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SUMMARY

Individual-level data sharing across multiple sites can be infeasible due to privacy and logistical concerns.
This article proposes a general distributed methodology to fit Cox proportional hazards models without
sharing individual-level data in multi-site studies. We make inferences on the log hazard ratios based on an
approximated partial likelihood score function that uses only summary-level statistics. This approach can
be applied to both stratified and unstratified models, accommodate both discrete and continuous exposure
variables, and permit the adjustment of multiple covariates. In particular, the fitting of stratified Cox models
can be carried out with only one file transfer of summary-level information. We derive the asymptotic
properties of the proposed estimators and compare the proposed estimators with the maximum partial
likelihood estimators using pooled individual-level data and meta-analysis methods through simulation
studies. We apply the proposed method to a real-world data set to examine the effect of sleeve gastrectomy
versus Roux-en-Y gastric bypass on the time to first postoperative readmission.
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1. INTRODUCTION

With the technological advancement in data collection and storage, it becomes feasible and desirable to
analyze data from multiple sources to increase study power or to improve generalizability. For example,
electronic health record (EHR) databases collect data from routine clinical care, and it is often necessary
to analyze multiple EHR databases that cover large and diverse populations to improve the power and
the generalizability of the findings. However, sharing individual-level data is challenging in multi-site
studies due to feasibility, privacy, and other concerns (Brown and others, 2010; Toh and others, 2011;
Maro and others, 2009). Instead of sharing individual-level data to conduct a centralized analysis using
pooled data, sharing of summary-level statistics—if it can achieve similar results as the pooled analysis—
becomes appealing with distributed data networks (DRNs). In DRNs, data are distributed due to the lack
of centrality, because data are maintained at each site and can be accessed and analyzed only by their
owners.

Distributed regression methods generally involve a multi-stage procedure that alternates between data-
contributing sites and an analysis center (Toh, 2020; Karr and others, 2007). First, each data-contributing
site provides summary-level statistics and the analysis center computes the estimates based on those
summary statistics; if an iterative process is necessary, the analysis center updates the parameter estimates
and sends them back to each site, in which case the entire procedure reiterates (Lu and others, 2015; Vilk
and others, 2018; Narasimhan and others, 2017).

In biomedical studies, time-to-event is a commonly used endpoint, and Cox proportional hazards
(PH) model (Cox, 1972) is widely used to analyze such endpoints. In the context of DRNs, several dis-
tributed methods for fitting Cox PH regression models have been proposed. Lu and others (2015) and
Vilk and others (2018) used iterative data transfers between the data-contributing sites and the analy-
sis center until parameter estimates converge, which can be cumbersome to implement. Some recent
work investigated methods that required only one data transfer. For example, Yoshida and others (2018)
compared approaches based on three types of aggregate-level information requested from sites: “risk-set,”
“summary-table,” “effect-estimates,” and found that all these approaches adequately approximated pooled
individual-level data analysis in most of their simulation scenarios. Shu and others (2020) proposed pro-
cedures for estimating the marginal hazard ratio associated with a binary treatment indicator using the
inverse probability weighted Cox model stratified on site. Duan and others (2020a,b) proposed a surrogate
likelihood approach for Cox PH regression analyses using individual-level data from one local site and
summary-level information from other sites.

Meta-analysis (see, e.g., Whitehead, 2003; Sutton and others, 2000) is a commonly used approach that
makes inferences based on summary-level statistics (e.g., log hazard ratio [HR]) from each site. It has been
shown (Lin and Zeng, 2010) that the multivariate inverse-variance estimator based on the fixed-effects
model is asymptotically equivalent to the maximum likelihood estimator using pooled individual-level data
if the nuisance parameter values are distinct across sites. With censored data, the multivariate meta-analysis
is asymptotically equivalent to the maximum partial likelihood estimator under a stratified Cox PH model,
which assumes a different baseline hazard function for each data-contributing site and can be inefficient
in settings where there is a common baseline hazard across sites. Furthermore, in the retrospective meta-
analysis of published results, it is generally difficult to obtain multivariate summary statistics: in addition
to the estimates of univariate effects and their standard error estimates, estimates of correlation among
effect estimates are also required. Therefore, oftentimes only univariate meta-analysis is feasible, which
further compromises the statistical efficiency.

In this article, we propose methods that use only summary-level statistics from each site to fit both
unstratified and stratified Cox PH models with multiple covariates. The proposed methods are not limited to
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dichotomous exposure variables. Rather, they can accommodate multiple discrete or continuous covariates
and serves as a general approach to fitting Cox PH regression models for DRNs. The proposed methods
permit a distributed analysis of unstratified Cox PH models without iterative file transfers where existing
methods are lacking, provide a general alternative to fixed-effects multivariate meta-analysis when a
stratified Cox PH model is postulated, and can be more efficient compared to the widely used fixed-
effects univariate meta-analysis. In addition, we delineate settings where methods are expected to perform
similarly and those where methods are expected to differ in terms of validity and efficiency to facilitate
their applications in practice.

The remainder of the article is organized as follows. In Section 2, we present the proposed methods
to make inferences about parameters in unstratified and stratified Cox models, provide respective algo-
rithms using summary-level information to solve the estimating equations, and derive the asymptotic
properties of the proposed estimators. In Section 3, we report the simulation studies to examine finite-
sample performance of the proposed estimators and compare that to the centralized analysis using pooled
individual-level data and to the meta-analyses. A real-world data application is given for illustration in
Section 4. In Section 5, we provide conclusions, some final remarks, and future work.

2. METHODS

Let (X i, Ti, δi), i = 1, . . . , n denote the observed data from K data-contributing sites, where Ti =
min(T ∗

i , Ci), δi = I (T ∗
i ≤ Ci), and T ∗

i and Ci are the event time and the censoring time, respec-
tively. X i is the baseline covariate vector which may contain the exposure/treatment variable. Let �k =
{i : i in site k , for i = 1, . . . , n} be the index set for the k-th site with size nk , then n = n1 + n2 + · · ·+ nK .
Suppose there are d observed failure times across all sites, denoted by T D

1 < T D
2 < · · · < T D

d . In this
article, we assume conditionally independent censoring, that is, T ∗

i ⊥⊥ Ci|X i.

