fact that nuclear polarization followed by
25 JULY 2023 • VOLUME 7, NUMBER 14
enucleation was not fully blocked by the null mutation of Ehbp1l1
suggests that these events can proceed in an EHBP1L1-
independent manner, although inefficiently. Elucidation of the
membrane trafficking machinery during nuclear polarization will
facilitate our understanding of erythroblast enucleation.
EHBP1L1 REGULATES ERYTHROBLAST ENUCLEATION 3391



We found that knockdown of Rab10 and Bin1 suppressed eryth-
roblast enucleation. Treatment with dynamin inhibitors also blocked
erythroblast enucleation, as reported in a previous study.16 Our
previous studies showed the critical role of the Rab8-EHBP1L1-
Bin1-dynamin axis in epithelial apical transport.20 In addition,
EHBP1L1 directly interacts with Rab10.27,28 Therefore, EHBP1L1
likely coordinates with Rab10, Bin1, and dynamin to facilitate
enucleation. Constitutive deletion of Rab10 or dynamin 2, which is
a member of the dynamin family expressed in erythroblasts, results
in early embryonic lethality before the initiation of definitive eryth-
ropoiesis.48,49 Similar to Ehbp1l1−/− mice, Bin1−/− mice died
within 24 hours of birth.50 Although Bin1−/− mice were shown to
develop ventricular cardiomyopathy, erythroblast enucleation has
not been examined in these mice. Therefore, the generation of mice
with erythroid-specific knockout of Rab10 and dynamin 2 and a
detailed analysis of erythroblast enucleation in these mice will
further elucidate the role of the Rab10-EHBP1L1-Bin1-dynamin 2
axis in erythropoiesis.

We found that enucleated erythrocytes in Ehbp1l1−/− mice exhibited
stomatocytic morphology and were prone to hemolysis. Stomato-
cytosis is a hemolytic disorder characterized by abnormal ion
permeability and cellular hydration.51 Mutations in various plasma
membrane transporters have been identified in patients with this
disease. Thus, one can hypothesize that EHBP1L1 regulates the
trafficking of these transporters and their regulators to the plasma
membrane of erythrocytes. Although Band3 and β1-integrin were
properly distributed during enucleation in Ehbp1l1−/− erythroblasts,
the segregation of other proteins between reticulocytes and pyr-
enocytes may be disturbed by the loss of EHBP1L1. In addition, as
EHBP1L1 is the most highly expressed in reticulocytes among
erythroid cells, it might contribute to the final maturation process,
including membrane remodeling in reticulocytes. Further studies on
these possibilities are warranted.

Bin1 and dynamin 2 are causative genes of centronuclear
myopathy, a disorder characterized by the mislocalization of nuclei
and mitochondria to the center of myofibers.39,40 We found
similar mislocalization of nuclei and mitochondria in EHBP1L1-
deficient myofibers, suggesting that EHBP1L1 is a potential
causative gene for this disease. Although genetic mutations in
EHBP1L1 have not been identified in human patients with anemia
or centronuclear myopathy, a recent molecular autopsy study in
the context of premature death identified an EHBP1L1 mutation
in 2 families with nonimmune fetal hydrops, resulting in recurrent
miscarriage.52 Hydrops fetalis is a serious fetal condition char-
acterized by the abnormal accumulation of fluid in multiple com-
partments of the fetal body.53 Disorders of normal erythrocyte
production are one of the common etiologies of nonimmune fetal
hydrops. Therefore, the EHBP1L1 mutation might cause lethal
hemolytic anemia, leading to fetal loss in patients with this
3392 WU et al
condition. Very recent studies have identified an EHBP1L1
mutation in a pedigree of dogs that exhibited anemia and myop-
athy.54,55 Furthermore, loss-of-function mutations in genes
involved in membrane trafficking, such as SEC23B and VPS4A,
have been identified in patients with congenital dyserythropoietic
anemia.56-58 Although the functional interactions between
EHBPL1 and these proteins remain unknown, these cases high-
light the importance of the membrane trafficking machinery in
erythropoiesis. Understanding the mechanism underlying
EHBP1L1-mediated establishment and maintenance of perma-
nent and transient cell polarity in various cell types will provide
insights into the pathogenesis of diseases associated with cell
polarity.
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