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Background Several observational studies reported on the association between par-
ticulate matter ≤2.5μm (PM

2.5
) and its absorbance with coronavirus (COVID-19), but 

none use Mendelian randomisation (MR). To strengthen the knowledge on causal-
ity, we examined the association of PM

2.5
 and its absorbance with COVID-19 risk 

using MR.

Methods We selected genome-wide association study (GWAS) integration data from 
the UK Biobank and IEU Open GWAS Project for two-sample MR analysis. We used 
inverse variance weighted (IVW) and its multiple random effects and fixed effects 
alternatives to generally predict the association of PM

2.5
 and its absorbance with 

COVID-19, and six methods (MR Egger, weighted median, simple mode, weighted 
mode, maximum-likelihood and MR-PRESSO) as complementary analyses.

Results MR results suggested that PM
2.5

 absorbance was associated with COVID-19 
infection (odds ratio (OR) = 2.64; 95% confidence interval (CI) = 1.32-5.27, P = 0.006), 
hospitalisation (OR = 3.52; 95% CI = 1.05-11.75, P = 0.041) and severe respiratory 
symptoms (OR = 28.74; 95% CI = 4.00-206.32, P = 0.001) in IVW methods. We ob-
served no association between PM

2.5
 and COVID-19.

Conclusions We found a potential causal association of PM
2.5

 absorbance with 
COVID-19 infection, hospitalisation, and severe respiratory symptoms using MR 
analysis. Prevention and control of air pollution could help delay and halt the neg-
ative progression of COVID-19.

© 2023 The Author(s)

Coronavirus disease 2019 (COVID-19), a globally prevalent infectious disease caused 
by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) [1], leads to se-
vere respiratory symptoms [2] and pathological lung changes like ground-glass opaci-
ties, signs of reticulation (including course fibrous bands, either with or without obvious 
parenchymal distortion), bronchiectasis, pulmonary fibrosis [3-5], and complications of 
multiple body systems [6,7], which is seriously harmful to human health.

Evidence suggests that exposure to air pollution is related to susceptibility to SARS-
CoV-2 infection and COVID-19 severity [8]. Particulate matter ≤2.5μm (PM

2.5
) is a sig-

nificant component of air pollutants and extremely detrimental to human health because 
of their small size [9], due to which it reduces lung immune response and antibacterial 
activity and increases viral load. Recent studies have shown that PM

2.5
 is possibly related 

to known COVID-19 symptoms and mortality [10-12]. PM
2.5

 increase of 1μg*m-3 can lead 
to at least an 11% increase in COVID-19 mortality in the USA [13]. However, evidence of 
these associations comes from observational studies rather than randomised controlled 
trials, preventing conclusion regarding association due to possible confounding.

https://creativecommons.org/licenses/by/4.0/legalcode
https://orcid.org/0000-0002-7065-714
https://orcid.org/0000-0001-8608-2219
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As no studies have reported or discussed the use of the genetic instruments to predict the correlation be-
tween PM

2.5
 and COVID-19 risk, we hypothesised that there may exist a causal relationship between PM

2.5
 

and COVID-19 risk. We conducted a two-sample Mendelian randomisation (MR) study to investigate the 
association between PM

2.5
, PM

2.5
 absorbance (a proxy of elemental carbon) [14], and COVID-19 risk.

METHODS
Study design

The MR design, which minimises the impact of environmental and other confounding factors, is based on 
genetic variation as instrument variables of exposure factors, and infers the causal relationship between ex-
posure factors and outcome variables. This method’s random allocation of alleles is similar to that of ran-
domized controlled trials [15,16]. Additionally, it can increase the directivity of causality and diminish re-
verse causation, because the process cannot change the genetic variation of exposure factors.

Using genetic variants as instrumental variables, 
MR analysis consists of three essential assump-
tions (Figure 1). The first assumption is that the 
genetic variants proposed as instrumental vari-
ables should be robustly associated with expo-
sure, the second indicates that the used genetic 
variants should not be associated with any con-
founder factors, and the third is that the select-
ed genetic variants should affect the risk of the 
outcome only through risk factors.