2.1. Distributed regression method for the unstratified Cox model

2.1.1. The unstratified Cox PH model Assume that all sites have a common baseline hazard λ0(t). The
unstratified Cox PH model specifies the conditional hazard function of T ∗

i given X i as λ(t|X i) = λ0(t)eβ′
0X i

where β0 is a vector of the true values of the log HRs to be estimated. Common log HRs are assumed
across the K data-contributing sites. The score function based on partial likelihood (Cox, 1975) is

U ∗
β(β) �

d∑
j=1

{
X i(j) −

∑
l∈Rj

X leβ′X l∑
l∈Rj

eβ′X l

}
= 0, (2.1)

where the index i(j) is for the individual who experiences failure at T D
j , j = 1, . . . , d, and Rj = {i, Ti ≥

T D
j , i = 1, . . . , n} is the risk set for individuals who are at risk at time T D

j .
Assuming that the pooled data from all the data-contributing sites are available, then one can carry out

the centralized regression analysis and obtain the maximum partial likelihood estimator (MPLE) β̂ by

solving the score equation (2.1). It is consistent and asymptotically normal, that is, β̂
D−→ N (β0, I ∗−1(β0))

as n → ∞, where I ∗ = −Eβ0∂U ∗
β(β0)/∂β is the partial likelihood information matrix (Cox, 1975;

Fleming and Harrington, 1991). We can substitute β̂ for β0 and use the inverse of the observed information
−∂U ∗

β(β̂)/∂β to estimate the variance. However, in the context of distributed data, the pooled individual-
level data are not available and thus the MPLE cannot be obtained directly.

2.1.2. Proposed method using summary-level information Define Dk = {j, if the jth failure time T D
j

is from site k , j = 1, . . . , d}, and let dk = |Dk | denote the size of Dk . We have d = d1 + d2 + · · · + dK .
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Similarly, define Rj(k) = {l : l ∈ Rj ∩ �k}, which is the risk set for those who are at risk at time T D
j from

site k . Therefore Rj = Rj(1) ∪ Rj(2) ∪ . . . ∪ Rj(K), and Rj(k) and Rj(k ′) are disjoint for 1 ≤ k �= k ′ ≤ K .
Equation (2.1) can be rewritten as

U ∗
β(β) =

K∑
k=1

{ ∑
j∈Dk

X i(j)

}
−

d∑
j=1

∑K
k=1

∑
l∈Rj (k) X leβ′X l∑K

k=1

∑
l∈Rj (k) eβ′X l

= 0. (2.2)

To solve (2.2), we need to know:

(1)
∑

j∈Dk
X i(j) from site k

(2) {∑l∈Rj (k) X leβ′X l ,
∑

l∈Rj (k) eβ′X l } for j = 1, . . . , d from site k .

With distributed data, item (1) can be computed within each site easily, and it does not require sharing of
individual-level data. However, item (2) depends on the unknown parameter β.

We propose the following method to compute (2.2) approximately. First, within each site k we obtain
the MPLE, denoted as β̂k , k = 1, . . . , K . We note that β̂k → β0 as nk → ∞. Consider Taylor expansion
within site k:

eβ′X l ≈ eβ̂
′
k X l {1 + (β − β̂k)

′X l},

which implies that
∑

l∈Rj (k) eβ′X l ≈ ∑
l∈Rj (k) eβ̂

′
k X l + ∑

l∈Rj (k){X leβ̂
′
k X l }′(β − β̂k) and

∑
l∈Rj (k) X leβ′X l ≈∑

l∈Rj (k) X leβ̂
′
k X l + ∑

l∈Rj (k){X lX
′
le

β̂
′
k X l }′(β − β̂k). Therefore, the score function U ∗

β(β) on the left-hand
side of (2.2) can be approximated by

U β(β) �
K∑

k=1

∑
j∈Dk

X i(j) −
d∑

j=1

∑K
k=1

[ ∑
l∈Rj (k) X leβ̂

′
k X l + {∑l∈Rj (k) X lX

′
le

β̂
′
k X l }′(β − β̂k)

]
∑K

k=1

[ ∑
l∈Rj (k) eβ̂

′
k X l + {∑l∈Rj (k) X leβ̂

′
k X l }′(β − β̂k)

] (2.3)

To compute (2.3), we only need the following items:

(u1)
∑

j∈Dk
X i(j)

(u2) {∑l∈Rj (k) eβ̂
′
k X l ,

∑
l∈Rj (k) X leβ̂

′
k X l ,

∑
l∈Rj (k) X lX

′
le

β̂
′
k X l } for j = 1, . . . , d

(u3) β̂k from site k , k = 1, . . . , K

The three items above are site-specific summary-level statistics and thus no individual-level data is
required. To calculate item (u2), each site needs to first send the observed failure times to the analy-
sis center, and then the analysis center sends back the merged event times T D

j , j = 1, . . . , d to each site
to calculate the required statistics. Alternative ways of sending this information without sharing the exact
failure times between sites are discussed in Section 2.3.1. Only three file transfers are required between
the data-contributing sites and the analysis center to conduct unstratified distributed analysis. As shown
later, to calculate the estimated variance, each site needs to send

∑
l∈Rj (k) X lX

′
l ⊗ X ′

le
β̂

′
k X l to the analysis

center, where ⊗ is the Kronecker product.
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2.1.3. Distributed algorithm After the data-contributing sites receive the information on pooled observed
event times T D

j , j = 1, . . . , d (or equivalent information), they calculate their site-specific summary-level
statistics (u1) - (u3) and then send them back to the analysis center. At the analysis center, to find the
solution to U β(β) = 0 with U β defined as in (2.3), we propose a Newton–Raphson algorithm using
an approximated Hessian matrix since the direct gradient of (2.3) is not necessarily symmetric positive-
definite, which is required to calculate the updated estimates. Note that although Newton–Raphson method
is iteration-based, these iterations are done within the analysis center; not between the analysis center and
sites and therefore no additional file transfers are needed. Specifically, we approximate the Hessian matrix
of (2.1), that is,

H ∗(β) � −
d∑

j=1

⎧⎨⎩
∑

l∈Rj
X lX

′
le

β′X l∑
l∈Rj

eβ′X l
−

[∑
l∈Rj

X leβ′X l∑
l∈Rj

eβ′X l

]⊗2
⎫⎬⎭

via Taylor expansion, where a⊗2 = aa′, and obtain the approximated Hessian as

Ĥ
∗
(β) = −

d∑
j=1

⎧⎨⎩
∑K

k=1

[ ∑
l∈Rj (k) X lX

′
le

β̂
′
k X l + (

∑
l∈Rj (k) X lX

′
l ⊗ X ′

le
β̂

′
k X l ) ⊗ (β − β̂k)

]
∑K

k=1

∑
l∈Rj (k)[eβ̂

′
k X l + (X leβ̂

′
k X l )′(β − β̂k)]

−
⎡⎣∑K

k=1

∑
l∈Rj (k)[X leβ̂

′
k X l + X lX

′
le

β̂
′
k X l (β − β̂k)]∑K

k=1

∑
l∈Rj (k)[eβ̂

′
k X l + (X leβ̂

′
k X l )′(β − β̂k)]

⎤⎦⊗2⎫⎬⎭.

