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Abstract: Wearable sensors are quickly making their way into psychophysiological research, as they
allow collecting data outside of a laboratory and for an extended period of time. The present tutorial
considers fidelity of physiological measurement with wearable sensors, focusing on reliability. We
elaborate on why ensuring reliability for wearables is important and offer statistical tools for assessing
wearable reliability for between participants and within-participant designs. The framework offered
here is illustrated using several brands of commercially available heart rate sensors. Measurement
reliability varied across sensors and, more importantly, across the situations tested, and was highest
during sleep. Our hope is that by systematically quantifying measurement reliability, researchers will
be able to make informed choices about specific wearable devices and measurement procedures that
meet their research goals.
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1. Introduction

A bathroom scale is a reliable measure of one’s weight, provided one stands still on
the scale for several moments. Yet, one is likely to discard the measurement shown by the
scale if one is startled by a spider during these moments. Trying to measure cardiac signals
with a wearable sensor is similar to trying to measure one’s weight while dancing on the
scale. The fidelity of the measurement will depend not only on the sensor’s accuracy but
also on the environmental conditions under which the measurement was taken.

The recent rapid proliferation of wearable sensing technology has been accompanied
by many tests of their validity [1–7], usually by examining the correlation of the wearable’s
signal with that of trusted laboratory equipment [8]. A lot of effort has been put into
developing hardware and processing algorithms to ensure high correspondence with
benchmark equipment [9–14]; for latest reviews, see [15,16]. What is usually overlooked
in these tests is that most laboratory measurement procedures severely limit participants’
bodily movements and cognitive activities [17]. In sharp contrast, wearable devices promise
to measure the same physiological signals across a wide variety of environments and bodily
states. Yet, without further testing, there is no guarantee that wearables will yield accurate
measurements in all contexts.

For example, Empatica’s electrodermal activity (EDA) measurement showed high
agreement with the EDA measurement taken under laboratory conditions. Yet, in a study
that measured EDA with Empatica for 20 h per participant in their daily lives, 78% of the
measurements were artifacts and no meaningful analysis could be performed with the
remaining data [18]. In another study, which aimed to establish the validity of Empatica’s
HRV measurement against a Holter ECG monitor in 24-h ambulatory monitoring, the
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reported reliability of Empatica’s measurement of heart rate variability (HRV) was lower
than that of the Holter device, and the proportion of missing data was higher [19].

The present paper focuses on the question: when can measurement from a wearable
device be trusted? Our goal is to capitalize on the opportunity that wearable sensors offer
to measure physiology under conditions where a benchmark device (e.g., ECG) is not
viable. At the same time, we are mindful that measurement reliability is likely to vary
across sensors and situations. To help researchers assess this variability, we offer several
statistical tools that allow assessing measurement reliability [20] without referencing a second
device. In Sections 3 and 4, we apply these tools to compare the reliability of sensors against
one another and to compare the reliability of a given sensor in different situations.

It is textbook knowledge that measurement fidelity can be decomposed into two
components: validity and reliability. Validity denotes measurement accuracy—usually
determined as a correspondence of measurement to another gold-standard measurement of
the same variable. Reliability refers to measurement precision—that is, consistency of several
measurements taken in the same conditions and/or with the same equipment. It is useful
to distinguish between validity and reliability, as can be demonstrated by considering an
example of a drunk dart thrower. What does being drunk do: limit accuracy, limit precision,
or does it limit both? As shown in Figure 1 (https://conjointly.com/kb/reliability-and-
validity/ (accessed on 31 November 2019)), the two are orthogonal. If a drunk lacks
accuracy, they behave as in A, being consistently off the mark but with reasonable precision.
If they lack precision, they perform most poorly in B, though their average accuracy is still
good. If they lack both, it is box C. This example helps understand why low reliability
makes accuracy hard to determine. There is too much scatter in the data to estimate the
mean with confidence. It also helps understand how high reliability does not guarantee
accuracy: the dart thrower may be very precise (reliable) but consistently off the mark.
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Figure 1. Illustration of the relationships between validity and reliability using the example of drunk
dart thrower.

We begin by noting that the theory of measurement reliability was originally developed
for assessing fidelity of subjective reports (questionnaires, ratings), not for physiological
measures. When participants respond to questionnaires, one cannot fully control the condi-
tions under which they are being filled out (noise, distractions, time pressure) and what
factors other than the question may be influencing their responses. Tools to assess response
reliability were designed to measure this uncertainty. Psychophysiology borrowed these
insights from the theory of reliability to ensure that psychophysiological measurements
and associated laboratory protocols resulted in consistent and reliable estimates [17]. Here
we perform the same for signals from wearable sensors, while taking into account recent
developments in the reliability theory itself [20]. Notice that the reliability analyses we
propose are performed on data that are readily available from any wearable device, without
additional devices and measurements.

https://conjointly.com/kb/reliability-and-validity/
https://conjointly.com/kb/reliability-and-validity/
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To the best of our knowledge, wearable device reliability has not been considered in
detail before. Of the multiple reviews, only one mentioned reliability alongside validity of
wearable sensors of cardiac biometrics [21], and referenced only three studies that examined
reliability. Kleckner et al. [22] mentioned that for a wearable sensor to be accurate, its
measurement has to be reliable, but their proposed framework for choosing a wearable
device for research offers no guidelines on assessing its reliability. Here we fill this gap, by
offering several readily accessible tools to estimate reliability of measurement with respect
to a particular goal.

2. Measuring Reliability
2.1. Definitions

Measurement reliability refers to the consistency of the estimates obtained under hypo-
thetically equivalent conditions; the complement of reliability is measurement uncertainty.
Not only does this uncertainty undermine the accurate measurement of a physiological
state, but it seriously weakens the ability to use the measured physiological state as a
predictor of other outcomes. Spearman [23] noted this issue long ago, showing that low
reliability in a predictor variable directly decreases the measured agreement between the
predictor and the outcome variables [20,24,25]. Despite this well-known relationship be-
tween measurement error and measures of association, many statistical treatments assume
that predictor variables (e.g., predictors in a regression) are measured without error, sim-
ply because accurate predictor data are the standard assumption in the application of a
linear regression [26]. It is also the case that low predictor reliability weakens the results
of many statistical tests other than correlations [25]. Although there are ways to assess
reliability [20] and to correct some statistics for low reliability [23], many researchers do
not use them [20,25]. To summarize, the low reliability of a physiological measurement can
prevent one from discovering its true association with other variables.

