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Abstract: In this article, we present a novel approach to tool condition monitoring in the chipboard
milling process using machine learning algorithms. The presented study aims to address the chal-
lenges of detecting tool wear and predicting tool failure in real time, which can significantly improve
the efficiency and productivity of the manufacturing process. A combination of feature engineering
and machine learning techniques was applied in order to analyze 11 signals generated during the
milling process. The presented approach achieved high accuracy in detecting tool wear and predict-
ing tool failure, outperforming traditional methods. The final findings demonstrate the potential of
machine learning algorithms in improving tool condition monitoring in the manufacturing industry.
This study contributes to the growing body of research on the application of artificial intelligence in
industrial processes. In conclusion, the presented research highlights the importance of adopting
innovative approaches to address the challenges of tool condition monitoring in the manufacturing
industry. The final results provide valuable insights for practitioners and researchers in the field of

industrial automation and machine learning.
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1. Introduction

Using sensors in various stages of the furniture manufacturing process in order to
evaluate its various stages is a common trend in the topic of automation-related research.
The problem itself is complex, containing multiple steps that often require a high level of
precision, and can require additional adjustments if even the smallest elements are added
or exchanged. The introduction of advanced technology into these processes is innovative
and helps to streamline them. This is particularly critical for tool condition monitoring,
where incorrect or poorly timed decisions about replacement can lead to reduced product
quality and subsequent loss for the manufacturing company [1-4].

One key focus of the research presented in this paper is the milling process, where any
inaccurate decisions can be highly influential. The application of sensor-based technology
to monitor tool conditions brings a fresh perspective to these problems. Checking the
state of the tool, as in other stages, can be performed manually, but it is a time-consuming
process that requires pausing the production. The automation of this process, therefore,
represents a significant advancement in the field.

Tool monitoring in general is a widely discussed and evaluated topic [5-7]. It involves
the gradual deterioration of the cutting edge, which results in decreasing product quality.
It is important to note that any automatic solution should strive to avoid two situations:
unnecessarily stopping the production process while the tool is still in good condition
and delaying the exchange past the point when it is in bad enough condition to produce
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unacceptable products. Such a solution needs to be precise and provide some feedback
in an automatic and online way. Using a specialized set of sensors focused on recording
specific signals from the production line and evaluating data from these signals seems to
be the best approach to that aspect [8,9].

A major innovation presented in this work is the way that sensor data are used to
solve the complex problems inherent in tool condition monitoring. While furniture manu-
facturing can involve numerous materials, wood-based ones are the most common. The
presented approach to data-driven tool condition monitoring opens up new possibilities for
improving manufacturing processes in this industry. There are numerous works focusing
on such elements [10,11]. Depending on the specific task, different signals are checked and
evaluated, verifying how useful they can be in identifying tool condition during various
stages of the machining process [3,12-16]. While the problems involved are well described,
there still is a need for an automatic and precise solution that is easy to incorporate in
production and possible to implement in actual work environments.

Due to the problem’s overall complexity, using machine learning algorithms seems to
be the best option. Machine learning algorithms have become increasingly important in
manufacturing processes, and the innovative approach proposed in this paper aims to apply
these techniques to tool condition monitoring. Current research already includes various
approaches, used both for image- and sensor-based systems [14,17-20]. The presented
method extends these approaches, introducing novel ways of applying machine learning
algorithms to tool condition monitoring tasks. Depending on the chosen approach, various
problems, their aspects and potential applications of the proposed solutions are considered.
Solutions such as the one used for tree species recognition, presented in [21], show that
machine learning algorithms can be adapted even to the most complicated tasks if the
appropriate input data and training process are used.

When it comes to the problem of tool condition monitoring specifically, the main division
refers to the different parts used. While recording signals is a commonly used approach, some
solutions consider using images, often paired with Convolutional Neural Networks (CNNs),
which perform relatively well when such samples are considered [1,2,22-24]. Additionally, the
training process can be improved by using transfer learning with various pretrained networks
(such as AlexNet [25,26] prepared for ImageNet database [27,28]) or data augmentation.

While solutions using images are quite popular due to the simplicity of the input
collection process, they are not without drawbacks. In order to achieve high accuracy levels,
large amounts of uniform training data are necessary. They also require tight cooperation
with the manufacturer in order to pinpoint the key factors that should be considered, while
not all features influencing the product quality are easy or straightforward to derive. In that
regard, signals are better solutions, since it is easier to measure any potential changes. One
problem to consider is ensuring the proposed approach is able to compute large amounts
of data obtained in such a way.

One major innovation of research presented in this paper is the way in which sensor-
based data are handled. Incorporating sensor-based data in neural-network-based solutions
can pose a series of problems. The presented innovative approach to these problems
includes new ways of dealing with discrepancies and variations in sensor data, leading to
more accurate and reliable solutions. First of all, while the changes in recorded signals will
occur while the tool’s state is deteriorating, not all of them will be consistent throughout
all sensors. Such discrepancy can lead to the final solution’s inability to point out when
the tool reaches the problematic state and needs to be exchanged. The second problem
relates to the size of files obtained from different sensors. For signals requiring a high
level of precision during the recording process, the resulting data files will be much larger,
resulting in very different sizes of individual inputs. Any sensor-based solution needs to
use such data in an optimal way, while retaining the advantage given by more precise
measurements.

Some approaches address this problem by transferring the measured signals into
images. In [29], the authors transfer sound signals to images using Short-Time Fourier
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Transform. The original data are first denoised and later converted to images. A pretrained
CNN model performs deep feature extraction [22]. In the final method step, the Support
Vector Machine is used for classification. Another approach converts the signals to the
scalograms [30]. Constant-Q Transform with Nonstationary Gabor Transform is used,
fusing vibration and acoustic single features with a multi-input CNN solution. The goal is
to diagnose the state of the induction motor, and the above methodology was chosen due
to the fact that in the authors’ opinion, the Continuous Wavelet Transform (CWT) was too
time-consuming. While such an approach is faster, the overall solution accuracy suffers
because of it.

The main focus of the research presented in this paper is the practical application of
the novel solution to the problem of tool state recognition with input data based on the
physical parameters of the used machinery. It is important for the given solution to allow
easy implementation in the work environment, with high overall accuracy. The unique
approach to feature generation, using Short-Time Fourier Transform (STFT) and Discrete
Wavelet Transform (DWT) methods, sets this work apart from previous studies. Different
variants of the method were tested for all selected, state-of-the-art classifiers, achieving
more than satisfactory results.

The current approaches to tool condition monitoring in the chipboard milling process
can be broadly classified into two categories: rule-based and data-driven. Rule-based
approaches rely on expert knowledge and heuristics to detect wear and predict tool life.
These approaches are often based on simple threshold values and are limited by the
accuracy of the expert knowledge. Data-driven approaches, on the other hand, use machine
learning algorithms to learn from the data and make predictions. These approaches are
more flexible and can adapt to changing conditions, but they require large amounts of data
and may be limited by the quality of them.

This paper proposes a data-driven approach using a combination of feature extraction
and machine learning algorithms. The authors use 11 signals to extract features related to
tool wear and use these features to train many classifiers, which are then used to predict
tool wear and tool life.

This article makes several new contributions to the field of tool condition monitoring
in the milling chipboard process. Firstly, the use of acoustic emission signals for feature
extraction is a novel approach that has not been widely used in the literature. Secondly, the
combination of feature extraction and machine learning algorithms has been shown to be
effective in improving the accuracy of tool wear detection and tool life prediction. Finally,
this article provides a detailed analysis of the performance of the proposed methodology
and compares it with the current state-of-the-art approaches. In conclusion, this article
proposes a novel approach for tool condition monitoring using a combination of feature
extraction and machine learning algorithms. This approach has been shown to be effective
in detecting tool wear and predicting tool life, and a detailed analysis of its performance is
provided. The new contributions of this article include the use of acoustic emission signals
for feature extraction and the combination of feature extraction and machine learning
algorithms.

2. Data Acquisition

In the presented research, the main goal consisted of building a diagnostic system
capable of accurate measurement of tool wear level without the need to stop the production
process. The evaluation is based on the collected set of signals. All tests and recordings
were conducted using a Jet 130 CNC machining center (Busellato, Thiene, Italy) with single,
40 mm exchangeable edge cutter head with an exchangeable carbide cutting edge (Faba
SA, Baboszewo, Poland).

A sample of a chipboard panel with dimensions of 300 x 150 mm was used for tests.
The element was mounted on a measuring platform. A 6 mm deep groove was milled, with
spindle speed set at 18,000 rpm and feed rate equal to 0.15 mm per tooth. The selection of
these parameters was based on a thorough analysis of the literature and the authors” own
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experience in chipboard milling. A rotational speed of 18,000 rpm was chosen, as it is a
commonly used speed in the industry. A feed rate of 0.15 per tooth was selected, as itis a
value that has been shown to provide good results in terms of surface finish and tool wear.
A cutting depth of 6 mm was chosen, as it is a value that is commonly used in the industry
for milling chipboard panels of this size.

Tool state was classified as one of these three states: Green, Yellow and Red. The first
state refers to a new tool that remains in good condition. The Yellow state refers to an
element in an intermediate state but is still usable. Finally, the Red class denotes tools that
need to be exchanged due to their high wear level. In order to accurately denote each state,
the VBmax parameter was used, as shown at Figure 1.