The Newton–Raphson algorithm is presented as below.

Algorithm 1: Newton–Raphson algorithm† for the unstratified distributed Cox regression.

Input: U β(β), Ĥ
∗
β(β) and β(0) (initial guess)

Output: β̂ (root of (2.3))
ErrThr = (Error Threshold) ;
MaxIter = (Maximum number of iterations) ;
β(1) = β(0) (Reading in the initial guess) ;
�β(1) = 0 (Initialization) ;

for n <MaxIter do
if

∥∥U β(β)(n)
∥∥

∞ ≤ ErrThr then
β̂ = β(n);
break ;

else
�β(n) = −Ĥ ∗(β(n))U β(β(n));
β(n+1) = β(n) + �β(n)

end
end

† Iterations are conducted within analysis center.

2.1.4. Asymptotic property and variance estimation Note that β̂k in item (u3) for k = 1, . . . , K are the
solutions to the estimating equations

U ∗
βk

(βk) =
∑
j∈Dk

⎧⎨⎩X i(j) −
∑

l∈Rj (k) X le
β′

k X l∑
l∈Rj (k) eβ′

k X l

⎫⎬⎭ = 0 (2.4)
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for k = 1, . . . , K , respectively, where β1, . . . , βK are the site-specific log HRs to be estimated within

data-contributing sites. Therefore, let β̂
(1)

denote the solution of the score equation (2.3) and let θ =
(β ′

1, . . . , β ′
K , β ′)′, then θ̂

(1)

� (β̂
′
1, . . . , β̂

′
K , β̂

(1)′
)′ is essentially the solution to

U θ (β1, . . . , βK , β)

=
K∑

k=1

∑
j∈Dk

X i(j) −
d∑

j=1

∑K
k=1[

∑
l∈Rj (k) X le

β′
k X l + {∑l∈Rj (k) X lX

′
le

β′
k X l }(β − βk)]∑K

k=1[
∑

l∈Rj (k) eβ′
k X l + {∑l∈Rj (k) X le

β′
k X l }′(β − βk)]

= 0,

together with the K estimating equations in (2.4) for k = 1, . . . , K .

THEOREM 1 Under regularity conditions for maximum partial likelihood estimation (Cox and Hinkley,
1974, p. 281),

√
n(β̂

(1) − β0)
D−→ N (0, �(1)) as nk → ∞, for k = 1, . . . , K (2.5)

where �(1) = I ∗−1(β0).
An estimator for �(1) is given as follows:

�̂(1) = Î
−1

(θ̂
(1)

) + Î
−1

(θ̂
(1)

)

[
K∑

k=1

I k(θ̂
(1)

)Î
∗−1

kk (β̂k)I k(θ̂
(1)

)′
]

Î
−1

(θ̂
(1)

) (2.6)

where Î (θ̂
(1)

) = − ∂̂Uθ (θ̂
(1)

)

∂β
= −Ĥ

∗
(β(1)), I k(θ̂

(1)

) = − ∂Uθ (θ̂
(1)

)

∂βk
, and Î

∗
kk = − ∂U∗

βk
(β̂k )

∂βk
.

Compared to MPLE with centralized analysis using pooled individual-level data, the variance estima-

tor in (2.6) has an additional term Î
−1

(θ̂
(1)

)
[ ∑K

k=1 I k(θ̂
(1)

)Î
∗−1

kk (β̂k)I k(θ̂
(1)

)′
]
Î

−1
(θ̂

(1)

) that quantifies the

efficiency loss with finite sample. When the sample size nk for each site gets larger, the efficiency loss
gets smaller compared to MPLE with centralized analysis, that is, the solution to the score equation (2.1).
When the sample size nk gets to infinity, the asymptotic variance is the same as that of the centralized
MPLE, as shown in Section S1 of the Supplementary material available at Biostatistics online. Note that
to evaluate the variance estimate in (2.6), we will need the additional summary-level statistic added to
the item (u2) listed above, that is,

∑
l∈Rj (k) X lX

′
l ⊗ X ′

le
β̂

′
k X l . The proof for Theorem 1 and the derivation

of the variance estimator are presented in the Supplementary material available at Biostatistics online. In
addition, we propose a robust variance estimator by extending Lin and Wei (1989). The formula provided
in Section S1 of the Supplementary material available at Biostatistics online.

2.2. Distributed regression method for the stratified Cox model

2.2.1. The stratified Cox PH model When the baseline hazards differ across different sites, we can
postulate a stratified Cox model. The conditional hazard function for the stratified Cox PH model for T ∗

i

given X i with i ∈ �k is λk(t|X i) = λ0k(t)eβ′
0X i , where λ0k(·) is the baseline hazard function for the k-th

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
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site, and β0 is the vector of true values of the log HRs to be estimated. Same as for the unstratified model,
common log HRs are assumed across the data-contributing sites. The partial likelihood score function is
given by

S∗
β(β) �

K∑
k=1

∑
j∈Dk

{
X i(j) −

∑
l∈Rj (k) X leβ′X l∑

l∈Rj (k) eβ′X l

}
= 0 (2.7)

To solve (2.7) for β, we need to know:

(1)
∑

j∈Dk
X i(j) from site k

(2) {∑l∈Rj (k) X leβ′X l ,
∑

l∈Rj (k) eβ′X l } for j ∈ Dk from site k

Unlike the unstratified model, the analysis center does not need to pool the information on all the observed
failure times together from each site. We only need to compute the terms in item (2) at the failure times
that occurred within each site k , hence j ∈ Dk .