It is also important to note that not all measurement variability is measurement error.
Rather, researchers try to distinguish among sources of potential variance in a measurement,
and accordingly, the consequences of these various types of variability on measures of
reliability [20,25]. Human physiology is affected by at least two broad groups of factors:
constitutional factors and situational variables [27,28]. Depending on the aims of a study,
either of these can be considered as noise. For instance, in a study investigating stable
differences between individuals, such as differences in personality or physiological traits,
situational and state differences between people are a source of noise. Conversely, in studies
comparing situational differences, individual differences in personality or physiological
traits are a source of noise [29]. Therefore, the type of reliability to be considered depends
on the goals of the study.

Constitutional factors refer to enduring or trait-like states of the body. In the case of
cardiac measurements, these factors can be intuitively linked to gender, age, body mass
index, physical fitness, and chronic medical conditions. This assembly of stable personal
traits has predictable influences on blood pressure [30], heart rate [31,32], and heart rate
variability [28,33,34]. The stability of a person’s physiological parameter measured in
different situations is thus referred to as between-person reliability (sometimes also as
“relative reliability”, or parameter level measurement precision—see [8], because it indexes
the extent to which a person’s parameter is stable relative to other people in different
situations. For example, if one’s heart rate (HR) or heart rate variability (HRV) is generally
high when compared to other people in a laboratory testing, then we would expect their
HRV assessed by a wearable device to also show that it was generally higher than other
people’s data measured by the same device.

The second source of cardiac variability—situational factors—refer to physical activity,
stress level, and other more transient physiological states. For example, elevated heart
rate along with a reduced HRV is associated with fever [35], inflammation [36], and
acute pain [37–40], as well as mental stress [3,41,42] and physical effort [43,44]. It is these
situational factors that are spurring much of the current interest in wearable devices. The
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hope is that tracking users’ heart rate biometrics will provide a useful clue for ensuring
their health and wellbeing. For instance, studies that compared physically fit people
to those who do not exercise as much (between-participant design) tend to show that
physical fitness is associated with a higher HRV [44–46]. It is plausible to assume then
that increasing one’s fitness will result in an increase in HRV, when compared to the
same person’s HRV before training. However, confirming this conclusion really calls for
a within-person study design, i.e., measuring HRV in the same person before and after a
change in fitness [47,48]. A within-person comparison of biomarkers therefore calls for the
assessment of within-person reliability. This is also sometimes referred to as “absolute
reliability,” and it quantifies the stability of a sensor’s readings from the same person in a
given situation/state, compared to other states of the same person (for a greater in-depth
discussion of between and within-person reliability, see [20].

2.2. Measuring Between-Person Reliability

Between-person reliability refers to the stability of measurement for the same person
relative to other people, across time and contexts. In simple words, it is the agreement
between measurements taken at different times for the same person (see Figure 2 for
illustration). Let us consider a single measurement as

xij = µ + ri + vij (1)

where

xij is a measure taken from individual i in situation j,
µ is the population average,
µ + ri is the average for each participant i, and
vij is measurement error.

Using these terms, between-participant reliability can be expressed as

ρ =
σ2

r
σ2

r + σ2
v

(2)

This is the traditional formulation of population intra-class correlation (ICC–[49]). For
a specific sample, in its most general form, it can be computed as:

ICC =
MSBS−MSWS

MSBS + (k− 1)MSWS
(3)

where

MSBS is the mean sum of squared deviations between the participants,
MSWS is the mean sum of squared deviations within the participants, and
k is the number of measurements (which is required to be equal across participants).

Theoretically, ICC varies from −1 to 1, although in practice, values close to −1 are
not usually observed and would suggest the existence of a strong source of systematic
variance in the measurement. ICC should be interpreted in the same way as a correlation
coefficient: the closer to 1 the higher the agreement, with ICC > 0.75 representing excellent
reliability [50].

Several different forms of ICC are available when modeling additional sources of
variance. For example, consider a number of patients being examined by several doctors
(raters), which is a classic case for ICC application. In this case, it is standard to model the
variation among the raters using a two-way ICC, based on the assumption that different
people may provide ratings that are systematically different from one another (specific to
each rater). For a physiological measure, when there is no a priori reason to assume that
individual sensors would be systematically different in their measurement, the most general
one-way ICC would be sufficient. The formulas above represent a one-way ICC, capturing
between-participant variance (MSBS) against noise variance (MSWS) only. If one wishes
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to model individual variation along with systematic differences between measurement
devices (e.g., different models) or circumstances (e.g., exercise, stress, rest), then a two-way
ICC may be applicable.

In addition to deciding whether a one-way or two-way ICC is most appropriate, a de-
cision also needs to be made whether to use single measurement or multiple measurements
options. A single measurement ICC estimates representativeness of a single measurement
for the person’s parameter value. A multiple measurements ICC estimates representa-
tiveness of the average across all measurements. For additional details and guidelines,
see [20,51].

Sensors 2023, 23, 5863  5  of  23 
 

 

people may provide ratings that are systematically different from one another (specific to 

each rater). For a physiological measure, when there is no a priori reason to assume that 

individual sensors would be systematically different in their measurement, the most gen‐

eral one‐way ICC would be sufficient. The formulas above represent a one‐way ICC, cap‐

turing between‐participant variance (MSBS) against noise variance (MSWS) only. If one 

wishes to model individual variation along with systematic differences between measure‐

ment devices (e.g., different models) or circumstances (e.g., exercise, stress, rest), then a 

two‐way ICC may be applicable. 

In addition to deciding whether a one‐way or two‐way ICC is most appropriate, a 

decision also needs to be made whether to use single measurement or multiple measure‐

ments options. A single measurement ICC estimates representativeness of a single meas‐

urement for the person’s parameter value. A multiple measurements ICC estimates rep‐

resentativeness of the average across all measurements. For additional details and guide‐

lines, see [20,51]. 

 

Figure 2. Simulated data of 4 measurements per each of 4 participants. Panel (a) shows an example 

of data where participants are hard to distinguish, i.e., between‐participant reliability is low, as in‐

dicated by a low one‐way single‐measure ICC. Panel (b) shows a case in which each participant’s 

physiological index is highly individual, resulting in high ICC and high between‐participant relia‐

bility. 

2.3. Measuring Within‐Person Reliability 

Within‐person reliability refers to the stability of a measurement taken in the same 

situation, for a given person. In the extreme, it would refer to two identical devices pro‐

ducing equal measurements when used simultaneously on the same person. For a single 

device, considering the measurement as   

𝑥 ൌ  𝜇   𝑟   𝑠   𝑣 (4) 

where   

𝑥  is a measure taken from individual i in situation j, 

𝜇  is the population average,   
𝜇   𝑟  is the average for individual i, 
𝜇  𝑠  is the average for a situation j, and 
𝑣  represents the difference between multiple measurements taken for individual i dur‐

ing situation j.   