VBmax

Figure 1. A microscopic photo of drill bit wear, with an outline of the VBmax parameter used for
class evaluation.

During each of the experiments, tasks were temporarily interrupted, and the current
condition of the blade was subjected to physical measurements using a Mitutoyo TM-505
microscope. It is well suited for measuring dimensions and angles. Moreover, a Mitutoyo
measuring microscope can be used to check the shape of screws and gears by attaching an
optional reticle. Using this equipment, wear states were measured and assigned to one of
the three wear states according to the following set of rules:

¢ If VBmax is in the range (0-0.15) mm, then it is a Green state—four different levels of
wear state;

e If VBmax is in the range (0.151-0.299) mm, then it is a Yellow state—two different
levels of wear state;

¢ If VBmax is in the range (>0.299) mm, then it is a Red state—two different levels of
wear state.

The experimental system has multiple sensors with the ability to collect a total of 11
parameters, which are the following:

e Force value in the (1) X and (2) Y axes (Kistler 9601A sensor; Impexron GmbH,
Pfullingen, Germany);

*  (3) Acoustic emission (Kistler 8152B sensor; Kistler Group, Winterthur, Switzerland);

*  (4) Noise level (Briiel & Kjeer 4189 sensor; Briiel and Kjeer, Neerum, Denmark);

. (5) Vibration level (Kistler 5127B sensor; Kistler Group, Winterthur, Switzerland);
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. (6) Device-rated current (Finest HR 30 sensor; Micom Elektronika, Zagreb, Croatia);
*  (7) Device-rated voltage (Testec TT-5i9001 sensor; Testec, Dreieich, Germany);

*  (8) Head-rated current (Finest HR 30 sensor; Micom Elektronika, Zagreb, Croatia);
*  (9) Head-rated voltage (Testec TT-5i9001 sensor; Testec, Dreieich, Germany);

*  (10) Servo-rated current (Finest HR 30 sensor; Micom Elektronika, Zagreb, Croatia);
*  (11) Servo-rated voltage (Testec TT-519001 sensor; Testec, Dreieich, Germany).

National Instruments PCI-6111 measurement cards (for measuring acoustic emissions) and
PCI-6034E (for measuring other parameters) were used for data acquisition from the sensors.

The recording was carried out using a PC with National Instruments software, i.e.,
the Lab ViewTM (National Instruments Corporation, ver. 2015 SP1, Austin, TX, USA)
environment using the NI PCI-6034E and NI PCI-6111 (Austin, TX, USA) data acquisition
cards. In order to adequately record the AE signal, a card with high sampling frequency
was necessary (2 MHz, measuring window of 0.3 s). For the remaining signals card with
a frequency of 50 kHz, a 1.1 s measuring window was used. Each signal was connected
to cards separately for each frequency range. BNC-2110 connection boxes were used for
this task.

Since potential, irregular noises and changes in sound could influence the training
process, all sensors were kept in the same position relative to the workpiece and cutting
zone throughout the entire measurement process. The overall structure of the data collected
during this stage is outlined in Table 1. Figure 2 shows plots with example raw signals for
acoustic emission, force X, force Y and noise level.
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Figure 2. Example raw signals for (a) acoustic emission, (b) force X, (c) force Y and (d) noise level.

Table 1. The structure of the data variables in the datasets.

Dataset Variable Length of 1 Trial F Sampling Measure Time (s)
requency (Hz)
DataHigh Ac. Emission 27,999,960 5,000,000 5.59
DatalLow Force X 700,000 200,000 3.50
DataLow Force Y 700,000 200,000 3.50
DataLow Noise 700,000 200,000 3.50
DatalLow Vibration 700,000 200,000 3.50

DataCurrent Dev. Current 30,000 50,000 0.60
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Table 1. Cont.

Dataset Variable Length of 1 Trial Sampling Measure Time (s)
Frequency (Hz)
DataCurrent Dev. Voltage 30,000 50,000 0.60
DataCurrent Head Current 30,000 50,000 0.60
DataCurrent Head Voltage 30,000 50,000 0.60
DataCurrent Servo Current 30,000 50,000 0.60
DataCurrent Servo Voltage 30,000 50,000 0.60

3. Sensor Fusion

The presented approach to tool condition monitoring involves the use of multiple
sensors to collect data on various physical parameters of the machinery. The collected data
are then used to train machine learning algorithms to accurately predict the tool state.

In order to improve the accuracy of the performed predictions, a sensor fusion ap-
proach was applied, which combines the information from multiple sensors. Specifically, a
feature-level fusion approach was used.

The feature extraction process involves applying various signal processing techniques
to the raw sensor data to extract relevant features. For example, Short-Time Fourier Trans-
form (STFT) and Discrete Wavelet Transform (DWT) methods are used to extract features
from the acoustic emission signal. Similarly, statistical methods are used to extract features
from all the signals mentioned in the previous section. Once the features are extracted from
each sensor, they are combined into a single feature vector using a concatenation operation.
The resulting feature vector is then used as input to the machine learning algorithms.

Various machine learning algorithms were tested, including K-Nearest Neighbors,
GaussianNB, MultinomialNB, Stochastic Gradient Descent, Decision Tree,Random Forest,
Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting and Support Vector
Machine, as described in Section 4.6. The main finding in the performed tests pointed out
that the best results were obtained using a combination of features derived from all of
signals (sensors). The presented approach improves the accuracy of final predictions and
allows more effective tool state monitoring during the chipboard milling process.

4. Methods

After collecting the initial signals, additional preparation was required in order to
prepare them for later usage in AI methods. In the current approach, two different methods
were considered for the sample splitting: Short-Time Fourier Transform (STFT) and Discrete
Wavelet Transform (DWT). In order to analyze the effectiveness of chosen approaches, a set
of state-of-the-art classifiers was chosen.

4.1. Measuring Apparatus and Parameters

In durability tests, the condition of the cutting tools was assessed. For this purpose,
the VBmax indicator was used (maximum wear on the flank surface—Figure 1). VBmax
was read on a MitutoyoTM-505 instrument microscope.

The main part of the research was carried out on the Busselato Jet 130 industrial
machining center, which is part of the equipment of the Machine Tools and Wood Process-
ing Department of the Warsaw University of Life Sciences (SGGW). The machine tool is
equipped with a Faba single-edged milling head (Figure 3a) with a diameter of 40 mm and
a replaceable blade; the geometry is shown in Figure 3b. The standard blades are made of
sintered carbide, with the symbol KCRO08. The overall parameters of the sintered carbide
and 50HS spring steel are presented in Tables 2 and 3. The standards used during the
experiments are presented in Table 4. The full list of used equipment is shown in Table 5,
while Figure 4 outlines the test stand setup.
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Figure 3. The geometry of the replaceable cutter for the milling head (a) and general view of the
milling head (b).
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Figure 4. Scheme of the test stand layout used during the experiments.
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Table 2. Basic properties of KCR08 cemented carbide.

Carbide Type

Binder Content [%] Density g/cm3 HV10 HV30 HRA Flexural Strength [MPa]

Submicron chrome

32 15.2 1920 1885 93.4 2300

Table 3. Basic properties of 50HS spring steel.

Tensile Strength

Steel Type Rm (MPa)

Narrowing (%)

Yield Strength Hardness (after Hardness (Raw
(Re) (MPa) Softening) (HB) State) (HB)

Chrome-silicon spring 1320 30

269 302

Table 4. List of standards used in testing the properties of wood-based materials.

Property Norm

Static bending strength (MPa) PN-EN 310
Elasticity modulus (MPa) PN-EN 310
Screw retention (N/mm) PN-EN 320
Tensile strength (MPa) PN-EN 319
Swelling 24 h (%) PN-EN 317

Water absorption 24 h (%)
Sand content (%)

PN-D-04234, PN-D-04213, PN-D-04213:1964

ISO 3340 (PN-76/D-04245)

Table 5. Apparatus used to test the physical and mechanical properties of wood-based materials.

Property

Measuring Apparatus

Density (kg/m?)

Static bending strength (MPa)
Elasticity modulus (MPa)
Screw retention (N/mm)

Laboratory scale, calipers
VebThuringerIndustriewerk SP 10
VebThuringerIndustriewerk SP 10
VebThuringerIndustriewerk SP 10

Tensile strength (MPa) VebThuringerIndustriewerk SP 10
Brinell hardness (HB) CV Instruments CV-3000LP8
Swelling 24 h (%) calipers

Water absorption 24 h (%) calipers

Density profile GreCon Density Analyzer X-ray

4.2. Data Transformation

Before any additional operations were performed, data normalization was required to
ensure that the discrepancies in the data size for different signals would not influence the
training process. Preprocessing is an essential step in the machine learning pipeline, as it
ensures that the data are appropriately prepared and transformed for the chosen algorithms.
Two prevalent techniques used for this purpose are normalization and standardization.

Normalization is a technique that scales the data into a specific range, typically be-
tween 0 and 1, or sometimes —1 and 1. The purpose of normalization is to bring all features
to the same scale and prevent any feature from dominating the model due to its original
scale. The most common method for normalization is MINMAX scaling.

Standardization, on the other hand, transforms the data such that they have a mean
of 0 and a standard deviation of 1. The purpose of standardization is to make the data
comparable across different features by removing the effects of various units or scales.

The main differences between normalization and standardization are as follows:

* Range: Normalization scales the data to a specific range (usually between 0 and 1),
whereas standardization scales the data to have a mean of 0 and a standard deviation
of 1.