2.2.2. Proposed inference approach with summary-level information Using similar techniques as in
Section 2.1, (2.7) can be approximated by

Sβ(β) �
K∑

k=1

∑
j∈Dk

X i(j) −
K∑

k=1

∑
j∈Dk

[ ∑
l∈Rj (k) X leβ̂

′
k X l + {∑l∈Rj (k) X lX

′
le

β̂
′
k X l }′(β − β̂k)

]
[ ∑

l∈Rj (k) eβ̂
′
k X l + {∑l∈Rj (k) X leβ̂

′
k X l }′(β − β̂k)

] = 0 (2.8)

To compute (2.8), we need:

(s1)
∑

j∈Dk
X i(j)

(s2) {∑l∈Rj (k) eβ̂
′
k X l ,

∑
l∈Rj (k) X leβ̂

′
k X l ,

∑
l∈Rj (k) X lX

′
le

β̂
′
k X l } for j ∈ Dk

(s3) β̂k from site k , k = 1, . . . , K

Only one file transfer is required between each data-contributing site and the analysis center.

2.2.3. Distributed algorithm Each data-contributing site calculates the site-specific summary-level sta-
tistics (s1)–(s3), and the analysis center will find the solution to Sβ(β) = 0. Similar to the unstratified
distributed algorithm, we propose a Newton–Raphson algorithm using an approximated Hessian matrix
to update the estimates at each iteration. Specifically, we approximate the Hessian matrix of (2.7)

G∗(β) � −
K∑

k=1

∑
j∈Dk

⎧⎨⎩
∑

l∈Rj (k) X lX
′
le

β′X l∑
l∈Rj (k) eβ′X l

−
[∑

l∈Rj (k) X leβ′X l∑
l∈Rj (k) eβ′X l

]⊗2
⎫⎬⎭
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by Taylor expansion, where a⊗2 = aa′, and obtain the approximated Hessian matrix as

Ĝ
∗
(β) = −

K∑
k=1

∑
j∈Dk

⎧⎨⎩
∑

l∈Rj (k) X lX
′
le

β̂
′
k X l + [∑l∈Rj (k) X lX

′
l ⊗ X ′

le
β̂

′
k X l ] ⊗ (β − β̂k)∑

l∈Rj (k) eβ̂
′
k X l + [∑l∈Rj (k)(X leβ̂

′
k X l )′](β − β̂k)

−
⎡⎣∑

l∈Rj (k) X leβ̂
′
k X l + [∑l∈Rj (k) X lX

′
le

β̂
′
k X l ](β − β̂k)∑

l∈Rj (k) eβ̂
′
k X l + [∑l∈Rj (k)(X leβ̂

′
k X l )′](β − β̂k)

⎤⎦⊗2⎫⎬⎭.

The Newton–Raphson algorithm is presented below.

Algorithm 2: Newton–Raphson algorithm† for the stratified distributed Cox regression

Input: Sβ(β), Ĝ
∗
β(β) and β(0) (initial guess)

Output: β̂ (root of (2.8))
ErrThr = (Error Threshold) ;
MaxIter = (Maximum number of iterations) ;
β(1) = β(0) (Reading in the initial guess) ;
�β(1) = 0 (Initialization) ;

for n <MaxIter do
if

∥∥Sβ(β)(n)
∥∥

∞ ≤ ErrThr then
β̂ = β(n);
break ;

else
�β(n) = −Ĝ∗(β(n))Sβ(β(n));
β(n+1) = β(n) + �β(n)

end
end

† Iterations are conducted within analysis center.

2.2.4. Asymptotic property and variance estimation The β̂k in item (s2) are the solutions to the estimation

equations (2.4) for k = 1, . . . , K , respectively. Let β̂
(2)

denote the solution of the score equation (2.8),

then θ̂
(2)

� (β̂1, . . . , β̂K , β̂
(2)

) is the solution to K + 1 estimating equations, that is,

Sθ (β1, . . . , βK , β)

=
K∑

k=1

∑
j∈Dk

X i(j) −
K∑

k=1

∑
j∈Dk

[ ∑
l∈Rj (k) X le

β′
k X l + {∑l∈Rj (k) X lX

′
le

β′
k X l }′(β − βk)

][ ∑
l∈Rj (k) eβ′

k X l + {∑l∈Rj (k) X le
β′

k X l }′(β − βk)
] = 0,

together with the K estimating equations (2.4), for k = 1, . . . , K .

THEOREM 2 Under regularity conditions for maximum partial likelihood estimation,

√
n(β̂

(2) − β0)
D−→ N (0, �(2)) as nk → ∞, for k = 1, . . . , K , (2.9)
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where �(2) = J ∗−1(β0), and J ∗(β0) = −Eβ0∂S∗
β(β0)/∂β is the partial likelihood information. A

consistent variance estimator for �(2) is

�̂(2) = Ĵ
−1

(θ̂
(2)

) + Ĵ
−1

(θ̂
(2)

)
[ K∑

k=1

J k(θ̂
(2)

)Î
∗−1

kk (β̂k)J k(θ̂
(2)

)′
]
Ĵ

−1
(θ̂

(2)

), (2.10)

where Ĵ (θ̂
(2)

) = − ∂̂Sθ (θ̂
(2)

)

∂β
= −Ĝ

∗
(β(2)), J k(θ̂

(2)

) = − ∂Sθ (θ̂
(2)

)

∂βk
, and Î

∗
kk = − ∂U∗

βk
(β̂k )

∂βk
.

The proof follows similar arguments as those for Theorem 1; see the supplementary materials for more
details. To calculate the variance estimate in (2.10), the analysis center needs the summary-level matrix∑

l∈Rj (k) X lX
′
l ⊗ X ′

le
β̂

′
k X l from each site.

2.3. Remarks on file transfers

2.3.1. Required summary-level information for the distributed methods To fit a stratified model, only
one file transfer is required from each data-contributing site to the analysis center. To fit an unstratified
model, each site needs to be able to construct risk sets that require failure time information from all sites
to compute its own summary statistics. As mentioned in Section 2.1.2, to accomplish this, each site can
first send the observed failure times to the analysis center, and then the analysis center sends back the
merged event times T D

1 < · · · < T D
d to each site. The analysis center is often considered a trusted third-

party (e.g., Her and others, 2020). In addition, because the shared failure times are internal times (e.g.,
90 days) instead of calendar times, they are difficult to be linked to specific individuals. Sharing internal
times without individual identifiers is feasible. For example, the FDA-funded Sentinel System, which
comprises a distributed data network of more than one dozen health plans and delivery systems, regularly
shares “risk set”-level data sets, which include a column on follow-up times, in its multi-database analysis
(e.g., Toh and others, 2016; Li and others, 2018; Taylor and others, 2019).

