Skip to main content
. 2023 Jul 1;23(13):6087. doi: 10.3390/s23136087
Algorithm 2: CW-RNN Network Pseudocode
# CW-RNN network parameter initialization
  1. num_hidden_units = …

  2. learning_rate = …

  3. num_iterations = …

  4. batch_size = …

# CW-RNN network model construction
  • 5.

    model = build_cw_rnn_model(num_hidden_units, learning_rate)

# CW-RNN network training
  • 6.

    for iteration in range(num_iterations):

# Get the current training batch data
  • 7.

    batch_data = get_next_batch(batch_size)

# forward pass
  • 8.

    predictions = model.forward_pass(batch_data)

# Compute the loss function
  • 9.

    loss = calculate_loss(predictions, batch_data)

# Backpropagation
  • 10.

    gradients = model.backward_pass(loss)

# Update network parameters
  • 11.

    model.update_parameters(gradients)

# CW-RNN network prediction
  • 12.

    test_data = load_test_data()

  • 13.

    predictions = model.predict(test_data)