Here, within‐participant reliability would be the opposite of the magnitude of  𝑣. 
The conceptual distinction between signal and noise is crucial when considering within‐

person reliability and will depend on a particular design and aims of the measurement 

situation (for further guidance, see [20]).   

Figure 2. Simulated data of 4 measurements per each of 4 participants. Panel (a) shows an example of
data where participants are hard to distinguish, i.e., between-participant reliability is low, as indicated
by a low one-way single-measure ICC. Panel (b) shows a case in which each participant’s physiologi-
cal index is highly individual, resulting in high ICC and high between-participant reliability.

2.3. Measuring Within-Person Reliability

Within-person reliability refers to the stability of a measurement taken in the same
situation, for a given person. In the extreme, it would refer to two identical devices
producing equal measurements when used simultaneously on the same person. For a
single device, considering the measurement as

xij = µ + ri + sj + vijk (4)

where

xij is a measure taken from individual i in situation j,
µ is the population average,
µ + ri is the average for individual i,
µ + sj is the average for a situation j, and
vijk represents the difference between multiple measurements taken for individual i during
situation j.

Here, within-participant reliability would be the opposite of the magnitude of vjk. The
conceptual distinction between signal and noise is crucial when considering within-person
reliability and will depend on a particular design and aims of the measurement situation
(for further guidance, see [20]).

Let us consider a simple example. Imagine we are measuring the heart rate of a
particular person, taking several measurements during rest, a few more measurements
during mentally stressful activity, and a few more during physical exercise. We would
expect high agreement within rest measurements, and distinct but clustered measurements
during each type of activity. A mixed model regression that predicts heart rate measured
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at time 1 from heart rate measured at time 2, with situation (rest, mental activity, physical
activity, recovery) as the random factor takes the following form:

HRy ∼ a + beta∗ HRx + 1
∣∣situation (5)

As in a general linear regression approach, beta is the estimate of the association
between the predictor and the predicted variable. In this case, beta quantifies the amount of
agreement between measurements taken during each situation. If we test more than one
person, we should add a random factor of participant to remove the variance associated
with individual differences and focus on within-participant consistency:

HRy ∼ a + beta∗ HRx + 1|situation + 1|participant (6)

Figure 3a shows example data simulating four participants in four types of situations
where both between- and within-participant reliability (consistency) are high.
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Figure 3. Simulated data of 8 measurements for each of 4 participants, in 4 situations (color coded).
Panel (a) shows an example of high between- and within-participant reliability, where the observations
are consistent per participant and per situation. Panel (b) shows an example of high between-participant
reliability yet low within-participant reliability. Panel (c) shows high within- and low between-participant
reliability, where datapoints are consistent within a situation, yet do not reliably distinguish between
different individuals. Panel (d) shows low within- and between-participant reliability.

As can be seen, this type of analysis requires two measurements for the physiological
index of interest in each situation. Traditionally, with subjective responses to questionnaires,
the questions were divided into two subsamples by the order of their appearance, taking
either first and second half of the questionnaire as the two subsamples, or odd vs. even
questions (the so-called split-half approach, [23,52]). Unlike questionnaires, physiological
measurements, especially those obtained with a wearable device in ecological settings
(i.e., daily wear), are performed over a longer time span than is required to fill out a
questionnaire, often with the aim of quantifying a change in the person’s state from one
measurement to the next. Given the volatility of physiological measurement in time,
the closer the two samples occur in time, the more similar we would expect them to be.
In other words, it is reasonable to expect that time is a systematic factor that must be
taken into account. Assigning each datapoint a number by order of its acquisition, then
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aggregating (averaging) all odd and even datapoints allows one to measure consistency
between instances that are taken as close in time as possible. We will refer to this as
time-sensitive sampling. An alternative approach that is not time-sensitive might involve
dividing all measurements into two subsamples randomly. With just one instance of
such division, there is a non-zero chance that by coincidence the two subsamples will be
uncharacteristically similar or dissimilar. However, if a random split is performed multiple
times, we can estimate within-participant reliability from the resulting distribution of betas.
In the next section, we will compare these two methods of dividing the datapoints to
provide an assessment of within-person reliability.

2.4. Empirical Examples

We first apply the approach proposed here to a case of a commercially available PPG-
based sensor of cardiac biometrics (heart rate and heart rate variability). The main aim
is to demonstrate the degree to which the measurement reliability of a wearable sensor
varies with the conditions of everyday life. We focus on the most discussed factors that
affect measurement fidelity of wearable sensors: (1) the make of the sensor (hardware
+ software), and (2) physical activity of the user [1,53]. We achieve this by analyzing a
publicly available dataset that contains heart rate recorded by six commercially available
PPG-based sensors [54]. We then move to apply the framework proposed here to data
collected outside of the laboratory, where comparison to benchmark ECG is not viable.
Naturalistic data were collected from 10 healthy participants who were wearing another
commercially available PPG sensor, Biostrap, for a week. We compare the reliability of
data acquired during sleep and during active wakefulness. In addition, to demonstrate the
relationship between the reliability of a measurement and the magnitude of its correlation
with another variable [20,23], we test the correlation between the two biometrics explored
here with a measure of the participants’ mood.

3. Study 1: Reliability of Six Wearable Sensors of Cardiac Biometrics

Bent et al. [2] conducted a study comparing six different wearable devices against ECG
to determine measurement fidelity of these devices under different conditions. The data
(beats per minute from each device) are publicly available [54]. Here we analyze this dataset
by applying the estimation procedures already described to assess the measurement relia-
bility of the devices without referencing ECG. We compute between- and within-participant
reliability for (a) the six wearable devices, and (b) different activities.

3.1. Method

A total of 53 participants were tested with 6 wearable sensors while engaging in 4 types
of activities: rest, paced breathing, physical activity (walking), and typing. In between
these activities, the sensor was on the participant’s wrist and still recording, and so we
include the rest period as the 5h type of activity: task transition. Participants were wearing
one or two devices at a time, repeating the activities several times. Because of missing data,
some analyses included differing numbers of participants, ranging from 45–53.

3.2. Results
3.2.1. Data Processing

Heart rate was measured as beats per minute (BPM). Of these, we removed all the
0 values, and then values more than 2 standard deviations above or below each participant’s
average. For between-participant reliability, BPM datapoints were averaged per device and
activity type for each participant.