For the aforementioned file transfer approach, each site will receive failure time information of the
remaining sites. When there are only two sites involved, one site would know the other site’s failure
times and counts. We provide an alternative way of sending failure time information. In this way, each
site can send all the observed (failure or censoring) times to the analysis center (can be monotonically
transformed to further preserve privacy), where the center will rank all the times and send back to each site
only the ranking information on the respective site’s times, together with the ranks of all the failure times.
Alternatively, the center can send back to each site only the respective risk sets information. While the
ranks or risk sets still contain information about failure times from other sites, the failure times are only
known up to an interval even if there are only two sites involved. Table S1 of the Supplementary material
available at Biostatistics online lists the required information with their format in each file transfer.

The proposed method can handle both continuous and discrete covariate X , with the same amount of
summary-level information. When there is only one covariate the vectors and matrices will be reduced
to scalars. The required information from each site will become only 4d + 2 or 4dk + 2 summary-level
scalars for an unstratified or a stratified model, respectively.

To evaluate the variance estimator or to apply the distributed algorithm using the proposed approximated
Hessian matrix Ĥ ∗(β) or Ĝ∗(β), each site needs to send d or dk additional matrices to the center for the
unstratified and stratified methods, respectively.

2.3.2. Comparison to iterative algorithms Compared to the iterative algorithms (Lu and others, 2015;
Vilk and others, 2018), the proposed stratified algorithm only needs one file transfer of the matrices eval-
uated at β̂k , while the iterative algorithms require the same matrices evaluated at the updated β estimates

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
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at each iteration. Assume I iterations are needed for convergence, the amount of information transferred
is I + 1 times the information required using the proposed algorithm. Multiple data transfers can become
cumbersome especially with higher dimensional data. Since the iterative algorithms is asymptotically
equivalent to the pooled individual-level data analysis (Lu and others, 2015), the trade-off of using the
proposed algorithm is a slight loss of efficiency in the finite sample due to the need to estimate site-specific
β̂k , as shown in the simulation studies.

2.4. Higher-order Taylor approximation

So far we have used first-order Taylor expansion to approximate the score function. Higher-order approxi-
mation can also be used with additional summary information from each site. For example, a second-order
Taylor expansion takes the following form: eβ′X ≈ eβ̂

′
k X l +X ′

le
β̂

′
k X l (β−β̂k)+ 1

2 (β−β̂k)
′X lX

′
le

β̂
′
k X l (β−β̂k).

Simulation studies showed that the first-order approximation gave satisfactory results with minimal effi-
ciency loss compared to higher-order approximations (seeTable S5 of the Supplementary material available
at Biostatistics online).

3. SIMULATION STUDY

3.1. Simulation settings and data generation process

To evaluate the finite-sample performance of the proposed method, we simulated distributed data networks
with n independent realizations from K sites and p covariates X = (X1, . . . , Xp)

′. Sample size for the k-th
site is nk , with n1 + . . . + nK = n. Various parameter values for K , n, nk and p were considered in the
simulation settings. Data were generated from two types of models: the unstratified Cox PH models and
the stratified Cox PH models.

The true value of the log HR β0 = (β01, . . . , β0p)
′ was set to be

(
1
p , 2

p , . . . , 1
)′

. The covariate vector X
included p covariates, X1, . . . , Xp, where X1 denotes the binary treatment indicator with log HR β01. The
sample sizes nk , k = 1, . . . , K for the K data-contributing sites can be equal or unequal. Two main settings
were considered for covariates generation. In the first setting (Setting 1) the distributions of covariates
were homogeneous across the K sites and the covariates were independent of each other. For example,
for p = 3, we set X1, X2, and X3 to follow Bernoulli (0.5), standard normal N (0, 1), and Bernoulli (0.5),
respectively, for each site. In Setting 2, the distributions of the covariates were specified differently across
the K sites, and the covariates could be correlated with each other. The detailed specification of the
covariate distributions is provided in Table S2 of the Supplementary material available at Biostatistics
online.

For the unstratified model, n realizations of T ∗ = − log U/ exp (β ′
0X ) with U ∼ Uniform[0, 1] were

generated, assuming a constant baseline hazard h0(t) = 1. For the stratified model, nk realizations of
T ∗ = −(k/2) log U/ exp (β ′

0X ) for site k , k = 1, . . . , K were generated, assuming the baseline hazard
h0k(t) = k/2. The censoring time C was generated independently from an exponential distribution such
that the censoring rate was around 30%. The observed event time was T = T ∗ ∧C, and the event indicator
function was δ = I (T ∗ ≤ C). Each data generation process yielded the data {Ti, Ci, δi, X i, for i =
1, . . . , n}, with X = (X1, . . . , Xp)

′. The number of replications was 10 000.

3.2. Simulation results

We applied the proposed methods to simulated data and compared the results to the centralized analysis
using pooled individual-level data, and the fixed-effects univariate and multivariate meta-analysis based
on an inverse-variance weighted estimator. We report simulation results on selected settings. Additional

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
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Table 1. Comparing distributed Cox regression (Dist), pooled Cox regression (pooled), multivariate
meta-analysis (MultiV) and univariate meta-analysis (UniV) with simulated data of sample sizes n =
500, 1000, 3000 under unstratified and stratified models. Sizes for the data-contributing sites are approx-
imately the same and provided in the table below. Covariates distributions for all the data-contributing
sites are the same. True log HR value is β01 = 1/3. Number of replications = 10 000

Data generating model: unstratified Data generating model: stratified
Method Unstratified Stratified Meta-analysis Unstratified Stratified Meta-analysis