*  Robustness: Normalization is sensitive to outliers, as the scaling is directly dependent
on the minimum and maximum values. In contrast, standardization is more robust
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to outliers, as it uses the mean and standard deviation, which are less influenced by
extreme values.

*  Use Cases: Normalization is preferred when the algorithm is sensitive to the scale of
the input features, such as in neural networks or K-Nearest Neighbors. Standardiza-
tion is more suitable for linear models, such as logistic regression or Support Vector
Machines, which assume that the input features are normally distributed.

In summary, both normalization and standardization are essential preprocessing
techniques in machine learning, with distinct purposes and use cases. The choice between
these techniques depends on the specific requirements of the algorithm and specifics of the
data being used.

4.2.1. Data Normalization

In the presented approach, the MinMaxScaler estimator was used, since it is one of the
most commonly used algorithms for this aspect. In this method, each feature is scaled and
translated individually, translating original values for the training set in the given range
(i.e., so that all values fit between the zero and one range). This operation was calculated as
shown in Equation (1):

% = Xi — Xmin 1)

Xmax — Xmin

4.2.2. Data Standardization

In machine learning, data standardization is a common preprocessing step to ensure
that features are on a similar scale, thus helping the model to converge faster and perform
better. A widely used method for data standardization is the Z-score normalization, which
can be defined as

z="F @)

where z is the standardized value, x is the original value, y is the mean of the feature
and o is the standard deviation of the feature. This process is applied to each feature
independently, transforming the data such that they have a mean of 0 and a standard
deviation of 1. Standardizing the data can be particularly helpful in algorithms that are
sensitive to feature scales, such as gradient- or distance-based methods.

4.3. Short-Time Fourier Transform

In the presented experiments, the first method used for the sample splitting process was
STFT. In this operation, a 32-segment version of the method was used in order to split initial
samples by their frequency. It was repeated for all 11 recorded signals, based on the sampling
frequency for each of them (see Table 1). The no-overlap parameter was omitted in order to
minimize data duplication—the transform did not include the overlapping windows. The
range was defined using the Hamming window, and due to system symmetry, only half of
the segments (or bins) were used for calculation: (32/2) + 1, giving a total of 17 segments.

The Short-Time Fourier Transform (STFT) is a widely used technique for analyzing
the time—frequency content of a signal. It works by partitioning the signal into overlapping
segments, applying a window function and then computing the discrete Fourier transform
of each segment. This allows the extraction of localized frequency information, which
can be useful for a variety of applications, such as speech processing, audio analysis and
signal processing.

The algorithm presented here computes a set of features from a given signal using the
STFT method. The main function, CalcFeatures_stft, takes as input a signal x, a custom
sampling frequency fs_custom and optional parameters for the window function (window),
the number of data points per segment (nperseg) and the number of overlapping points
between segments (noverlap). The default values for these parameters are set as follows:
window = ‘hamming’, nperseg = 32, and noverlap = 0.
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The algorithm first performs the STFT on the input signal using the specified parame-
ters, obtaining the time—frequency representation Zxx. The absolute values of the complex
coefficients are then calculated and stored in the matrix z. For each frequency bin (i.e., each
row of z), the algorithm computes a set of statistical features:

The mean value (y1).

The maximum value (y2).

The root-mean-square value (y3).

The standard deviation (y4).

The coefficient of variation, computed as the standard deviation divided by the
mean (y5).

6.  The ratio of the maximum value to the mean value (y6).

AR

Finally, the features are concatenated into a single vector and returned as the output.

After the above calculations, the final set contained total of 102 variables (17 x 6) for
each of the signal subsets. The complete set of variables for all of the used signals therefore
contained 11 (signals) x 102 = 1122 variables.

By analyzing the time—frequency content of the signal and extracting statistical features,
this algorithm can provide valuable information for further analysis or machine learning
tasks. The use of STFT makes it particularly well suited for applications where the signal’s
frequency content varies over time, such as in audio and speech processing. The algorithm
overview is presented in Algorithm 1.

Algorithm 1 CalcFeatures_stft function

1: procedure CALCFEATURES_STFT(x, fs_custom, window = "hamming’, nperseg =
32, noverlap = 0)
2: (f,t,Zxx) <« STFT(x,fs = fs_custom,window = window,nperseg =
nperseg, noverlap = noverlap)
3: z < abs(Zxx)
4 n <— number of rows(z)
5: m <— number of columns(z)
6: Calculate statistical features for each row of z:
*  yl < mean(z,axis =1)
* Y2 < max(z,axis =1)
* Y3+ RMS(z,axis =1)
o y4 < std(zaxis=1)
e Y5+« std(z,axis = 1)/mean(z,axis = 1)
L]

Y6 < max(z,axis = 1) /mean(z, axis = 1)

features < concatenate(y1,y2,y3, y4,y5,y6, axis = 0)
return features
9: end procedure

4.4. Discrete Wavelet Transform

The second method used was Discrete Wavelet Transform (DWT). DWT is a powerful
signal processing technique that allows efficient multiresolution analysis of a given signal.
It decomposes it into a set of wavelet coefficients, which can capture both the frequency and
time information simultaneously. DWT operates by iteratively breaking down a signal into
two parts: approximation coefficients (low-frequency components) and detail coefficients
(high-frequency components).

The core idea behind DWT is to use a pair of complementary functions, called mother
wavelet and scaling function. The mother wavelet is used to analyze high-frequency details
in the signal, while the scaling function is responsible for capturing the low-frequency, or



Sensors 2023, 23, 5850

11 of 31

smooth, aspects of it. The wavelet decomposition is achieved by convolving the signal with
these two functions and then downsampling the result by a factor of 2 at each level.

The process of wavelet decomposition is applied recursively to the approximation
coefficients, resulting in a multilevel decomposition. At each level, the signal is further
analyzed, and additional detail coefficients are extracted, representing various frequency
bands. This hierarchical structure enables the preservation of the signal’s temporal and
frequency characteristics across different scales, making it suitable for a wide range of
applications, including compression, denoising and feature extraction.

In the presented implementation, DWT is performed using the specified wavelet
(symb5) and iterating through the given decomposition levels (7 in this case). At each level,
the function calculates several statistical features from both the approximation and detail
coefficients. These features capture essential information about the signal and can be used
for further analysis or as an input for the chosen Al model.

By utilizing DWT in this function, one can take advantage of the time—frequency
localization properties of wavelet analysis to derive meaningful features from the input
signal, which can help enhance the performance of AI models in various applications.

The CalcFeatures_cwt function aims to extract a set of features from an input signal
using Discrete Wavelet Transform (DWT) for multiresolution analysis. The function accepts
three parameters: the input signal x, the wavelet name (in this case, ‘sym5’), and the number
of decomposition levels (set to 7). The ‘sym5” wavelet, also known as the Symlet 5 wavelet, is
part of the Symlet wavelet family, known for its near symmetry and good frequency response.

The function begins by initializing an empty list called feature_levels to store the
feature sets calculated at each decomposition level. It then iterates through the specified
number of levels, performing the following steps:

1.  Wavelet decomposition: At each level, the input signal (or the approximation coef-
ficients from the previous level) is decomposed using the DWT with the specified
wavelet. This produces two sets of coefficients: approximation coefficients (x) and
detail coefficients (coeff_d).

2. Feature extraction for approximation coefficients: The function calculates six sta-
tistical features from the approximation coefficients (x) that describe the signal’s
low-frequency components. These features include the mean, maximum, root mean
square (RMS), standard deviation, coefficient of variation (standard deviation divided
by mean) and the ratio of the maximum value to the mean value.

3. Feature extraction for detail coefficients: The function calculates ten statistical fea-
tures from the detail coefficients (coeff_d) that represent the high-frequency com-
ponents, or noise, in the signal. These features include the mean, maximum, RMS,
standard deviation, coefficient of variation, ratio of the maximum value to the mean
value and the 5th, 25th, 75th and 95th percentiles.

4.  Feature set construction: The 16 features derived from the approximation and detail
coefficients are combined into a single tuple. This tuple represents the feature set for
the current decomposition level.

5. Storing feature sets: The feature set tuple is appended to the feature_levels list, which
collects the feature sets for each decomposition level.

After iterating through all decomposition levels, the function returns the feature_levels
list containing the feature sets for each level. These feature sets can be used for further
analysis, such as signal classification, anomaly detection, or as input for an Al model to
improve its performance in various applications.