Screen of genetic instrument

We obtained single-nucleotide polymorphisms (SNPs) as instrumental variables associated with PM
2.5

 and 
PM

2.5
 absorbance from genome-wide association study (GWAS) data sets of IEU’s analysis of the UK Bio-

bank, containing 423 796 individuals of European ancestry. These data sets can be searched in the IEU Open 
GWAS Project (GWAS ID: ukb-b-11312, and ukb-b-10817) [17]. To select the most powerful instrumental 
variables, we grouped the data set screen standards (P < 5 × 10−8, r2<0.01, and clump distance >10 000kb) 
[18] to eliminate the linkage disequilibrium for excluding potential horizontal pleiotropy and insignificant 
SNPs. We then selected eight independent SNPs associated with PM

2.5
 and five independent SNPs associ-

ated with PM
2.5

 absorbance.

COVID-19 data source

We obtained summary data on the association of COVID-19 cases from the European Bioinformatics In-
stitute (EBI) database of complete GWAS summary data, searchable through the IEU Open GWAS Project 
[17]. We chose three data sets to investigate different COVID-19 situations, including COVID-19 (1 644 784 
controls, 38 984 cases), recent COVID-19 hospitalisations (1 549 095 controls, 8316 cases) and confirmed 
COVID-19 cases with severe respiratory symptoms (1 383 241 controls, 5101 cases) [19]. We excluded all 
individuals who had withdrawn consent from either data source.

Statistical analysis

We performed the inverse variance weighted (IVW) method and its multiple random effects and fixed ef-
fects alternatives to estimate the association for genetically predicted PM

2.5
 and PM

2.5
 (analysed SNPs >3) 

[18,20]. Additionally, MR-Egger [21], weighted median [22], simple mode, weighted mode, maximum-like-
lihood [23], and MR-PRESSO [24] were used as complementary analysis to IVW.

We conducted the two-sample MR analysis between two groups of selected SNPs and the above three 
groups of COVID-19, respectively. The total odds ratio (OR) was the effect of PM

2.5
 and PM

2.5
 absorbance 

on COVID-19 separately. We interpreted a P-value <0.05 as statistically significant. Sensitivity analyses con-
sisted of three parts and several methods. First, we assessed the heterogeneity using the value of Cochran’s 
Q test, with a P-value <0.05 suggesting that heterogeneity existed [25], but the IVW method results with 
the multiplicative random-effects model were still reliable in this situation. Second, we assessed horizon-
tal pleiotropy [26] to avoid the second and third assumption, calculating it using MR-Egger intercept [21]. 

Figure 1. Study flowchart.
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If the P-value of MR-Egger intercept was <0.05, we considered the effect of SNPs associated with exposure 
factors on outcomes as unreliable. Third, we performed the leave-one-out analysis, excluding each SNP one 
by one to determine whether a single SNP significantly changed the results [27]. Using the IVW method, 
we could calculate the “all” numerical value, and considered the results reliable if “all”>0. Additionally, the 
MR-PRESSO method can recognise outliers (SNPs) and provide a causal estimate after corresponding outli-
ers are removed and the forest plot reflected the correlation of exposure factors with outcomes in each SNP. 
To avoid weak instrumental bias, we used the F statistic to measure the strength of instrument variables. 
If F was >10, we considered the outcome to be unaffected by weak instruments [28,29]. We performed all 
analyses in R (Version 4.1.2) using the “TwoSampleMR” [30] and “MR-PRESSO” packages.

RESULTS
Information of selected SNPs

The F statistic was greater than 10 for all the instrument variables associated with PM
2.5

 and PM
2.5

 absorbance 
in UK Biobank study (Table 1 and Table 2). The MR analysis estimated the risk of PM

2.5
 and PM

2.5
 absorbance 

on COVID-19 of status (Figure 2, Figure 3, and Figure S1, Table S1 and S2 in the Online Supplementary 
Document). Through MR-PRESSO, outlier SNPs have been eliminated and statistics have been corrected.