Pooled Dist Pooled Dist MulV UniV Pooled Dist Pooled Dist MulV UniV

K = 3; nk = (167, 167, 166); p = 3 K = 3; nk = (167, 167, 166); p = 3
bias 0.0035 0.0146 0.0033 0.0145 0.0026 0.0047 bias −0.0316 −0.0168 0.0033 0.0143 0.0026 0.0046
cr 0.9542 0.9556 0.9523 0.9530 0.9525 0.9501 cr 0.9404 0.9711 0.9536 0.9519 0.9544 0.9518
mae 0.0785 0.0805 0.0796 0.0816 0.0794 0.0803 mae 0.0834 0.0818 0.0791 0.0811 0.0789 0.0799
cios 0.9500 0.9455 0.9470 0.9429 0.9470 0.9453 cios 0.9053 0.9141 0.9500 0.9462 0.9500 0.9483
sse 0.0985 0.0999 0.0999 0.1015 0.0997 0.1009 sse 0.0994 0.1011 0.0993 0.1008 0.0991 0.1004
ese 0.0992 0.1012 0.1005 0.1026 0.1004 0.1011 ese 0.0987 0.1031 0.1003 0.1023 0.1001 0.1009
rse 0.0984 0.1025 rse 0.0993 0.1161

K = 3; nk = (333, 333, 334); p = 3 K = 3; nk = (333, 333, 334); p = 3
bias 0.0011 0.0066 0.0011 0.0065 0.0008 0.0018 bias −0.0344 −0.0255 0.0009 0.0064 0.0006 0.0016
cr 0.9494 0.9498 0.9485 0.9505 0.9488 0.9483 cr 0.9189 0.9604 0.9469 0.9483 0.9470 0.9467
mae 0.0557 0.0565 0.0561 0.0568 0.0561 0.0565 mae 0.0628 0.0604 0.0562 0.0568 0.0562 0.0565
cios 0.9500 0.9480 0.9484 0.9466 0.9484 0.9475 cios 0.8898 0.9058 0.9500 0.9482 0.9500 0.9491
sse 0.0699 0.0704 0.0704 0.0708 0.0703 0.0708 sse 0.0707 0.0712 0.0704 0.0709 0.0703 0.0708
ese 0.0698 0.0704 0.0703 0.0709 0.0702 0.0705 ese 0.0695 0.0712 0.0701 0.0707 0.0701 0.0703
rse 0.0695 0.0708 rse 0.0701 0.0800

K = 3; nk = (1000, 1000, 1000); p = 3 K = 3; nk = (1000, 1000, 1000); p = 3
bias 0.0002 0.0020 0.0002 0.0020 0.0001 0.0005 bias −0.0353 −0.0304 0.0001 0.0019 0.0000 0.0004
cr 0.9542 0.9534 0.9532 0.9530 0.9532 0.9529 cr 0.8577 0.9224 0.9519 0.9511 0.9521 0.9529
mae 0.0320 0.0321 0.0320 0.0322 0.0320 0.0321 mae 0.0440 0.0413 0.0320 0.0321 0.0320 0.0321
cios 0.9500 0.9494 0.9494 0.9488 0.9494 0.9491 cios 0.8292 0.8629 0.9500 0.9494 0.9500 0.9497
sse 0.0400 0.0401 0.0401 0.0402 0.0400 0.0401 sse 0.0404 0.0406 0.0400 0.0401 0.0400 0.0401
ese 0.0401 0.0403 0.0403 0.0404 0.0402 0.0403 ese 0.0400 0.0404 0.0402 0.0403 0.0401 0.0402
rse 0.0401 0.0403 rse 0.0405 0.0455

cr: coverage rate; mae: mean absolute error; cios: confidence interval overlap statistics; sse: sample standard error; ese: estimated
standard error; rse: robust standard error estimate.

simulation results are available in Section S2 of the Supplementary material available at Biostatistics
online.

Table 1 presents results with data generated from the unstratified and stratified models with sample
sizes of 500, 1000, and 3000 under setting 1 when the covariate distributions were the same across sites.
The sample size for each site was about the same. Additional results with different site sizes are provided
in Table S3 of the Supplementary material available at Biostatistics online. Table 2 presents the results
under setting 2 when the baseline hazards are the same across sites, but the covariates follow different
distributions across sites. Each table includes the following performance metrics on the estimator of log
HR (β1) of treatment: bias, coverage rate (cr), the mean absolute error (mae), and the confidence interval
overlap statistics (cios) (Karr and others, 2006), a measure of the degree of overlap between confidence
intervals obtained from the model fits using distributed and pooled data (details in Section S2 of the
Supplementary material available at Biostatistics online). No overlap corresponds to cios = 0 and perfect
overlap corresponds to cios = 0.95. Three types of standard errors were provided, namely the sample
standard error (sse), the estimated standard error (ese), and the robust standard error estimates (rse) for
unstratified models.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
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Fig. 1. Boxplot of the estimates using distributed Cox regression, pooled Cox regression, and meta-analyses with
simulated data of sample size n = 3000 with data generated from unstratified models. Sizes for the data-contributing
sites are nk = (500, 1000, 1500) (left plot) or nk = (1000, 1000, 1000) (right plot). Covariates distributions for all the
data-contributing sites are different. True log HR value is β01 = 1/3. Number of replications = 10 000.

With a total sample size of 500, each site had at least 100 events observed in the settings considered.
Firstly, as shown in Table 1, when data were generated from an unstratified Cox model, the proposed
unstratified distributed regression produced similar estimates to the unstratified using pooled data. The
cios were all close to 95%. The stratified pooled analysis produced estimates with the same cios as the
multivariate meta-analysis. Of note, the univariate meta-analysis, without making use of the correlation
among estimates, resulted in some efficiency loss. Secondly, when the true data generating model was a
stratified Cox model, the proposed stratified distributed regression methods produced similar estimates to
the MPLE using pooled data. The cios of the distributed method became closer to 95% as the sample size
increased. This verified that the efficiency loss using the stratified distributed method was minimal with
sufficiently large sample size, and verified the asymptotic equivalence of the proposed estimators to the
stratified MPLE. Thirdly, when fitting an unstratified model using data generated from a stratified model,
bias was observed in the estimates due to model misspecification. The unstratified model underestimated
the true parameter value because the marginal effect attenuated towards the null when the true effect
is stratum-specific, similar to the well-known results that the marginal odds ratio is closer to null than
common stratum-specific odds ratio (Greenland and others, 1999; Ritz and Spiegelman, 2004). The
stratified methods generated almost identical results as the multivariate meta-analysis. This is consistent
with the conclusion in Lin and Zeng (2010), that when the nuisance parameters (e.g., baseline hazard) have
distinct values among sites, there is no efficiency gain by analyzing the pooled individual data through
a stratified Cox model compared to multivariate meta-analysis, since the asymptotic variances from the
two approaches are the same.