The CalcFeatures_cwt function leverages the time—frequency localization properties of
DWT to efficiently extract meaningful features from the input signal, making it a versatile
and valuable tool for a wide range of signal processing tasks. The comprehensive outline
of this function is presented in Algorithm 2.
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Algorithm 2 CalcFeatures_cwt function

1: procedure CALCFEATURES_CWT(x, waveletname, level)
2 feature_levels <— empty list

3: forii € {0,1,...,level — 1} do

4: (x, coeff_d) <— DWT(x, waveletname)

5 Calculate statistical features for x:

wave_y1 < mean(x)
wave_y2 <— max(x)

wave_y3 <— RMS(x)

wave_y4 +— std(x)

wave_y5 < std(x)/mean(x)
wave_y6 < max(x)/mean(x)

6: Calculate statistical features for coeff_d:

wave_coef_y1 < mean(coeff_d)

wave_coef_y2 < max(coeff_d)

wave_coef_y3 < RMS(coeff_d)

wave_coef_y4 < std(coeff_d)

wave_coef_y5 < std(coeff_d)/mean(coeff_d)
wave_coef_y6 < max(coeff_d)/mean(coeff_d)
wave_coef_n5 < 5% — percentile(coeff_d)
wave_coef_n25 <— 25% — percentile(coeff_d)
wave_coef_n75 < 75% — percentile(coeff_d)
wave_coef _n95 < 95% — percentile(coeff_d)

7: features < (wave_y1, wave_y2, wave_y3, wave_y4, wave_y5, wave_y6,
wave_coef_yl, wave_coef_y2, wave_coef_y3, wave_coef_y4,
wave_coef_y5, wave_coef_y6, wave_coef_n5, wave_coef_n25, wave_coef_n75,
wave_coef_n95)

Append features to feature_levels

9: end for

10:  output < Flatten(feature_levels)

11: return output

12: end procedure

*

4.5. Hyperparameter Optimization for Classifiers

Hyperparameter optimization plays a crucial role in enhancing the performance of
machine learning models. This paper discusses the scientific method of employing an
exhaustive grid search for hyperparameter optimization, thereby improving the accuracy
and efficiency of various machine learning algorithms tested during the experiments.

Machine learning model performance relies heavily on selecting the appropriate
hyperparameters—adjustable parameters that control the learning process of a model. An
exhaustive grid search is a widely used technique that explores a specified parameter space
to find the optimal combination of hyperparameters for a given model.

To perform hyperparameter optimization using an exhaustive grid search, the follow-
ing steps are undertaken:

1. Import necessary libraries: First, import the required libraries that provide the func-
tions and algorithms for implementing the exhaustive grid search.

2. Load and preprocess the dataset: Load the dataset and perform necessary prepro-
cessing tasks, such as feature engineering, data cleaning and splitting into training
and testing sets.

3.  Define the model: Choose the desired machine learning algorithm (e.g., Random
Forest Classifier, Support Vector Machines, etc.) and instantiate the model with default
or initial hyperparameters.
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4.  Specify the hyperparameter grid: Define a dictionary or a structured data format
containing the hyperparameters and their respective ranges to be explored during the
grid search. For example:

e  “n_estimators”: [10, 50, 100, 200],
. “max_depth”: [None, 10, 20, 30],
*  “min_samples_split”: [2, 5, 10],

*  “min_samples_leaf”: [1, 2, 4],

. “bootstrap”: [True, False].

5. Initialize the grid search: Instantiate an exhaustive grid search algorithm with the
chosen model, hyperparameter grid, scoring metric and cross-validation strategy.

6.  Fitthe model: Train the model using the training data while performing an exhaustive
search for the best hyperparameters.

7.  Extract optimal hyperparameters: Retrieve the best combination of hyperparameters
found during the search.

8.  Evaluate model performance: Assess the performance of the model with the optimal
hyperparameters on the test dataset and compare it with the baseline model.

Employing an exhaustive grid search for hyperparameter optimization allows for
the identification of the best hyperparameter combination, resulting in improved model
performance and accuracy. Although this method can be computationally expensive due
to its exhaustive search approach, the benefits of optimizing hyperparameters can signifi-
cantly enhance the overall effectiveness of machine learning models. The full overview is
presented in Algorithm 3.

Algorithm 3 Exhaustive Grid Search for Hyperparameter Optimization

1: procedure GRIDSEARCH(model, param_grid, dataset, scoring, cv)

2: Preprocess dataset

3 Split dataset into train_set and test_set

4: Initialize best_score < —oo

5: Initialize best_params < @

6 for all combinations params in param_grid do

7 model < Instantiate model with params

8 scores < Perform cv-fold cross-validation on train_set with model
9 avg_score <— Average scores

10: if avg_score > best_score then

11: best_score < avg_score

12: best_params < params

13: end if

14: end for

15: Train model with best_params on entire train_set
16: Evaluate model on test_set using scoring metric
17: return model, best_params

18: end procedure

4.6. Classifiers

The main goal for the chosen classifier set was to evaluate previously prepared vari-
ables, checking the status to which each example will be qualified. In order to analyze
and evaluate the overall accuracy, as well as verify the obtained results, 10 state-of-the-art
classifiers were chosen and implemented, testing both variable sets obtained using the
STFT and DWT approaches.

4.6.1. K-Nearest Neighbors

The first chosen classifier was K-NN, since it is often described as one of the most
important, non-parametric classification methods [31,32]. It assigns the object class based on
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its neighborhood, checking to which of the available classes most of the current neighbors
belong. If, in some cases, the highest number of neighbors is identical for more than one
class, the final classification will be decided based on distances to each of them.

The standard version of the algorithm calculates Euclidean distance, and it is not often
used. Various improvements to this method were made, one of them incorporating the
Neighborhood Components Analysis (NCA). It is used to maximize a stochastic variant of
the leave-one-out K-NN scores on the training set, maximizing the sum over all available
samples of the probability that the current sample is correctly classified. In the approach
presented in this paper, the K-NN method used was configured using following parameters:

*  ‘kneighborsclassifier__n_neighbors”: [3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20];

¢ ’kneighborsclassifier__weights’: [‘uniform’, ‘distance’];

. ‘kneighborsclassifier__metric”: ['minkowski’, ‘euclidean’, ‘manhattan’];

4.6.2. GaussianNB

The original version of the Naive Bayesian Classifier is based on the Bayes’ theorem,
with the assumption of conditional independence between pairs of features given the value
of the class.

The assumption of Bayes’ theorem is the following relationship [33,34]:

P(y)P(xy,...,x
P ) = (y)P(Ecll... xnn) .

where y is a class variable, and x; consists of the dependent feature vector, including the
naive conditional independence assumption:

®)

P(xi|]//x1/~ . */xl'fl/xl'+1/' . ~/x1’l) = P(xl|y) (4)

additionally assuming that the likelihood of the features is Gaussian:

1 (xi — P‘y)z
P(xi|y) = exp <— ®)
/2 7102 202
2moy y
where the parameters 0, and j, are estimated using maximum likelihood.

The final parameters used for this approach are ‘var_smoothing’: np.logspace(0, —9,
num = 100).

4.6.3. MultinomialNB

The Multinomial Naive Bayesian Classifier is also based on the Bayes’ theorem but
additionally includes multinomially distributed data [35,36]. In this approach, vectors
0y = (9y1, s, Gyn) generate the multinominal distribution for each class y, where 0y is the
probability of feature i appearing in a sample belonging to class y, and n is the number of
features used.

The parameters 6, are calculated as follows:

A Nyi—FDé
' Ny+an

(6)

where Ny; = }_,cr x; is the number of times feature i appears in a sample of class y in the
training set T, and N, = Y1 ; Ny; is the total count of all features for class y.

The parameters for the MultinominalNB method are as follows: ‘alpha”: [1, 0.1, 0.01,
0.001, 0.0001, 0.00001].

4.6.4. Stochastic Gradient Descent

Another iterative method used to optimize the overall solution, as well as its classifica-
tion, was Stochastic Gradient Descent. It is is based on the Robbins-Monro algorithm [37],
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with the main goal being a stochastic approximation for the given set optimization. In
order to achieve this, the set is estimated randomly from a given subset. This solution is
computationally efficient but not accurate in the convergence criterion [38,39].

The main goal is to learn a linear scoring function f(x) = w’x + b with the model
parameters w € R™ and intercept b € R, while minimizing the regularized training error,
denoted as

n

1
E(w,b) = ) Lyi, f(x1)) +aR(w) @)
i=1
where L is the loss function, R defines the regularization term that penalizes model complex-
ity and « > 0 is a non-negative hyperparameter that controls the regularization strength.
The loss function is defined as

L(yi, f(xi)) = max(0,1 = yif (x;)) ®)
and the used regularization term is denoted as

1 m
Rw) =5 L} = [l ©
]:

The main application of the core version of SGD is unconstrained optimization prob-
lems. It can approximate the true gradient of E(w, b) by considering a single training
example at a time. For each example, the model parameters are updated as follows:

OR(w) n oL(w x; +b,y;)

W—w—1n|« ow ow

(10)
where 7 is the learning rate and b denotes the intercept parameter.

The presented implementation used Stochastic Gradient Descent with the following
parameters:

e ‘sgdclassifier_ loss”: ['log_loss’];
. ‘sgdclassifier__penalty’: [‘elasticnet’, ‘none’];
* ‘sgdclassifier__alpha’: np.logspace (-5, 5, 10).

4.6.5. Decision Tree

When it comes to the decision criteria, Decision Trees are the simplest and most
popular classifiers used [40]. In this case, the base for the decision-making process is
narrowing down the results by range classes. At the same time, this algorithm might
require larger training sets to achieve a satisfactory accuracy rate [41].

In this algorithm, the feature space is recursively partitioned so that samples with the
same labels are grouped together.