3.2.2. Between-Participant Reliability

A one-way random single-measure ICC(1,1) was computed for the 44–53 participants’
mean BPM, separately for each device, with the 5 activity types as the different measure-
ment instances. Table 1 and Figure 4 show the results. The 6 devices appear to have
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unequal between-participant reliability, Biovotion showing the highest, and generally good
reliability of 0.65 (but also the largest number of participants without data), Empatica and
Miband showing only fair reliability of 0.38 and 0.37, respectively, and the other three
devices showing good reliability [50].

Table 1. Between-participant reliability of HR for the 6 wearable sensors, listed in alphabetical order.
Number of participants (N) varies per sensor because of missing data.

Device ICC(1,1) 95% CI N

Apple Watch 0.54 [0.44 0.65] 53
Biovotion 0.65 [0.55 0.75] 45
Empatica 0.38 [0.27 0.496] 53
Garmin 0.50 [0.397 0.61] 52

Fitbit 0.48 [0.37 0.59] 53
Miband 0.37 [0.27 0.496] 50
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We then explored whether different conditions of measurement—in this case, different
activities—produce data that are more or less representative of individual participants’
heart rate (between-participant reliability). To this end, we computed ICC(1,1) for the
5 types of activity, with devices serving as measurement instances. Table 2 and Figure 5
show the results. Breathing, transitioning between activities, and rest elicited the most reli-
able measurements across devices (ICC(1,1) of 0.66, 0.597, and 0.54, respectively). Physical
activity (walking) and typing produced ICC(1,1) of just 0.37, suggesting that measurement
was quite noisy during these activities.

Table 2. Between-participant reliability of HR for the 5 activities, listed in alphabetical order.

Activity ICC(1,1) 95% CI N

Breathing 0.66 [0.57 0.74] 53
Physical activity 0.37 [0.27 0.48] 53

Rest 0.54 [0.44 0.64] 53
Task Transition 0.60 [0.51 0.69] 53

Typing 0.37 [0.27 0.48] 53
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3.2.3. Interim Discussion

Between-participant reliability was examined in the dataset containing heart rate
of 53 participants measured with six devices during five types of activities. Reliability
varied between the six devices, with Biovotion and the Apple Watch showing highest
reliability, closely followed by Garmin and Fitbit, with Empatica and Miband showing
lower reliability. Interestingly, a comparison to ECG measurements reported in Bent et al. [2]
revealed that the deviation from ECG was lowest for the Apple Watch, followed by Garmin
and Fitbit, followed by Empatica and Miband, followed by Biovotion. That is, measurement
fidelity as assessed by comparison to ECG (validity) and as assessed by between-participant
reliability of the measurement itself (reliability) match closely, with Biovotion being the
only exception. It is textbook knowledge that reliability is a necessary, but not sufficient
condition for validity of measurement. Thus, this is exactly what the data show for the
Apple Watch and Miband. As the reliability of wearable devices decreases across brands,
their validity decreases as well. Note too that Biovotion is a clear example of a device that
is reliable (not much internal noise), yet not valid (does not correspond to a benchmark
device). Thus, high reliability does not guarantee high validity (see Figure 1). However, it
is also true that low reliability makes it difficult to determine validity at all. However, once
validity is established, is it possible that measurements are unreliable? We addressed this
question by investigating different participant activities.

Participants’ activities generally affected measurement reliability as expected, with
calmer states (breathing, transitioning, rest) producing higher reliability than more intense
activities (walking, typing). This is consistent with multiple previous studies, including [2],
who reported higher reliability for measurements taken during rest, and reduced reliability
with increased levels of activity.

3.2.4. Within-Participant Reliability

Within-participant reliability was assessed using a split-half approach and a mixed
model regression. We could not use a time-sensitive approach because time stamps were not
available in the dataset; we therefore used a random split-half approach. To explore within-
participant reliability of the six devices, we split each participant’s heart rate datapoints
during each activity into random halves 1000 times, computing a mixed-model regression
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with the participant as the random factor each time. Reliability was estimated as the
average beta across the 1000 iterations. To explore the reliability of measurement during
different activities, we split each participant’s heart rate as measured with each device into
random halves 1000 times, submitting that to the mixed-model regression every time.

Figure 6 and Table 3 show within-participant reliability for the six devices. As can
be seen from the table, all devices had excellent reliability in measuring heart rate across
different situations within a participant. It can also be seen that the reliability of Fitbit was
noticeably lower, although still very high.
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Table 3. Within-participant reliability of HR for the 6 wearable sensors, listed in alphabetical order.

Device Mean Beta SD of Beta Across Iterations

Apple Watch 0.988 0.008
Biovotion 0.998 0.004
Empatica 0.994 0.006

Fitbit 0.959 0.016
Garmin 0.994 0.006
Miband 0.988 0.009

Figure 7 and Table 4 show within-participant reliability for the five activities. It was
also very high across the activities, yet transitioning was noticeably less consistent than the
other activities.

3.3. Discussion

We explored within- and between-participant reliability of heart rate measured with
six wrist-worn devices during five activities. This demonstration showed that measurement
reliability can be estimated without referencing any benchmark device, from the data of
a single sensor. We observed noticeable differences in between-participant reliability for
the six brands of wearable sensors, and for the different levels of activity participants
engaged in. With regard to the two components of measurement fidelity—reliability and
validity—the data complied with textbook expectations, showing that high reliability is
a necessary, yet not sufficient condition for validity. It showed that validity cannot be
inferred from reliability, and that validation of a device is a necessary first step to ensure
measurement fidelity under ideal (laboratory) conditions. Yet, as the analysis of different
activity levels showed, even once an acceptable level of validity is established under resting
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conditions, a wearable device can produce a measurement of suboptimal reliability under
more active everyday conditions.
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Table 4. Within-participant reliability of HR of the 5 types of activity.

Activity Mean Beta SD of Beta Across Iterations

Breathing 0.986 0.009
Phys. Activity 0.993 0.006

Rest 0.991 0.007
Transitioning 0.976 0.013

Typing 0.984 0.009

Within-participant reliability was very high across devices and activity levels. Heart
rate is a great example of a measurement that is highly consistent within participants
(high within-participant reliability), but not always acceptable for distinguishing between
participants (moderate between-participant reliability). This most probably reflects the
nature of heart rate, which has stable and quite narrow limits for a given person, especially
during wakeful time. In our next example (Study 2), we examined a less constrained
measure—heart rate variability—in order to see how within- and between-person reliability
is manifested in this measure.