Table 2 and Figure 1 present the results when the covariate distributions were different across sites and
the baseline hazards were the same. When the true data generating model was the unstratified model, the
efficiency loss using multivariate meta-analysis can be substantial compared to the unstratified methods.
This efficiency gain with the unstratified models was noted when the baseline hazards were the same
across sites; in which case, when the covariate distributions differed across the sites, analyzing the pooled
data using an unstratified model may have efficiency gain over the multivariate meta-analysis. When the
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covariate distributions were the same across the sites, the asymptotic variances again coincide so there
was no efficiency gain (Table 1).

The univariate meta-analysis, without making use of the correlation among estimates, can result in
efficiency loss (Table 2) as noted previously by others (Lin and Zeng, 2010; Song and others, 2020).
This highlights the importance of sharing the estimated covariance matrices in addition to the estimated
univariate regression parameters. The common practice where each site only shares the estimated univariate
treatment effect with its estimated standard error may lead to efficiency loss, especially when the correlation
between the treatment effect estimate and the estimates of other covariates is high.

Table 3 presents additional simulation results with various numbers of covariates and sizes of sites.
Table S5 of the Supplementary material available at Biostatistics online presents the results using the
proposed distributed methods, comparing first-order and higher-order Taylor expansions. Approximation
using a second-order Taylor expansion provided almost identical estimates in terms of accuracy compared
to our proposed first-order approximation. The performances of the third- and fourth-order approximations
were similar to the second-order approximations.

4. REAL DATA APPLICATION

We analyzed a data set from the IBM® MarketScan® Research Databases. The data set contained 11 579
individuals aged 18–79 years who received either sleeve gastrectomy (SG) or Roux-en-Y gastric bypass
in 2014. The outcome of interest was time to the first readmission during the 30-day postoperative period.

The treatment variable was set to 1 if the patient received sleeve gastrectomy and 0 if the patient
received Rous-en-Y gastric bypass (treatment). The covariates included age, the Charlson/Elixhauser
combined comorbidity score (comorbidity score), diagnosis of cancer, depression, diabetes, eating dis-
order, gastroesophageal reflux disease, hypertension, nonalcoholic fatty liver disease, the number of
emergency department visits, and the number of unique generic medications. We estimated the log HR of
readmission using both unstratified and stratified Cox PH models, based on either pooled individual-
level data or summary statistics from distributed data, as well as using multivariate and univariate
meta-analysis.

We first created a distributed data network by randomly partitioning the data into three sites (“partition
1”). Next we partitioned the data such that across sites the covariate distributions were different and baseline
hazards were similar (see Table S8 and Figure S1 of the Supplementary material available at Biostatistics
online for the descriptive statistics). Table 4 presents the estimated log HRs together with their estimated
standard errors for treatment. The estimates for other covariates are presented in Tables S6–S7 of the
Supplementary material available at Biostatistics online. Based on the pooled individual-level data, the
log HR comparing SG to Roux-en-Y gastric bypass using the unstratified model was estimated to be
−0.359 (ese: 0.1007), indicating that those who received SG had a lower risk of 30-day readmission
postsurgery. The proposed distributed method performed well and led to nearly identical results under
both partitions. Under partition 1, all methods led to similar results.

“Partition 2” was a partition of the pooled data which reflected the settings where the sites shared a
common baseline hazard and the potential heterogeneity in risk of readmission across sites was accounted
for through the covariate adjustment. As shown in Table S8 and Figure S1 of the Supplementary material
available at Biostatistics online, the baseline hazard estimates were similar across sites and the covariate
distributions were different. In such settings, we may expect an efficiency gain using the unstratified
model over the stratified model, which would be reflected in a smaller ese on average. In this particular
example, we observed an approximately 20% increase in ese using the stratified model (and multivariate
meta-analysis) compared to the unstratified model. The ese from univariate meta-analysis was associated
with approximately 30% increase.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac006#supplementary-data
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Table 3. Comparing distributed Cox regression, pooled Cox regression, and meta-analyses with
simulated data from unstratified models with a varying number of sites K, site sizes nk and number
of covariates p. True log HR for treatment is β01 = 1/p. Number of replications = 10000.

Unstratified
pooled

Unstratified
distributed

Stratified
pooled

Stratified
distributed

Multivariate
meta-analysis

Univariate
meta-analysis

K = 3; nk = (10, 10, 10); p = 1; β0 = 1
bias −0.1536 0.0194 −0.2000 −0.0428 −0.2276 −0.2276
cr 0.9591 0.9749 0.9577 0.9869 0.9595 0.9595
mae 0.3297 0.3123 0.3567 0.3161 0.3648 0.3648
cios 0.9500 0.9041 0.9272 0.8961 0.9234 0.9234
sse 0.3843 0.3910 0.4037 0.3903 0.3944 0.3944
ese 0.4526 0.5556 0.4969 0.6304 0.5022 0.5022
rse 0.4314 0.5575

K = 3; nk = (30, 30, 30); p = 1; β0 = 1
bias −0.0065 0.0615 −0.0108 0.0579 −0.0250 −0.0250
cr 0.9614 0.9630 0.9609 0.9696 0.9609 0.9609
mae 0.1931 0.2049 0.2009 0.2122 0.2001 0.2001
cios 0.9500 0.9305 0.9399 0.9227 0.9389 0.9389
sse 0.2427 0.2482 0.2523 0.2577 0.2504 0.2504
ese 0.2551 0.2770 0.2658 0.2956 0.2661 0.2661
rse 0.2496 0.2780

K = 3; nk = (40, 40, 40); p = 2; β0 = 1/2
bias −0.0052 0.0457 −0.0069 0.0442 −0.0128 -0.0100
cr 0.9572 0.9606 0.9565 0.9635 0.9583 0.9555
mae 0.1706 0.1779 0.1785 0.1853 0.1769 0.1801
cios 0.9500 0.9334 0.9389 0.9249 0.9388 0.9360
sse 0.2134 0.2176 0.2231 0.2273 0.2210 0.2250
ese 0.2175 0.2337 0.2274 0.2479 0.2270 0.2300
rse 0.2122 0.2394