It is assumed that x; € R" are the training vectors, y € R is a label vector and m is the
number of the node with data at node m, denoted as Q;;, and the number of samples at
node m, indicated as ny;,.

for each candidate split @ = (j, t,;) consisting of a feature j and threshold t,,, the data

are split into Ql,flf ‘() and Q:f;ght(G) subsets:

W 0) = (v y)lx; < tu)

. (11)
W(0) = Qu\ Qi (0)
Then, the decision about the node chosen to be the split is made according to
nleft left nright ot
G(Qu6) =~ H(Q" (6)) + = —H(Qi™(6) (12)
Ny N



Sensors 2023, 23, 5850

16 of 31

where H() is the loss function, very often as Gini:

H(Qm) = mek(l - pmk) (13)
k
Pk = ni Y y=k) (14)
m YEQm

where k is the number of classes, and m denotes the number of nodes.
Finally, it is recursively computed for subsets Qiﬁf t (6*) until the maximum depth is
reached, 7, < MiNggppies OF m = 1.
In the presented calculations, the Decision Tree has the following parameters:
* ’‘max_depth”: range (2, 10, 1);
*  ‘criterion”: [‘gini’].

4.6.6. Random Forest

Random Forest is an ensemble method, where the main idea is to combine the predic-
tions of several base classifiers in order to improve robustness [42].

In this case, each tree in the ensemble is built from a sample drawn with replace-
ment from the training set, with the best split being found also from a random subset of
features [43,44].

An individual decision tree classifier has high variance and is prone to overfitting,
which is not the case with the Random Forest classifier. Moreover, due to randomness,
some errors can cancel out.The variance reduction often leads to a better model as a result.

The used Random Forest implementation has the following parameters:

*  ‘n_estimators”: range (100, 1000, 100);
*  ‘max_depth” range (2, 10, 1);
*  ‘bootstrap”: [True].

4.6.7. Gradient Boosting

The next chosen algorithm is Gradient Boosting. It is a method that uses dependencies
in the previous steps of the result prediction [45,46]. This algorithm often is the starting
point for other improved methods [47,48].

The model itself is additive, where prediction f; for a given features x; is based on

M
9i = Fu(xi) = Y h(x)) (15)
m=1

where I, denotes weak learners and M is the number of weak learners, followed with the
greedy property of the method:

Fin(x) = Fp-1(x) + hm(x) (16)
where h;;, minimizes a sum of losses L, from the previous ensemble F,,_1:

n
hy = argrr;in Ly = argmhin Y Uyi, Fn—1(x;) + h(x:)), (17)
i=1

where I(y;, F(x;)) is the loss function.
The mapping from the value Fy;(x;) to a class is loss-dependent. For the log-loss, the
probability that x; belongs to the positive class is denoted as follows:

p(yi = 1|x;) = o(Fm(x;)) (18)

where ¢ is the sigmoid function.
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In a case where multiple classes are considered, K trees (K classes) are built at each of
the M iterations. The probability that x; belongs to class k is calculated using the softmax
of the Fy; x(x;) values.

For the presented approach, the Gradient Boosting algorithm uses the
following parameters:

*  ‘max_depth” range (2, 20, 1);
*  ‘learning rate”: [0.01, 0.05, 0.1];
e ‘subsample”: [0.5, 0.75, 1.00].

4.6.8. Extreme Gradient Boosting

Extreme Gradient Boosting or XGBoost is an improved version of the initial
solution [46,48-50]. It has many advantages in comparison with the standard Gradient
Boosting method, including elements such as [51]:

*  Regularization rules;

¢  Parallel processing;

*  Built-in feature to handle missing values;
®  Built-in cross-validation technique;

¢ Tree pruning feature.

In the presented approach, Extreme Gradient Boosting has the following parameters:
*  ‘max_depth” range (2, 10, 1);
* ’'n_estimators”: range (100, 1000, 100);
* ‘learning rate”: [0.01, 0.05, 0.2, 0.3];
* ‘sampling_method”:[“uniform’, ‘subsample’, ‘gradient_based’].

4.6.9. Light Gradient Boosting

Among the classifiers used, another solution using the Gradient Boosting approach
was also selected. LGBM, unlike the algorithms based on random trees, does not rely on
sorting when finding the best split point. It is based on the decision histogram, providing
the possibility to follow the path of the expected least loss in time [52,53].

In comparison with XGBoost, LGBM has vertical, leafwise growth, resulting in more
loss reduction and higher accuracy.

Light Gradient Boosting has the following parameters:

*  ‘n_estimators”: range (100, 1000, 100);
*  ‘max_depth” range (5, 30, 5);

e ‘learning rate”: [0.01, 0.05, 0.1];

*  ‘bagging fraction”: [0.75];

*  ‘num_leaves”: range (5, 30, 5);

* ‘min_data_in_leaf”: range (5, 30, 5).

4.6.10. Support Vector Machine

The Support Vector Machine is a classification method [54,55] based on correctly
mapping data to multidimensional space. To achieve this, a function separating these data
is applied, declaring decision classes and building a hyperplane or set of hyperplanes in a
high-dimensional space based on kernel functions. The main goal is the maximization of
the separation margin—the largest distance to the nearest training data points of any class
(also called support vectors) [56].
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The margin is maximized by minimizing ||w||?> = w’

when a sample is misclassified:

w, while penalties are given

1 a

;}n;n EwTw + Ci; Ci

subject to y;(w ¢(x;) +b) > 1,
(;>0,i=1,..,n

(19)

7

where C is the penalty term which controls the penalty strength and (; is the samples
distance from their correct margin boundary.
The main problem can be changed to a dual problem:

1
min focTsz —elu
a 2

subject to yTa = 0 (20)
0<w;<C,i=1,..,n

where «; is the dual coefficients, e is the vector of all ones, and by positive semidefinite
matrix, Qz] = yl-y]-K(xi, X]'), and K(x;, x]) = (P(xl')T(P(x]‘) is the kernel.

When multiple classes are considered, the “one-versus-one” approach is usually
applied, meaning that m * (m — 1)/2 classifiers are constructed, where m is number of
classes.

In the presented approach, SVM has the following parameters:

e ‘svc__C’:[100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 3000, 5000, 10,000];
e ‘svc__gamma”: [0.001, 0.01, 0.1, 0.2, 0.3];

e ‘svc__kernel’: ['tbf’];

*  cv_set = StratifiedKFold(n_splits = 3, shuffle = True, random_state = 423).

4.7. General Implementation

All experiments were performed on hardware with the following specifications with
an Ubuntu system:

e Processor: AMD RYZEN THREADRIPPER 2990WX (32C 64T) 4.3 GHz.

e  Motherboard: AsRock X399 TAICHI.

e Memory: 8 x ADATA XPG SPECTRIX DDR4 16 GB D41 3000 MHz (128 GB RAM).
*  Graphics Card: 2 x Nvidia GeForce RTX Titan 24 GB GDDR6 (48 GB RAM).

e  Drive SSD: 2 x WD BLACK 1TB WDS100T3X0C1TB (PCIE).

e Drive HDD: 1 x WD RED PRO 8TB WDS8003FFBX 3.5” (SATA).

e Power supply: BE QUIET! DARK POWER PRO 11 1000 W.

*  Cooling: BE QUIET! Silent Loop BW003 280 mm.

e  Network: 10GbE SFP+.

4.8. Results of Numerical Experiments

In total, 72 variants of numerical experiments were performed. These variants consist
of three data transformation methods and six combinations of data splitting into training
and testing sets, as well as four different approaches. Cross-validation was used in all
numerical experiments, randomly selecting the training and testing subsets 10 times.
Specifically, the following variants were used:

1. Types of input data transformations:

a. Without data transformation (no standardization or normalization).
b. With standardization.
C. With MINMAX normalization.

2. Data splits for training/testing sets for cross-validation:

a. 20/80.



Sensors 2023, 23, 5850

19 of 31

b.  30/70.
c. 40/60.
d.  50/50.
e.  60/40.
f 70/30.
3. Four used approaches:
a. STFT approach without hyperparameters optimization.
b.  STFT approach with hyperparameters optimization.
c. Wavelet approach without hyperparameters optimization.
d.  Wavelet approach with hyperparameters optimization.

It was assumed that in order for the solution to be viable, especially due to the
additional computation required for the exhaustive grid search during the hyperparameter
optimization, it needed to reach a satisfactory accuracy rate. This threshold was set at 80%,
and only results reaching this score are presented. For the results to be easily comparable
between different approaches, each row in the tables displays the following information:

*  The model’s performance with the specified transformation (denoted as Transformation);
*  Number of training samples (n_train);

*  Number of test samples (n_test);

*  Percentage of data used for training (% for training);

¢  The model’s accuracy (Acc. [%]).

All the results are sorted in descending order of model accuracy.

The main goal of the performed experiments was to evaluate a range of machine
learning models and data transformation techniques in order to understand their impact on
classification accuracy. The models evaluated include Decision Trees (DT), Random Forests
(RF), XGBoost Classifier (XGBC), Gradient Boosting (GB), K-Nearest Neighbors (KNN),
Support Vector Machines (SVC), Stochastic Gradient Descent Classifier (SGDC) and Light
Gradient Boosting Machine (LGBM). The dataset is transformed using MINMAX scaling
(MINMAX), standard scaling (STD), and no scaling (NONE). Additionally, the experiments
employ different train-test split ratios to examine their influence on model performance.

4.8.1. Numerical Experiments for the STFT Approach, without Hyperparameters Optimization

The Table 6 presents the top results of numerical experiments conducted for the Short-
Time Fourier Transform approach, without hyperparameter optimization. Various machine
learning models are listed, each evaluated using three different transformations: MINMAX,
STD, and NONE.

The table shows that Decision Trees achieved the highest accuracy (100%) when
trained on 20% of the data (n_train = 60, n_test = 15), regardless of the transformation
used. Meanwhile, Random Forests and Extreme Gradient Boosting achieved comparable
performance when trained on 50% and 70% of the data, respectively. Gradient Boosting
models demonstrated slightly lower accuracy scores, ranging between 83.02% and 86.67%.