Table 1. Selected genetic instruments of PM
2.5

SNP Chr Beta SE P-value F Related genes
rs114708313 6 0.025 0.004 4.20E-08 30.076 HCG27

rs12203592 6 0.022 0.003 6.20E-17 69.918 IRF4

rs1372504 5 0.012 0.002 3.10E-08 30.674 NONE

rs1537371 9 0.012 0.002 8.50E-09 33.149 CDKN2B-AS1

rs6749467 2 -0.012 0.002 1.40E-08 32.228 FAM150B

rs72642437 18 0.113 0.019 3.10E-09 35.119 ZBTB7C

rs77205736 8 0.014 0.002 2.10E-08 31.399 MSRA

rs77255816 6 0.031 0.006 4.20E-08 30.041 CDKAL1

SNPs – single-nucleotide polymorphisms, Chr – chromosome, SE – standard error, F – F statistics, HCG27 – HLA complex group 
27, IRF4 – interferon regulatory factor 4, NONE – no related gene, CDKN2B-AS1 – CDKN2B antisense RNA 1, FAM150B – ALK and 
LTK ligand 2, ZBTB7C – zinc finger and BTB domain containing 7C, MSRA – methionine sulfoxide reductase A, CDKAL1 – CDK5 
regulatory subunit associated protein 1 like 1

Table 2. Selected genetic instruments of PM
2.5

 absorbance

SNP Chr Beta SE P-value F Related genes
rs12203592 6 0.017 0.003 1.20E-10 41.539 IRF4

rs4915350 1 0.046 0.008 5.70E-09 33.933 LINC02789

rs59727727 6 0.018 0.003 2.80E-08 30.823 MICA

rs77205736 8 0.013 0.002 4.50E-08 29.911 MSRA

rs79475047 6 0.040 0.007 1.60E-09 36.427 CDKAL1

SNPs – single-nucleotide polymorphisms, Chr – chromosome, SE – standard error, F – F statistics; IRF4 – interferon regulatory fac-
tor 4, LINC02789 – long intergenic non-protein coding RNA 2789, MICA – MHC class I polypeptide-related sequence A, MSRA – 
methionine sulfoxide reductase A, CDKAL1 – CDK5 regulatory subunit associated protein 1 like 1

MR analysis of PM
2.5

 on the status of COVID-19

Using screened instrument variables, we found no association between PM
2.5

 and COVID-19 in MR. In the 
IVW MR analysis, genetically predicted PM

2.5
 was not significantly associated with COVID-19 infection 

(OR = 1.11; 95% confidence interval (CI) = 0.43-2.84, P = 0.831)), hospitalisation (OR = 1.75; 95% CI = 0.96-
2.61, P = 0.068) and severe respiratory symptoms (OR = 2.56; 95% CI = 0.50-13.05, P = 0.259) vs population 
(Figure 2). In the sensitivity analysis (Table S3 in the Online Supplementary Document), we estimat-
ed that there were confounding factors and horizontal pleiotropy between instrumental variables of PM

2.5
 

and COVID-19 infection (Cochran’s Q: P = 0.012, MR-Egger: P = 0.018), which indicated that the results of 
two-sample MR in this group were unreliable. Although there was not significance in the IVW method, in-
strument variables in weight median method (Figure S1 and Table S1 in the Online Supplementary Doc-
ument) showed significant statistical differences between PM

2.5
 and COVID-19 hospitalisation (OR = 2.06; 

95% CI = 1.04-2.84, P = 0.038).
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MR analysis of PM
2.5

 absorbance on the status of COVID-19

In the IVW MR analysis, genetically predicted PM
2.5

 absorbance was associated with COVID-19 hospi-
talisation (OR = 3.52; 95% CI = 1.05-11.75, P = 0.041) and severe respiratory symptoms (OR = 28.74; 95% 
CI = 4.00-206.32, P = 0.001) (Figure 3). Although the association of PM