4. Study 2: Reliability of Biostrap during Sleep and during Wakeful Time

In this study, we tested a commercially available Biostrap wristband sensor for both
between-person and within-person reliability of HR and HRV. In our treatment of within-
person reliability, we focused on comparing two diurnal states of the user: wakefulness and
sleep. Sleep corresponds to time passing with little to no change in the external environment
and fewer physiological changes than during wakeful periods (e.g., relatively little physical
effort, no eating or talking, relatively little stress and mental effort). We hypothesized that
sleep periods would produce less variable and therefore more reliable biometric recordings.

Ten participants wore a Biostrap device continuously for one week. They were in-
structed to wear the device on their wrist at all times, except when charging the device
(about 1 h daily) and when taking a bath or shower.
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4.1. Method
4.1.1. Participants

Ten participants (1 male) were recruited through Reservax (https://www.reservax.
com (accessed on 31 November 2019)), an online recruitment platform for behavioral
studies. The inclusion criteria were: participants at least 18 years of age, without known
heart problems or disease, in generally good health, and fluent in written and spoken
English. All participants provided informed consent prior to participation. Participants
were paid a maximum of $100 CAD for participation, based on their compliance with study
procedures. All 10 participants received full payment.

4.1.2. Apparatus

The Biostrap wristband is a commercially available PPG sensor of heart rate (https:
//biostrap.com (accessed on 31 November 2019)). Biostrap (formerly Wavelet) has been
validated against clinical-grade wearable devices and ECG [7,9,55]. The device uses long
wavelength light (red) to detect pulse. Automatic sampling is performed once every 5 min
(in enhanced mode), each recording lasting for 45 s at 43 Hz frequency. The raw data are
stored on the sensor’s internal memory, then transmitted to a smartphone app via Bluetooth
connection, and then to the Biostrap server where the data are processed.

The output provided by Biostrap includes heart rate in beats per minute (BPM), heart
rate variability (HRV) indexed as the root mean square difference between successive
heartbeats (rMSSD), oxygen saturation, and respiration rate. This information is provided
for each sampled measurement, which can be as frequent as once in every 5 min. The
sensor also includes an accelerometer, which provides information on the number of steps
completed by the wearer. Based on a combination of these metrics, sleep onset and offset
are detected.

The commercial Biostrap smartphone app ordinarily shows the user their heart rate
and heart rate variability, number of steps, and a sleep score on the app’s home screen
(these metrics are shown by default). It also indicates the battery status and the last time
the data were synchronized with the app. In this study the app was blinded to participants,
so that it was unable to display any biometrics; only the battery status was visible to them.
Ecological momentary assessments were delivered using the Ipromptu smartphone app
(http://www.ipromptu.net).

4.1.3. Procedure

Invited participants arrived at the lab in the Department of Psychology at UBC for an
introductory session, where they were introduced to the Biostrap device, provided personal
demographic information, and completed questionnaires on emotional, self-control, and
personality traits (which are not reported here).

Each participant received a fully-charged Biostrap wristband to wear for the duration
of the study along with a charging plate. The Biostrap app was installed on participants’
smartphones and they were instructed on the use of the sensor and how to ensure data
were synchronized regularly. Instructions to participants emphasized that they were to
wear the device at all times, including times of exercise and sleep, except for when charging
the device or taking a shower or bath. Participants wore the Biostrap continuously for
8–11 days.

In addition, participants were asked to track their emotional state using an ecologi-
cal momentary assessment (EMA) approach. Ipromptu app (http://www.ipromptu.net
(accessed on 13 September 2022).) was used to deliver short surveys 6 times a day, at
random times between 8 am and 8 pm. If not responded, a prompt repeated twice,
with 15-min intervals, and was available for response for several hours. Participants
were instructed to respond to at least 1 and as many prompts as they could. On each
prompt, an 8-question survey asked participants to rate, on a scale from 1 to 10, how
happy/energetic/nervous/afraid/irritable/angry they were and how much pain and
discomfort they were feeling, in random order.

https://www.reservax.com
https://www.reservax.com
https://biostrap.com
https://biostrap.com
http://www.ipromptu.net
http://www.ipromptu.net
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Participants returned to the lab at least 8 days after their introductory meeting to
conclude the study. They returned the Biostrap devices, were debriefed about the purpose
of the study, and paid for their participation.

The study procedures were approved by the institutional Research Ethics Board (ap-
proval number H19-01197). Data, materials, and analysis code for this study are available
at https://zenodo.org/badge/latestdoi/520639317 (accessed on 13 September 2022).

4.2. Results
4.2.1. Data Processing

Heart rate measurements consisted of raw PPG waveforms, which were processed
by Biostrap’s algorithms in their servers [9]. The data presented here were based on the
aggregated metrics provided by the Biostrap for each successful sample, which included
beats per minute (BPM) and heart rate variability (HRV), calculated as the root mean square
difference between successive heartbeats (rMSSD). Hereafter, we will refer to HRV for
simplicity, instead of rMSSD. These heart rate measures were further screened for artifacts
and anomalies in two steps. First, all 0 values were removed (affecting 0% of BPM and an
average of 19.26% of HRV samples across all participants). Second, values exceeding each
participant’s mean by more than 2 standard deviations over the whole observation period
were removed (affecting 2.84% of BPM, and 2.19% of HRV across all participants).

Participants’ state (asleep vs. awake) was established using the heart rate indices in
the following way. We found periods of at least 2 h in duration when BPM samples were
successfully recorded at least every 15 min. We then chose the longest such period on each
day and assumed that it corresponded to sleep. Although time of day was not a criterion
for determining sleep periods, all the sleep periods established in this way happened to
occur between 9 pm and 11 am. These criteria allowed us to detect at least 5 periods of sleep
for 8 of 10 participants. We recognize that these criteria do not guarantee that participants
were awake at all other times, and as such, that this potentially biases awake observations
to appear to be more similar to sleep periods. However, to anticipate the results, the density
and reliability of HR and HRV assessment during sleep periods defined in this way were
greater by orders of magnitude than they were during the defined wakeful times.

Heart rate data were successfully recorded for only 2 sleep periods for one participant
and only 1 sleep period for another, and so their data were not included in the analyses.
Days with only one HRV sample during wakeful times (5 periods across participants) were
also excluded from the analyses. All participants had more than one HRV sample during
sleep. These exclusions left us with 8 participants tracked continuously for 5 to 11 days,
and a total of 6840 samples for BPM and 5530 samples for HRV.

4.2.2. Descriptive Statistics

Figure 8 shows the frequency of successful heart rate samples for BPM and HRV made
during wakeful and sleeping periods. The pattern of these two variables was generally
consistent across participants. The mean number of BPM samples acquired for waking
periods was 19.42 (SD = 13.52), and the mean number of sleep samples was 74.6 (SD = 24.43).
The mean number of HRV wakeful samples was 13.65 (SD = 9.63) and the mean of sleep
samples was 69.70 (SD = 22.63).