Upon detailed analysis of the results, several observations can be made:

1.  Decision Tree (DT) models with all three data transformation techniques consistently
demonstrate perfect accuracy (100%) when using a 20% train—test split ratio.

2. Random Forest (RF) models exhibit high accuracy, with the best performance achieved
using standard scaling and a 40% train—test split ratio, resulting in 98.33% accuracy.

3. XGBoost Classifier (XGBC) and Gradient Boosting (GB) models show variable accu-
racy levels, ranging from 66.67% to 95%. The best performance for XGBC is obtained
using MINMAX scaling with a 40% train—test split ratio, while the highest accuracy
for GB is achieved using standard scaling and a 60% train-test split ratio.

4. K-Nearest Neighbors (KNN) and Support Vector Machine (SVC) models demonstrate
generally high accuracy, with KNN models reaching their peak performance using
MINMAX scaling and a 20% train—test split ratio and SVC models performing the
best using standard scaling and a 40% train—test split ratio.
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5. Stochastic Gradient Descent Classifier (SGDC) models display moderate accuracy,
ranging from 60% to 83.33%. The best performance is achieved using standard scaling
and a 20% train—test split ratio.

6. Light Gradient Boosting Machine (LGBM) models show the lowest overall accuracy,
with the worst performance (33.33%) obtained when using a 60% train—test split ratio
and applying different data transformations.

Table 6. Top results (with threshold accuracy set at 80%) of numerical experiments for the STFT
approach, without hyperparameters optimization.

Model Transformation n_train  n_test % for Training  Acc. [%]
Decision Tree MINMAX 60 15 20 100.00
Decision Tree STD 60 15 20 100.00
Decision Tree NONE 60 15 20 100.00
Random Forest MINMAX 37 38 50 86.84
Random Forest STD 37 38 50 86.84
Random Forest NONE 37 38 50 86.84
XGB MINMAX 22 53 70 86.79
XGB STD 22 53 70 86.79
XGB NONE 22 53 70 86.79
Random Forest MINMAX 30 45 60 86.67
Random Forest STD 30 45 60 86.67
Random Forest NONE 30 45 60 86.67
Decision Tree MINMAX 30 45 60 86.67
Decision Tree STD 30 45 60 86.67
Decision Tree NONE 30 45 60 86.67
Decision Tree MINMAX 37 38 50 84.21
Decision Tree STD 37 38 50 84.21
Decision Tree NONE 37 38 50 84.21
Gradient Boosting ~ MINMAX 22 53 70 83.02
Gradient Boosting STD 22 53 70 83.02
Gradient Boosting ~ NONE 22 53 70 83.02
Random Forest MINMAX 22 53 70 83.02
Random Forest STD 22 53 70 83.02
Random Forest NONE 22 53 70 83.02
Random Forest MINMAX 52 23 30 82.61
Random Forest STD 52 23 30 82.61
Random Forest NONE 52 23 30 82.61
XGB MINMAX 30 45 60 82.22
XGB STD 30 45 60 82.22
XGB NONE 30 45 60 82.22

4.8.2. Numerical Experiments for the STFT Approach, with Hyperparameter Optimization

Table 7 presents the top performing Al models with their respective transformations
and hyperparameter optimization using the Short-Time Fourier Transform (STFT) approach.
The models shown in the table have achieved an accuracy of 80%.

The highest accuracy (88.89%) was achieved by both Gradient Boosting and Random
Forest models, where Gradient Boosting used no transformation (NONE) and had 30 train-
ing and 45 testing samples, whereas the Random Forest model employed Standard Scaling
(STD) with the same number of training and testing samples. Both models had a 60%
proportion (proc) of the dataset used.

Additionally, several models, including Support Vector Classifier (SVC), Gradient
Boosting, XGBoost (XGB), Gaussian Naive Bayes (GaussianNB), Light Gradient Boost-
ing Machine (LGBM) and Stochastic Gradient Descent (SGD), showed varying levels of
performance depending on the transformation and dataset proportions used.

In conclusion, the Gradient Boosting and Random Forest models achieved the highest
accuracy in this set of numerical experiments. However, the performance of other models,
such as SVC, XGB and LGBM, demonstrated that various transformations and dataset
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proportions could yield competitive results, warranting further exploration and fine-tuning
of these models.

Table 7. Top results (with threshold accuracy set at 80%) of numerical experiments for the STFT
approach with hyperparameter optimization.

Model Transformation n_train n_test % for Training  Acc. [%]
Gradient Boosting NONE 30 45 60 88.89
Random Forest STD 30 45 60 88.89
Random Forest MINMAX 52 23 30 86.96
Random Forest NONE 52 23 30 86.96
Gradient Boosting ~ MINMAX 37 38 50 86.84
Gradient Boosting ~ MINMAX 30 45 60 86.67
SvC STD 22 53 70 84.91
SvC MINMAX 22 53 70 84.91
SvC NONE 22 53 70 84.91
SvC MINMAX 30 45 60 84.44
SvC STD 30 45 60 84.44
SvC NONE 30 45 60 84.44
Gradient Boosting STD 22 53 70 83.02
XGB MINMAX 30 45 60 82.22
XGB STD 30 45 60 82.22
XGB NONE 30 45 60 82.22
Gradient Boosting ~ NONE 37 38 50 81.58
Random Forest MINMAX 37 38 50 81.58
SGD STD 37 38 50 81.58
GaussianNB STD 22 53 70 81.13
GaussianNB MINMAX 22 53 70 81.13
GaussianNB NONE 22 53 70 81.13
XGB STD 22 53 70 81.13
XGB MINMAX 22 53 70 81.13
XGB NONE 22 53 70 81.13
Decision Tree MINMAX 45 30 40 80.00
LGBM MINMAX 30 45 60 80.00
LGBM STD 30 45 60 80.00
LGBM NONE 30 45 60 80.00
Random Forest NONE 30 45 60 80.00
SGD STD 30 45 60 80.00
SvC MINMAX 45 30 40 80.00
SvC STD 45 30 40 80.00
Decision Tree NONE 45 30 40 80.00
SvC NONE 45 30 40 80.00
Random Forest MINMAX 60 15 20 80.00

The top performing models with the highest accuracy are the Gradient Boosting
and Random Forest models, both without any data transformation (NONE) and 88.89%
accuracy. These models were trained on 30 samples and tested on 45 samples, representing
a 60% training split.

In the middle range, we find models such as SVC, XGB, and LGBM, with accuracy
percentages between 80% and 85%. These models exhibit varying performance depending
on the data transformation method applied (STD, MINMAX, or NONE) and the proportion
of training data.

Towards the lower end of the performance spectrum, models such as Decision Tree,
KNeighbors and SGD show accuracy percentages between 65% and 80%. Similar to the
middle-range models, their performance depends on the data transformation method and
the proportion of training data.

In summary, the best performing models in this analysis are Gradient Boosting and
Random Forest without any data transformation, both achieving 88.89% accuracy. However,
the performance of the models is influenced by the data transformation method and the
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proportion of training data, emphasizing the importance of selecting the appropriate
preprocessing techniques and training data splits for a specific task.

4.8.3. Numerical Experiments for the Wavelet Approach without Hyperparameter
Optimization

Table 8 presents the results for the third approach. Only the following AI models were
able to reach the 80% threshold: Random Forest, Extreme Gradient Boosting, Decision Tree
and Gradient Boosting.

Table 8. Top results (with threshold accuracy set at 80%) of numerical experiments for the Wavelet
approach without hyperparameter optimization.

Model Transformation n_train n_test % for Training  Acc. [%]
Random Forest MINMAX 37 38 50 94.74
Random Forest STD 37 38 50 94.74
Random Forest NONE 37 38 50 94.74
Random Forest MINMAX 22 53 70 94.34
Random Forest STD 22 53 70 94.34
Random Forest NONE 22 53 70 94.34
Random Forest MINMAX 30 45 60 93.33
Random Forest STD 30 45 60 93.33
Random Forest NONE 30 45 60 93.33
XBoost MINMAX 22 53 70 92.45
XBoost STD 22 53 70 92.45
XBoost NONE 22 53 70 92.45
Desition Tree MINMAX 30 45 60 86.67
Desition Tree STD 30 45 60 86.67
Desition Tree NONE 30 45 60 86.67
Desition Tree STD 45 30 40 86.67
Desition Tree NONE 45 30 40 86.67
Desition Tree MINMAX 45 30 40 86.67
Desition Tree MINMAX 22 53 70 84.91
Desition Tree STD 22 53 70 84.91
Desition Tree NONE 22 53 70 84.91
XBoost MINMAX 30 45 60 84.44
XBoost STD 30 45 60 84.44
XBoost NONE 30 45 60 84.44
Desition Tree MINMAX 37 38 50 84.21
Desition Tree STD 37 38 50 84.21
Desition Tree NONE 37 38 50 84.21
Gradient Boosting MINMAX 37 38 50 81.58
Gradient Boosting ~ STD 37 38 50 81.58
Gradient Boosting ~ NONE 37 38 50 81.58
Random Forest STD 45 30 40 80.00
Random Forest NONE 45 30 40 80.00
Random Forest MINMAX 45 30 40 80.00
Gradient Boosting MINMAX 60 15 20 80.00
Gradient Boosting ~ STD 60 15 20 80.00
Gradient Boosting ~ NONE 60 15 20 80.00

The highest accuracy of 94.74% was achieved by the Random Forest model with all
three data transformations when the training set size was 37 (50% for training) and the test
set size was 38.