K = 3; nk = (20, 20, 20); p = 3; β0 = 1/3
bias −0.0826 −0.0089 −0.1023 −0.0342 −0.1058 −0.1191
cr 0.9517 0.9750 0.9544 0.9830 0.9577 0.9491
mae 0.2408 0.2381 0.2583 0.2482 0.2539 0.2769
cios 0.9500 0.9146 0.9310 0.9050 0.9306 0.9166
sse 0.2921 0.2991 0.3099 0.3114 0.3025 0.3299
ese 0.3035 0.3657 0.3260 0.4050 0.3268 0.3463
rse 0.2892 0.3833

K = 10; nk = (50, 50, 50, 50, 50, 50, 50, 50, 50, 50); p = 3; β0 = 1/3
bias −0.0008 0.0489 −0.0018 0.0542 −0.0060 0.0014
cr 0.9573 0.9697 0.9532 0.9739 0.9554 0.9505
mae 0.0794 0.0925 0.0830 0.0997 0.0821 0.0871
cios 0.9500 0.9057 0.9379 0.8794 0.9376 0.9289
sse 0.0991 0.1044 0.1038 0.1117 0.1025 0.1088
ese 0.0992 0.1150 0.1042 0.1440 0.1040 0.1074
rse 0.0983 0.1238

K = 3; nk = (166, 167, 167); p = 5; β0 = 1/5
bias 0.0022 0.0130 0.0027 0.0136 0.0022 0.0048
cr 0.9500 0.9569 0.9489 0.9510 0.9490 0.9443
mae 0.0778 0.0801 0.0789 0.0813 0.0787 0.0808
cios 0.9500 0.9427 0.9470 0.9407 0.9470 0.9432
sse 0.0976 0.0997 0.0989 0.1012 0.0987 0.1014
ese 0.0968 0.1003 0.0980 0.1019 0.0979 0.0993
rse 0.0957 0.1037

K = 5; nk = (50, 50, 50, 175, 175); p = 7; β0 = 1/7
bias −0.0006 0.0178 −0.0007 0.0190 −0.0016 0.0021
cr 0.9505 0.9730 0.9505 0.9723 0.9518 0.9416
mae 0.0785 0.0824 0.0803 0.0850 0.0798 0.0858
cios 0.9500 0.9285 0.9446 0.9123 0.9442 0.9337
sse 0.0983 0.1016 0.1003 0.1047 0.0996 0.1074
ese 0.0976 0.1092 0.0998 0.1281 0.0997 0.1041
rse 0.0961 0.1176

cr: coverage rate; mse: mean absolute error; cios: confidence interval overlap statistics
sse: sample standard error; ese: estimated standard error; rse: robust standard error estimate.
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Table 4. Comparing distributed Cox regression, pooled Cox regression, and meta-analyses with real
data, under two partitions. Results presented are log hazard ratio (logHR) and estimated standard
error (ese)

Partition 1 Partition 2

logHR ese logHR ese

Unstratified pooled −0.359 0.1007 −0.359 0.1007
Unstratified distributed −0.366 0.1043 −0.361 0.1063
Stratified pooled −0.359 0.1007 −0.338 0.1240
Stratified distributed −0.366 0.1045 −0.353 0.1272
Univariate meta-analysis −0.361 0.1012 −0.318 0.1302
Multivariate meta-analysis −0.362 0.1011 −0.347 0.1210

5. DISCUSSION

In this article, we proposed a distributed approach to estimate and to make inferences about the parameters
in Cox PH models based on summary-level information. The proposed methods can be used to fit both
stratified and unstratified models, and make inferences about coefficients of multiple continuous or discrete
covariates. We showed that the proposed estimators from both models were consistent and efficient relative
to their respective counterparts in centralized analyses using pooled individual-level data. We provided
variance estimators using the observed information, as well as robust variance estimators.Alternative ways
of variance estimation such as bootstrapping may also be considered (see, e.g., Shu and others, 2020).

The proposed methods are broadly applicable to fit unstratified or stratified models in a distributed
fashion without requiring iterative file transfers. When the true data generating process follows a stratified
model, the proposed method performs similarly as alternative distributed methods such as multivariate
fixed-effects meta-analysis. When the true data generating process follows an unstratified model and
the distributions of covariates are different across sites, fitting an unstratified model may gain efficiency
compared to fitting a stratified model (or performing a multivariate meta-analysis). Both unstratified and
stratified Cox models are commonly used in health applications. In the Cox PH model formulation, the
baseline hazard function represents the hazard over time for a group of individuals with a specific set of
covariates. A common baseline hazard function is not an unreasonable assumption if heterogeneity in the
risk of events across sites is accounted for by the covariate adjustment. On the other hand, heterogeneity
in covariate distribution across sites is likely. For example, distributions of sociodemographic factors
across geographical regions can be different, which would be expected in multi-center studies involving
multiple states or regions. In practice, we may visually assess the assumption of a common baseline
hazard by comparing the plots of site-specific Nelson–Aalen estimates for the baseline hazard functions
with confidence bands for consistent overlapping over time.

Both the proposed method and meta-analysis require that each data-contributing site has enough events
to produce a reliable effect estimate. In practice, each site can send descriptive statistics (e.g., number of
events, number of person-times, number of covariates, and summary statistics of the covariates) to the
analysis center to determine whether enough events have been accumulated for each site. If the number
of events appears to be too small, the site can be excluded from the analysis or the analysis can wait for a
period of time until adequate number of events have been accumulated.

Cox regression methods with the main goal of preserving privacy have been proposed, including ran-
domized data perturbation that consists of building a new representation of the data using an approximate
random projection (see, e.g., Verykios and others, 2004; Yu and others, 2008). These methods make use
of perturbed individual-level data. The primary goal of this paper is to propose a new statistical method
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for distributed regression analysis based on asymptotic approximations that can be applied broadly to fit
stratified or unstratified Cox models and to make inference about the model parameters, when individual-
level data cannot be shared. In addition to privacy concerns, sharing individual data can be challenging
due to feasibility (e.g., the size of individual-level data may be too large). The proposed method is
privacy-protecting in the sense that it does not require individual-level data. The idea of score function
approximations can be applied to analyze other types of endpoints (e.g., binary endpoints analyzed with
logistic regression models) in a distributed way. Future work will investigate privacy-protecting methods
for extended Cox models such as frailty models (Therneau, 2000), and for settings where covariates may
be missing.

6. SOFTWARE

The code used in the article is available on GitHub with an illustration. Detailed information are included
in Section S4 of the Supplementary material available at Biostatistics online.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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