Figure 9 shows the mean BPM and HRV for each participant, separately for wakeful-
ness and sleep. The figure shows that there are pronounced individual differences in both
biometrics, with some participants having consistently higher HRV or BPM than others.
The variability of the wakeful measurements is also visibly larger than the variability of
sleep measurements. These observations were confirmed by the following analyses.

https://zenodo.org/badge/latestdoi/520639317


Sensors 2023, 23, 5863 14 of 22

Sensors 2023, 23, 5863  14  of  23 
 

 

participants) were also excluded from the analyses. All participants had more than one 

HRV sample during sleep. These exclusions left us with 8 participants tracked continu‐

ously for 5 to 11 days, and a total of 6840 samples for BPM and 5530 samples for HRV. 

4.2.2. Descriptive Statistics 

Figure 8 shows  the  frequency of  successful heart  rate samples  for BPM and HRV 

made during wakeful and sleeping periods. The pattern of these two variables was gen‐

erally consistent across participants. The mean number of BPM samples acquired for wak‐

ing periods was 19.42 (SD = 13.52), and the mean number of sleep samples was 74.6 (SD = 

24.43). The mean number of HRV wakeful samples was 13.65 (SD = 9.63) and the mean of 

sleep samples was 69.70 (SD = 22.63). 

 

Figure 8. Average number of successful measurements of BPM and HRV per participant per day 

during wakefulness and  sleep. Panel  (a)  shows average number of  successful measurements of 

BPM, panel  (b)  shows  the  same data  for HRV per day and per participant during wakefulness 

(orange) and sleep (grey). 

Figure 9 shows the mean BPM and HRV for each participant, separately for wakeful‐

ness and sleep. The figure shows that there are pronounced individual differences in both 

biometrics, with some participants having consistently higher HRV or BPM than others. 

The variability of the wakeful measurements is also visibly larger than the variability of 

sleep measurements. These observations were confirmed by the following analyses. 

Figure 8. Average number of successful measurements of BPM and HRV per participant per day
during wakefulness and sleep. Panel (a) shows average number of successful measurements of BPM,
panel (b) shows the same data for HRV per day and per participant during wakefulness (orange)
and sleep (grey).

Sensors 2023, 23, 5863  15  of  23 
 

 

 

Figure 9. Average HR and HRV per participant during sleep and wakefulness. Panel (a): The mean 

BPM for each participant, separated for sleep and wakefulness. Panel (b): The mean HRV for each 

participant, separated for sleep and wakefulness. Participants are rank ordered in each panel based 

on their HRV during sleep. Participant 186 had no biometric recordings for wakeful time. 

4.2.3. Between‐Participant Reliability 

A one‐way random single‐measure  ICC(1,1) was computed  for  the 8 participants’ 

mean BPM and HRV, separately for wakeful and sleep period samples. ICC values were 

consistently higher for sleep periods than for wakeful periods. This was true for both BPM 

values (sleep: ICC(1,1) = 0.89.6, 95%CI [0.79 0.97], p < 0.001; wakefulness: ICC(1,1) = 0.55, 

95%CI [0.34 0.83], p < 0.001) and for HRV values (sleep: ICC(1,1) = 0.84, 95%CI [0.70 0.95], 

p < 0.001; wakeful: ICC(1,1) = 0.39, 95%CI [0.19 0.73], p < 0.001). These high ICC values for 

sleep, along with only moderate ICC values for wakefulness imply that individual differ‐

ences in heart rate and heart rate variability can be measured more reliably with a com‐

mercial PPG sensor during sleep than wakefulness. 

These data suggest that BPM and HRV measured through a commercial wearable 

device are relatively stable between people, meaning that a person whose BPM or HRV is 

higher than other people’s on one day/night is likely to have BPM or HRV higher than 

other people on any other day/night. 

4.2.4. Within‐Participant Reliability 

Within‐participant reliability was assessed using a split‐half approach and a mixed 

model regression. We compare two methods of splitting the data: time‐sensitive (split into 

odd and even samples, by order of measurement) and random (dividing the datapoints 

into two samples randomly, so that a sample from early in the day is equally likely to be 

paired with a sample from later or earlier in the day). For both methods, a mixed model 

regression is then computed predicting one estimate of the biometric (e.g., average of the 

odd datapoints) from the other estimate (e.g., average of the even datapoints), with the 

participant as the random factor (see Equation (6)), and Satterthwaite’s correction for the 

degrees of freedom. 

The time‐sensitive method resulted in estimates of the within‐participant reliability 

of BPM and HRV illustrated in Figure 10. Panel A shows that reliability of BPM was very 

high for the sleep and wakeful periods alike. The effect of predictor BPM was highly sig‐

nificant in both models, beta = 0.99, t(9.17) = 91.8, p < 0.001 and beta = 0.82, t(18.8) = 7.91, p 

< 0.001, respectively. Panel B shows that the fit between predictor and criterion for HRV 

Figure 9. Average HR and HRV per participant during sleep and wakefulness. Panel (a): The mean
BPM for each participant, separated for sleep and wakefulness. Panel (b): The mean HRV for each
participant, separated for sleep and wakefulness. Participants are rank ordered in each panel based
on their HRV during sleep. Participant 186 had no biometric recordings for wakeful time.

4.2.3. Between-Participant Reliability

A one-way random single-measure ICC(1,1) was computed for the 8 participants’
mean BPM and HRV, separately for wakeful and sleep period samples. ICC values were
consistently higher for sleep periods than for wakeful periods. This was true for both BPM
values (sleep: ICC(1,1) = 0.89.6, 95% CI [0.79 0.97], p < 0.001; wakefulness: ICC(1,1) = 0.55,
95% CI [0.34 0.83], p < 0.001) and for HRV values (sleep: ICC(1,1) = 0.84, 95% CI [0.70 0.95],
p < 0.001; wakeful: ICC(1,1) = 0.39, 95% CI [0.19 0.73], p < 0.001). These high ICC values
for sleep, along with only moderate ICC values for wakefulness imply that individual
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differences in heart rate and heart rate variability can be measured more reliably with a
commercial PPG sensor during sleep than wakefulness.

These data suggest that BPM and HRV measured through a commercial wearable
device are relatively stable between people, meaning that a person whose BPM or HRV
is higher than other people’s on one day/night is likely to have BPM or HRV higher than
other people on any other day/night.