The accuracy of the Random Forest model remains consistent at 94.34% for all data
transformations when the training set size is 22 (70% for training) and the test set size is 53.
Similarly, the model’s accuracy is 93.33% when the training set size is 30 (60% for training)
and the test set size is 45.
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The Extreme Gradient Boosting model’s highest accuracy of 92.45% was achieved with
all data transformations when the training set size was 22 (70% for training) and the test set
size was 53.

The Decision Tree models achieved their highest accuracy of 86.67% with all data
transformations when the training set size was 30 (60% for training) and the test set size
was 45, as well as when the training set size was 45 (40% for training) and the test set size
was 30.

The Gradient Boosting model’s highest accuracy of 81.58% was observed with all data
transformations when the training set size was 37 (50% for training) and the test set size
was 38.

Overall, it appears that the Random Forest model performs the best among the con-
sidered Al models, achieving the highest accuracy across different training and testing set
sizes and data transformations. It is important to note that the results presented in the
table are without hyperparameter optimization, and further fine-tuning might improve the
performance of these models.

Since all models achieved different performance for the different configurations, addi-
tionally, an average accuracy of the three top performing models was calculated in order to
rank them with overall performance in mind, resulting in the following scores:

1. Random Forest: 87.40%.
2. XGBoost: 78.05%.
3.  Decision Tree: 76.92%.

Additionally, the following properties can be noted:

—_

Transformation methods show no difference in average accuracy across all the models;

2. Training Set Size Impact: The average accuracy is generally higher when the training
set size is smaller (e.g., 37 or 22), and it decreases as the training set size increases (e.g.,
60 or 52);

3.  Testing Set Size Impact: The average accuracy is generally higher when the testing

set size is smaller (e.g., 15, 23, or 30) and lower when the testing set size is larger (e.g.,

45, 53).

In conclusion, the Random Forest model performs the best among the tested models,
with an average accuracy of 87.40%. There is no significant difference in the performance
in regards to the transformation method used. The models tend to perform better when the
training set size is smaller and the testing set size is smaller.

4.8.4. Numerical Experiments for the Wavelet Approach with Hyperparameter
Optimization

Table 9 shows the results obtained for the final approach. The models that achieved
the assumed 80% accuracy threshold include the Gradient Boosting, Random Forest, XGB,
LGBM and Decision Tree algorithms.

The highest accuracy of 96.23% was achieved using the Gradient Boosting algorithm
with standardization (STD) and 22 training samples. The Random Forest model with
STD and 52 training samples closely followed, achieving an accuracy of 95.65%. The
Gradient Boosting model with different data transformation methods and training sample
sizes consistently achieved high accuracy scores above 90%. The XGB and LGBM models
also performed well, especially when used in combination with the MINMAX and STD
transformations. The Decision Tree model obtained relatively lower accuracy compared
with other models but still managed to achieve results above 80%.

The Gradient Boosting and Random Forest models seem to be the most successful
in achieving high scores for this aspect. The results indicate that the choice of data trans-
formation methods and training sample sizes plays a significant role in the performance
of these Al models. In many cases, Gradient Boosting and XGBoost models show better
performance when combined with either standardization or MINMAX scaling compared
with no transformation. However, it is worth noting that there are instances where the
models perform similarly with and without transformations. On the other hand, LGBM
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models tend to have lower accuracies compared with Gradient Boosting and XGBoost
models. The Decision Tree model’s performance is more varied, reaching up to 92.45% in
some cases, while it stays significantly lower in others.

Table 9. Top results (with threshold accuracy set at 80%) of numerical experiments for the Wavelet
approach with hyperparameter optimization.

Model Transformation n_train n_test % for Training  Acc. [%]
Gradient Boosting STD 22 53 70 96.23
Random Forest STD 52 23 30 95.65
Gradient Boosting ~ STD 30 45 60 95.56
Gradient Boosting MINMAX 37 38 50 94.74
Gradient Boosting ~ MINMAX 30 45 60 93.33
Gradient Boosting ~ NONE 30 45 60 93.33
XGB MINMAX 22 53 70 92.45
Decision Tree MINMAX 22 53 70 92.45
XGB STD 22 53 70 92.45
XGB NONE 22 53 70 92.45
Gradient Boosting =~ MINMAX 22 53 70 90.57
Gradient Boosting ~ NONE 22 53 70 90.57
LGBM MINMAX 37 38 50 89.47
Gradient Boosting ~ STD 37 38 50 89.47
Decision Tree STD 37 38 50 89.47
LGBM STD 37 38 50 89.47
Gradient Boosting ~ NONE 37 38 50 89.47
LGBM NONE 37 38 50 89.47
Decision Tree NONE 30 45 60 88.89
Random Forest NONE 52 23 30 86.96
Gradient Boosting ~ STD 60 15 20 86.67
Decision Tree NONE 60 15 20 86.67
XGB MINMAX 30 45 60 84.44
XGB STD 30 45 60 84.44
Decision Tree STD 30 45 60 84.44
XGB NONE 30 45 60 84.44
LGBM MINMAX 22 53 70 83.02
LGBM STD 22 53 70 83.02
Decision Tree NONE 22 53 70 83.02
LGBM NONE 22 53 70 83.02
Random Forest MINMAX 52 23 30 82.61
LGBM MINMAX 30 45 60 82.22
LGBM STD 30 45 60 82.22
LGBM NONE 30 45 60 82.22
XGB MINMAX 37 38 50 81.58
XGB STD 37 38 50 81.58
XGB NONE 37 38 50 81.58
Decision Tree NONE 37 38 50 81.58
Random Forest NONE 37 38 50 81.58
Random Forest MINMAX 30 45 60 80.00
Random Forest STD 30 45 60 80.00
LGBM MINMAX 45 30 40 80.00
LGBM STD 45 30 40 80.00
Gradient Boosting ~ NONE 45 30 40 80.00
LGBM NONE 45 30 40 80.00
Random Forest STD 60 15 20 80.00

From these observations, we can conclude that the choice of data transformation methods
and the number of training and testing samples significantly impact the performance of Al
models. The Gradient Boosting and XGBoost models appear to be more sensitive to these
factors, as they generally achieve higher accuracies compared with other models in the table.
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5. Discussion
5.1. Discussion of Numerical Experiments for the STET Approach without
Hyperparameter Optimization

Upon analyzing the table labeled as Table 6, several conclusions can be drawn about
the Short-Time Fourier Transform (STFT) approach without any optimization of hyper-
parameters. It is evident that the Decision Tree model, regardless of the transformation
method employed (i.e., MINMAX, STD, or NONE), exhibits exceptional performance, with
a 100% accuracy rate when 20% of the data are used for training (n_train = 60, n_test = 15).
This suggests an almost perfect fit of the model to the data in these specific conditions.
However, such high performance might also indicate a potential overfitting problem. This
aspect needs further evaluation.

Looking further into the results, the Random Forest and XGB models appear to
provide a stable accuracy of around 86.84% and 86.79%, respectively, for different propor-
tions of training data and transformations. This performance is consistent, as reflected
in instances where 50% of the data (n_train = 37,n_test = 38) and 70% of the data
(n_train = 22,n_test = 53) are allocated for training. The stability of these models sug-
gests their robustness under various conditions, although they do not achieve the perfect
accuracy rate of the Decision Tree model.

In scenarios where the proportion of training data is 60% (n_train = 30,n_test =
45), both the Random Forest and Decision Tree models present a slightly lower but still
substantial accuracy of 86.67%, across all transformation techniques. This demonstrates
a minor decrease in performance with an increase in the training dataset size for these
models.

The Gradient Boosting model, with an accuracy of 83.02% with 70% of the training data
(n_train = 22,n_test = 53), is slightly less effective than the previously discussed models.
The same performance figure is seen for the Random Forest model in these conditions.
Moreover, the lowest accuracy observed with the Random Forest model equals 82.61%
when the training set is reduced to 30% (n_train = 52, n_test = 23).

In conclusion, while the Decision Tree model achieved the highest accuracy, its perfect
score raises questions about potential overfitting, warranting further investigation. Con-
versely, the Random Forest and XGB models showed a consistently high level of accuracy
across different data proportions and transformations, suggesting reliable performance.
Lastly, while Gradient Boosting did not outperform the other models, it still demonstrated
a reasonably good accuracy. The impact of hyperparameter optimization on these models
could provide more insight and potentially enhance their performance.

5.2. Discussion of the Numerical Experiments for the STFT Approach, with
Hyperparameter Optimization

The numerical experiments, as presented in Table 7, provide valuable insights into the
performance of various models subjected to different data transformations in the context of
hyperparameters optimization. The results are both significant and enlightening, and they
outline the effectiveness of hyperparameter optimization.

The Gradient Boosting model, when trained with the original dataset (without any
transformations), resulted in the highest accuracy, an impressive 88.89%, despite being
trained with only 60% of the dataset. A similarly high performance was observed with
the Random Forest model subjected to standardization (STD) transformation, reaching
the same accuracy level of 88.89% with an identical percentage of training data. These
observations highlight the robustness of these models and their capability to efficiently
learn from the underlying data, regardless of their size.