2.5
 absorbance with COVID-19 in-

fection was not significantly statistical in the IVW method (OR = 2.64; 95% CI = 0.72-9.74, P = 0.144), there 
was differences in the methods of IVW (fixed effects) (OR = 2.64; 95% CI = 1.32-5.27, P = 0.006), weighted 
median (OR = 3.93; 95% CI = 1.28-12.08, P = 0.017) and maximum likelihood (OR = 2.85; 95% CI = 1.37-5.95, 
P = 0.005) (Table S2 in the Online Supplementary Document). In the sensitivity analysis (Table S3 in the 
Online Supplementary Document), the heterogeneity test detected heterogeneity between instrumental 
variables of PM

2.5
 absorbance and COVID-19 infection, but no horizontal pleiotropy was observed between 

genetic instruments and all outcomes, which did not affect the reliability of the results.

Figure 2. The MR results of PM
2.5

 on the status of COVID-19. 
Panel A. The association of PM

2.5
 with COVID-19 infection. 

Panel B. The association of PM
2.5

 with COVID-19 hospitaliza-
tion. Panel C. The association of PM

2.5
 with COVID-19 with 

VSR. SNP – single-nucleotide polymorphisms, OR – odds ratio, 
IVW – the inverse variance weighted method, VSR – very severe 
respiratory symptoms.

Figure 3. The MR results of PM
2.5

 absorbance on the status of 
COVID-19. Panel A. The association of PM

2.5
 absorbance with 

COVID-19 infection. Panel B. The association of PM
2.5

 absor-
bance with COVID-19 hospitalization. Panel C. The association 
of PM

2.5
 absorbance with COVID-19 with VSR. SNP – single-nu-

cleotide polymorphisms, OR – odds ratio, IVW – the inverse vari-
ance weighted metho, VSR – very severe respiratory symptoms.
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DISCUSSION
We obtained and filtered relevant genome-wide data from GWAS as genetic instruments to explore the causal 
association of PM

2.5
 and PM

2.5
 absorbance with infection, hospitalisation, or severe respiratory symptoms of 

COVID-19. We found that PM
2.5

 absorbance may be associated with increased risk of COVID-19 hospital-
isation and severe respiratory symptoms. We also found PM

2.5
 absorbance was a risk factor for COVID-19 

prevalence in weight median and maximum likelihood method. However, there was no significant relation-
ship between exposure to PM

2.5
 and COVID-19 infection, hospitalisation, or severe respiratory symptoms.

PM
2.5

 absorbance, as a proxy and indicator of element carbon reflecting the concentration of carbonaceous 
components in PM

2.5
, may increase the risk of COVID-19 infection and deterioration by reducing the re-

sistance to infection by negatively influencing lung structure and long-term function [31,32]. Consistently, 
PM

2.5
 absorbance mainly determined by exposure to environmental tobacco smoke indoors [33] was most 

likely associated with worse progression and adverse outcomes of COVID-19 [34]. Studies have shown that 
PM

2.5
 absorbance was significantly correlated with brain malignancy, incident hypertension and metabol-

ic syndrome, which could exacerbate the severity of COVID-19 by affecting body physiologic function, in-
cluding endothelial dysfunction and abnormal lipids metabolism [35-37].

Previous studies provided a pathogenetic explanation for this association. In a large cohort study, PM
2.5

 ab-
sorbance was found to be possibly associated with the increase of gamma glutamyl transferase (GGT) [38], 
which was linked to the occurrence of accumulating inflammation response and applications in COVID-19 
[39,40]. Furthermore, a mice model study indicated that PM

2.5
 carbonaceous components such as elemen-

tal carbon drive an acute cardiovascular response by increasing blood pressure and heart rate, which may 
increase cardiovascular burden and potential risk for complications in COVID-19 patients [41]. The car-
bonaceous particles in PM

2.5
 may act as vehicles for strong acids like H

2
SO

4
 and cause damage to alveolar 

epithelium with inhalation of PM
2.5

, decreasing resistance to infection and pulmonary dysfunction [42]. 
Additionally, inhalation of high levels of spherical carbonaceous nanoparticles may induce inflammatory 
response and reactivates latent virus [43,44]. Through the IVW methods, we found PM

2.5
 absorbance was 

a likely risk factor of COVID-19 hospitalisation and severe respiratory symptoms. Meanwhile, PM
2.5

 absor-
bance may also increase the risk of COVID-19 infection estimated in the fixed effects IVW, weighted medi-
an and maximum likelihood method. Based on multiple statistical models, PM

2.5
 absorbance was identified 

to be possibly associated with increased risk of COVID-19 prevalence and negative progression.