4.2.4. Within-Participant Reliability

Within-participant reliability was assessed using a split-half approach and a mixed
model regression. We compare two methods of splitting the data: time-sensitive (split into
odd and even samples, by order of measurement) and random (dividing the datapoints
into two samples randomly, so that a sample from early in the day is equally likely to be
paired with a sample from later or earlier in the day). For both methods, a mixed model
regression is then computed predicting one estimate of the biometric (e.g., average of the
odd datapoints) from the other estimate (e.g., average of the even datapoints), with the
participant as the random factor (see Equation (6)), and Satterthwaite’s correction for the
degrees of freedom.

The time-sensitive method resulted in estimates of the within-participant reliability of
BPM and HRV illustrated in Figure 10. Panel a shows that reliability of BPM was very high
for the sleep and wakeful periods alike. The effect of predictor BPM was highly significant
in both models, beta = 0.99, t(9.17) = 91.8, p < 0.001 and beta = 0.82, t(18.8) = 7.91, p < 0.001,
respectively. Panel b shows that the fit between predictor and criterion for HRV was also
generally high during sleep, beta = 0.96, t(57) = 51.18, p < 0.001, but not during wakefulness,
beta = 0.097, t(47.26) = 0.92, p = 0.36.
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Figure 10. Within-participant reliability of HR and HRV during sleep and wakefulness estimated
with the time-sensitive method. Panel (a) shows within-participant reliability of BPM, panel (b) of
HRV. Data recorded during sleep is shown in red, during wakefulness in blue. Shaded area represents
95% CI, dots represent partial residuals.

Random splitting into the subsamples, as mentioned above, can result in extraordi-
narily low or high estimates of reliability. Therefore, we performed the split 1000 times,
computing a mixed-model regression each time. Figure 11 shows distributions of the re-
sulting beta values for HR and HRV during sleep and wakefulness. We estimated reliability
as the average beta across the 1000 iterations.



Sensors 2023, 23, 5863 16 of 22
Sensors 2023, 23, 5863  17  of  23 
 

 

 

Figure 11. Within‐participant reliability of HR and HRV during sleep and wakefulness estimated 

with the random approach. Each graph shows a distribution of betas for respective cardiac biomet‐

rics, with red lines showing beta estimated with the time‐sensitive method. 

4.3. Interim Discussion 

We have demonstrated how between‐person and within‐person reliability can be es‐

timated in data readily available from a commercial wearable sensor of cardiac biometrics. 

For the particular device tested here, between‐person reliability as assessed with an ICC 

was excellent  for  sleep‐time HR and HRV, but only moderate  for wakeful biometrics. 

Within‐person reliability, assessed using  the split‐half and  the mixed model regression 

approach, was near‐perfect for HR during sleep as well as wakeful time. However, HRV 

had high within‐person reliability during sleep, but not during wakefulness. 

It is worth noting that periods of lower reliability in this study coincided with periods 

in which  fewer datapoints were obtained  (lower measurement density). This could be 

taken to suggest that increased measurement density contributes to greater reliability. Yet, 

this coincidence in the present study should not be interpreted too strongly, since heart 

rate during wakeful times had a relatively high within‐participant reliability even in the 

face of relatively fewer datapoints (lower measurement density). Further studies should 

investigate whether and how much measurement density contributes to higher reliability. 

Figure 11. Within-participant reliability of HR and HRV during sleep and wakefulness estimated
with the random approach. Each graph shows a distribution of betas for respective cardiac biometrics,
with red lines showing beta estimated with the time-sensitive method.

For BPM, the random method produced reliability estimates that were very close
to those resulting from the time-sensitive approach, if slightly lower during wakeful
time, Mbeta_sleep = 0.99, SD = 0.02, Mbeta_wakeful = 0.89, SD = 0.058. For HRV during
sleep, reliability from the random method was slightly lower than from the time-sensitive
approach, Mbeta_sleep = 0.98, SD = 0.03, supporting our assumptions. However, for wakeful
HRV, the random approach resulted in somewhat higher estimated reliability than that
produced by the time-sensitive method, Mbeta_wakeful = 0.22, SD = 0.13.

To summarize, the two methods of estimating within-participant reliability revealed
that both BPM and HRV were highly reliable during sleep, BPM was also very reliable
during wakeful time, yet reliability of HRV during wakeful time was drastically lower. The
two methods diverged in assessment of the latter, and not in the predicted direction, with
the time-sensitive method yielding much lower estimates of reliability. Notice, however,
that the number of datapoints obtained for HRV during wakeful hours was much lower
than for sleep-time HRV or for BPM during wakefulness (see descriptive statistics above).
Therefore, the amount of time separating successive datapoints must have been particularly
long for wakeful HRV, likely exceeding the period during which we would expect such
a volatile measure as HRV to be stable. The fact that the range of reliability estimates
obtained with the random method was extremely wide (0.2–1) supports this reasoning.
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4.3. Interim Discussion

We have demonstrated how between-person and within-person reliability can be
estimated in data readily available from a commercial wearable sensor of cardiac biometrics.
For the particular device tested here, between-person reliability as assessed with an ICC
was excellent for sleep-time HR and HRV, but only moderate for wakeful biometrics.
Within-person reliability, assessed using the split-half and the mixed model regression
approach, was near-perfect for HR during sleep as well as wakeful time. However, HRV
had high within-person reliability during sleep, but not during wakefulness.

It is worth noting that periods of lower reliability in this study coincided with periods
in which fewer datapoints were obtained (lower measurement density). This could be
taken to suggest that increased measurement density contributes to greater reliability. Yet,
this coincidence in the present study should not be interpreted too strongly, since heart
rate during wakeful times had a relatively high within-participant reliability even in the
face of relatively fewer datapoints (lower measurement density). Further studies should
investigate whether and how much measurement density contributes to higher reliability.

One immediate consequence of the compromised reliability of a measure is the reduced
ability to detect its relationships with other variables [23]. We demonstrate this in what
follows by testing whether BPM and HRV can be predicted from subjectively reported
emotional states of the participants. Multiple laboratory studies showed that stress and
cardiac biomarkers are strongly associated, and this relationship was recently replicated
with wearable sensors [42,56]. We had no prior hypothesis as to which of the biomarkers
(BPM, HRV) would produce a stronger association if they were measured with equal fidelity.

4.4. Correlations between Biomarkers and Subjective Emotions

To analyze subjective emotions captured with the EMA, we averaged the four negative
emotions on each prompt (irritable, afraid, nervous, angry), and the two positive emotions
(happy, energetic). We then averaged responses to all the prompts within one day, which
resulted in two scores per day: one for positive and one for negative emotions.

We then used these two scores (negative and positive emotions) as predictors in mixed
model regressions with participants as the random factor. We first tested wakeful BPM (and
wakeful HRV in separate analyses) on the concurrent day as the dependent variables. Then,
we tested the same models on sleep BPM (and sleep HRV in separate analyses), either on
the preceding night (two models) or the following night (two more models). This meant
that six models were tested in total, prompting us to use Bonferroni corrections to test
for significance. The strongest relationship in all of these involved a negative relationship
between sleep-BPM and lower negative mood reports on the subsequent reporting day,
beta = −2.11, t(40.25) = −2.745, p = 0.054 (Bonferroni corrected). This meant that when a
participant experienced higher sleep-BPM they were less likely to report negative emotions
on the following day; when they experienced lower sleep-BMP, they were more likely to
report negative emotions on the next day (see Figure 12). Wakeful-BPM was not reliably
associated with either positive or negative emotions, ps > 0.5 (uncorrected).

For HRV, the strongest effect was also one where relatively higher sleep-HRV on
a given night predicted greater negative emotions on the subsequent day, beta = 4.45,
t(40.5) = 1.79, p = 0.081 (uncorrected). Wakeful-HRV was not associated with either positive
or negative emotions, ps > 0.2 (uncorrected).

Positive emotions were not correlated with either of the biometrics tested, all
ps > 0.13 (uncorrected).

4.5. Interim Discussion

Our attempt to test the association between mood during a day with cardiac biometrics
concurrently (wakeful), on the preceding or the following night, revealed a predictive
relationship between night-time BPM and mood on the subsequent day. We cannot tell
from this study whether the difference between the results for BPM and HRV stems from
a difference in reliability only, or for other reasons unrelated to measurement fidelity.
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However, the difference between wakeful and sleep BPM in predicting daytime mood
is surprising, given that both mood and cardiac biometrics change rapidly, so the closer
in time that they are measured, the higher we would assume the association to be. It is
therefore plausible that the association between daytime BPM and mood was compromised
by the lower reliability of the daytime measurement.
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Figure 12. Association between negative emotions and sleep HR(V). Predicting sleep-BPM
panel (a) and sleep-HRV panel (b) from negative emotions on a subsequent day. Grey area represents
95% CI.

5. General Discussion

The validity of data from wearable sensors is now thought to be quite good [1,3,4,6,7,9].
However, the reliability of the biometrics captured by these devices in daily life has so far
been assumed to be high, but it has rarely been tested systematically. Interestingly, recent
reports of using wearable sensors of HR and HRV outside of laboratory or clinical settings
have revealed that validity of data from wearable sensors (i.e., correlations with a criterion,
usually a medical-grade wearable device) in the conditions of everyday life is lower than
expected from laboratory studies where participants are typically at quiet rest [57,58]. The
finding by [19] that the reliability of a wearable (Empatica E4) HRV measurement across
24 h was unacceptably low offers an account of low validity of wearable sensors outside
of a lab. Our examination of wearable data reliability in the present study also suggests
that daytime measurements of HR and HRV are highly unreliable. Yet, rather than be
discouraged by these data, we suggest focusing on how wearable sensors can be used to
deliver data that is reliable. This can be achieved by assessing the sensor’s reliability in
different situations, as we performed here, for periods of sleep and wakefulness. This
approach has been taken previously in the fields of movement science and athletics, where
there was a growing awareness of the importance of testing the reliability of many forms of
sensing technology in varying environmental and situational contexts [59–62].

Here we applied the theory of reliability developed for psychological questionnaires to
physiological measurements obtained with a wearable device. In doing so, it is important
to keep in mind the research goals and questions. If measurements are performed for
comparisons between persons, between-participant reliability should be assessed, e.g.,
using ICC. If, however, the aim of the measurement is to detect different states within the
same person, within-person reliability should be estimated, e.g., using a combination of the
split-half and the mixed-model approaches. While estimating between-participant relia-
bility is straightforward, estimating within-person reliability, without additional devices
and measurements, must take into account the time-sensitive nature of the measurements
being made. In the case of HR and HRV, the passing of time is a critical variable. Other
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physiological measurements will likely have similar considerations that are specific to the
type of measurement being made.

We applied this approach to commercially available PPG sensors of cardiac biometrics,
showing how between- and within-person reliability could be estimated from open-source
data. The results showed that both between- and within-participant reliability of heart
rate measurement varies for the different brands of wearables. Across different brands, it
also varies for the different levels of the user’s activity. This suggests that even the most
reliable of the sensors tested (Apple Watch, Biovotion) may produce more or less reliable
measurements in different circumstances.

Focusing on the Biostrap wearable sensor with our own data, we found that the
between-participant reliability of HR and HRV was excellent during sleep (ICC > 0.75),
but only fair during wakefulness (ICC [0.4 0.6]). Within-participant reliability of HRV was
also found to be higher during sleep than during wakefulness. Finally, we found that
correlations of HR and HRV with a second variable—in our case, subjectively reported
mood—were stronger for the most reliable metric, sleep-time BPM. Taken as a whole, the
present data suggest that the wearable sensor we used (Biostrap) provides data that are
highly reliable during sleep, and less so during wakefulness.

The most popular testing of wearable devices has focused so far on measuring their
validity during different levels of physical activity [1,53]. This is not surprising given
that the early vision for the application of wearable devices was to regulate exercise load
for performance optimization. This is still the primary use of many wearable devices
today [53,63]. These studies have shown that that some measurements cannot be taken
reliably during physical activity [63]. At the same time, other studies have shown that the
application of wearables is not limited to detecting acute events (such as exercise load or
acute stress), but that they can be useful in indexing slower fluctuations in the user’s state,
such as overall physical shape or allostatic stress, which affect one’s long-term health and
wellbeing [64,65]. This development opens up a unique research opportunity to measure
psychophysiology longitudinally, across a variety of real-world contexts and extensive time
periods [22]. Furthermore, this purpose might be best achieved with measurements taken
during acute events or during recovery after those events. Indeed, a large body of studies
have begun to investigate stress by focusing on recovery after stress, rather than on what is
going on at the moment of acute stress [66]. The hope is that by systematically quantifying
measurement reliability in different circumstances, researchers will eventually be able to
make informed choices about specific wearable devices and measurement procedures that
meet their research goals.

6. Conclusions

Wearable sensors offer a unique opportunity to measure physiology longitudinally
and in various real-world contexts. This ecological benefit comes at a cost of a potentially
compromised fidelity of the measurement. Here, we show that the reliability of a wearable
sensor is not fixed but varies across different contexts and circumstances. Estimating
reliability is thus a useful way to quantify measurement fidelity for a particular research
question, a specific new experimental procedure, or a special target population.
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