Some studies have suggested PM
2.5

 absorbance was possibly a risk factor for COVID-19 cases, increasing 
patients’ symptoms and mortality [45-50]. A prospective cohort study showed that PM

2.5
 was significantly 

associated with COVID-19 hospitalisations and accesses to intensive care units [51], while another study 
reported that pollution stemming from PM

2.5
 caused poor prognosis of COVID-19 patients [52]. However, 

confounding factors are often present, and we also found no adequate evidence for the association of PM
2.5

 
with COVID-19, even though the result of weight median method showed significant statistical differences 
between PM

2.5
 and COVID-19 with hospitalisation.

Components of PM
2.5

 may provide a reasonable explanation for the difference between the associations of 
PM

2.5
 and PM

2.5
 absorbance with COVID-19 risk. These components are intricate and mainly contain carbo-

naceous aerosol (including elemental carbon and organic carbon particles like polycyclic aromatic hydrocar-
bon), crustal components, trace elements, and heavy metals, which trigger various pathogenic mechanisms 
[53-55]. When analysing PM

2.5
 as a whole factor, we found no association with COVID-19 in the MR, but 

discovered that PM
2.5

 absorbance (as a proxy of elemental carbon that accounts for 50% proportion of PM
2.5

) 
was possibly correlated with COVID-19 risk, suggesting that carbonaceous components in PM

2.5
 may be in-

dependently associated with COVID-19 risk, but that other compositions probably weaken or inversely inter-
fere in this association with PM

2.5
 [56]. Considering GWAS data of PM

2.5
 only originated from the European 

population, further genetic studies are necessary to confirm our findings in other races and circumstances.

Although this study has several strengths, it also has some limitations. First, GWAS data only came from 
European populations, and we could not assess the effect of age and sex on the observed association in 
summary level data. We thus lack genetic data for different regions, races, and environments, so we can-
not generalise our findings to other populations or contexts. Second, we detected heterogeneity and hori-
zontal pleiotropy, and had a limited number of SNPs in our analysis, making the correlation between PM

2.5
 

and COVID-19 infection unreliable. The source of this heterogeneity might have been the different detec-
tion methods used for obtaining corresponding data. In some cases, we can still trust the results with het-
erogeneity in IVW methods [57], but may need to rescreen the tool variables or collect new GWAS data to 
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exclude the impact of horizontal pleiotropy. Additionally, the accuracy of the statistical model may be af-
fected by a high standard error due to the low number of genetic instruments, which indicates we need to 
constantly update relevant GWAS data. Third, since PM

2.5
 consists of multiple pollutants, and as there is no 

clear PM
2.5

 component in the summary level data, we cannot conduct further subgroup analyses to deter-
mine its effect on COVID-19. Finally, several, often more harmful variations of SARS-CoV-2 (eg, Omicron) 
emerged in different geographical areas since 2021 [58,59]. Our data was only collected in 2020 and do not 
contain data on the adverse effects of new viral strain on a person’s body or genes, meaning updated data 
could further improve the relevance of our study. Meanwhile, indicators of environmental pollution such as 
PM

2.5
 concentration, should be further analysed through linear or nonlinear MR studies to make our con-

clusion more reliable.

CONCLUSIONS
We found a potentially casual association of PM

2.5
 absorbance with COVID-19 infection, hospitalisation, 

and severe respiratory symptoms using MR analysis. Prevention and control of air pollution may help delay 
and block the negative progression of COVID-19.
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