The Random Forest model proved to be a consistently high performer, irrespective
of the applied transformation or the size of the training set. For instance, it achieved an
accuracy of 86.96% for both standard (STD) and no (NONE) transformations, even when
trained with just 30% of the data. Such robust performance across varied scenarios signifies
the model’s ability to generalize well from the given data.
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On the other hand, the Support Vector Classifier model (SVC) demonstrated interesting
results. Even though the size of the training set was lowered to 70%, it managed to achieve
a fairly consistent accuracy, around 84.91%, irrespective of the applied transformation.
These results provide evidence of the SVC model’s resilience against the adverse effects of
reduced training data.

The XGBoost (XGB) model, trained with 60% of the data, managed to achieve a similar
level of accuracy across different transformations. This again signifies the model’s resilience
against different data transformations. However, the Gradient Boosting model appears to have a
slight edge over the XGBoost model, as it exhibits higher accuracy under comparable conditions.

The LGBM model also demonstrated consistent performance, achieving 80% accuracy
regardless of the transformation and with 60% of the data used for training. On the contrary,
the performance of the Stochastic Gradient Descent (SGD) and GaussianNB models, while
fairly high, varied depending on the transformation and the size of the training set.

In conclusion, these numerical experiments present a comprehensive view of the
relative performances of various models under different transformations and training set
sizes. The results clearly demonstrate the benefits of hyperparameter optimization, with
the Gradient Boosting and Random Forest models notably standing out. Nevertheless,
every model demonstrated a commendable level of accuracy, exceeding the 80% threshold,
emphasizing the effectiveness of the Short-Time Fourier Transform (STFT) approach in
conjunction with hyperparameter optimization.

5.3. Discussion of the Numerical Experiments for the Wavelet Approach without
Hyperparameter Optimization

The results of the numerical experiments conducted for the wavelet approach without
hyperparameters optimization are presented in Table 8. From these experiments, several
notable conclusions can be drawn about the performance of different machine learning
models under various conditions, including the effect of data transformation techniques
and different proportions of data dedicated to training and testing.

The three models examined include Random Forest, XBoost and Decision Tree, and
they were tested with different data transformation methods, namely MINMAX, STD and
NONE. In addition, Gradient Boosting was included as a comparison. Furthermore, the
proportion of data designated for training was adjusted, with percentages of 50%, 70%,
60% and 40% applied.

Firstly, it can be observed that regardless of the transformation applied or the data
partitioning, the Random Forest model consistently performs with high accuracy, exceeding
93%. This suggests that Random Forest is a robust model that maintains strong performance
across various transformations and data distributions.

Secondly, the XBoost model also performs admirably, with an accuracy of 92.45% when
applied with a training dataset percentage of 70%, regardless of the transformation method
used. However, the performance declines to 84.44% when the training data percentage is
lowered to 60%. This indicates that the performance of the XBoost model is sensitive to the
quantity of training data.

Thirdly, the Decision Tree model shows a decrease in performance compared with
the other two models. The accuracy ranges between 84.21% and 86.67% when the training
data percentage is at least 50%, while a further decrease is observed as the training data
percentage drops to 40% and 70%.

Lastly, the Gradient Boosting model exhibits the lowest accuracy among all models,
ranging from 80% to 81.58%. Similar to the Decision Tree model, the Gradient Boosting
model’s performance also appears to be sensitive to the proportion of training data.

From this analysis, it can be inferred that both the choice of model and the data
distribution (i.e., the percentage split between training and testing data) have a substantial
influence on the model’s performance. Furthermore, the data transformation method seems
to have a limited effect on the accuracy of these models. Notably, the Random Forest model
demonstrates the highest resilience against changes in data distribution and transformation,
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indicating its potential as a reliable model for this specific task. However, these conclusions
warrant further investigation in order to confirm the consistency of the observations under
different conditions or datasets.

5.4. Discussion of the Numerical Experiments for the Wavelet Approach with
Hyperparameter Optimization

In this section, we discuss the insights derived from the numerical experiments per-
formed in the context of the Wavelet approach coupled with hyperparameter optimization.
These experiments involved different model types, transformations applied, train—test
splits and achieved accuracy rates. The results, as delineated in Table 9, reveal compelling
statistical inferences.

First, the Gradient Boosting (GB) model, with a standard deviation (STD) transformation
and a training set comprising 70% of the data (n_train = 22,n_test = 53), achieved the
highest accuracy of 96.23%. It can be inferred from this that the GB model, combined with the
STD transformation and the mentioned data split, provides a highly accurate prediction.

Next, it can be observed that the Random Forest model, while only employing 30%
of the data for training (n_train = 52, n_test = 23), reached an accuracy close to the best
model—95.65%. Despite a smaller training set, the robustness of the Random Forest model
combined with the STD transformation resulted in impressive performance.

It was also noticed that the GB model with the STD transformation was consistently
effective with different training proportions, delivering an accuracy of 95.56% with 60% of
the data for training. When no transformation was applied for the same model, the accuracy
marginally decreased to 93.33%, indicating the significance of the STD transformation in
optimizing the performance.

An interesting observation can be made regarding the Extreme Gradient Boosting (XGB)
model. Regardless of the transformation method applied (or even without using the transfor-
mation), and with 70% of the data for training, it constantly yielded an accuracy of 92.45%.
This suggests the robustness of the XGB model to variations in data transformations.

In the lower accuracy spectrum, we observe that the Light Gradient Boosting Machine
(LGBM) model, irrespective of the transformation method applied or the training split
used, attained lower accuracy than the other models. The Random Forest model with
minimum-maximum (MINMAX) transformation and 30% training data also fell into
the lower accuracy range of 82.61%. Such observations may suggest that these model
configurations could be less optimal for the given task.

In conclusion, the insights from this analysis demonstrate the importance of model
selection, the impact of data transformations and the balance of the train—test split in model
performance. While the GB model with the STD transformation seemed to yield the best re-
sults, other models such as Random Forest and XGB also showed robust performances with
different configurations. The inferior performance of certain model configurations under-
lines the need for careful model selection and optimization. As always, these observations
should be used as guidance for further experiments and validations.

5.5. Summary of Discussion

This paper presented a comprehensive exploration of different machine learning
models applied in the context of the Short-Time Fourier Transform (STFT) and Wavelet
approaches. Both hyperparameter-optimized and nonoptimized scenarios were explored,
offering a broad understanding of the performance dynamics of the employed models.

In the STFT approach without hyperparameter optimization, Decision Tree, Ran-
dom Forest and XGB models showed remarkable performance. The Decision Tree model
achieved the highest accuracy, although its perfect score might indicate a potential overfit-
ting issue, thus necessitating further investigation. The Random Forest and XGB models
demonstrated stability and high accuracy levels across different data proportions and
transformations. Gradient Boosting, despite being less effective than the former models,
still performed reasonably well.
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When hyperparameters were optimized in the STFT approach, Gradient Boosting and
Random Forest models presented a strong performance. In particular, both models reached
an impressive accuracy of 88.89% when trained with 60% of the dataset. The robustness of
the Random Forest model was evident, as it performed well across different transformations
and sizes of the training set. The SVC and XGB models also showed promising performance,
maintaining fairly consistent accuracy levels across different transformations.

In the Wavelet approach without hyperparameter optimization, the Random Forest
model demonstrated an exceptional level of accuracy irrespective of the transformation
method or data partitioning. The XBoost and Decision Tree models showed a commendable
performance, but their accuracy seemed sensitive to the size of the training data. The
Gradient Boosting model, on the other hand, displayed the lowest accuracy among all
models.

When hyperparameters were optimized in the Wavelet approach, the Gradient Boost-
ing model, combined with the STD transformation and 70% of the data for training,
achieved the highest accuracy. The Random Forest model maintained an impressive
performance, even when only 30% of the data were used for training. The GB and XGB
models showed resilience to transformations, producing high and consistent accuracy
figures.

In conclusion, the experimental results underline the importance of an appropriate
choice of model, data transformations and data distribution. They suggest that the Random
Forest and Gradient Boosting models, under the STFT and Wavelet approaches, respectively,
are potentially the most promising candidates for the task at hand, considering their
resilience to transformations and robustness across different training sizes. It is important to
highlight, however, that these results are based on the current dataset and transformations,
and it is always beneficial to carry out further experiments under different conditions
to validate these conclusions. Future work could involve a deeper exploration of the
optimization techniques and their impact on the models’ performance.

6. Conclusions

In this article, a method for tool wear classification is presented and evaluated. The
performed tests were based on a set of signals registered during the machining process and
measured physical parameters, such as noise or vibrations, saved in separate datasets for
each of the used sensors. After the data were collected, the initial signals were processed
and prepared for the following operations. Two general methods were used: the first one
is based on the Short-Time Fourier Transform, and the second one uses Discrete Wavelet
Transform. The hyperparameters were optimized using the exhaustive grid search method.
A set of state-of-the-art classifiers was selected in order to further evaluate the consistency
of the obtained results in relation to the used parameter values and general experiment
setup.

The tested configuration included different types of input data transformations and data
splits for training /testing sets for cross-validation. A total of four general approaches were
used, each with an associated table showing the best configuration results—the minimal
requirement set here assumed that the experiment needed to reach at least an 80% accuracy
threshold.

All of the presented configurations show high results, with a significant amount of
them exceeding the 90% accuracy threshold and remaining consistent across different
configurations. It can also be seen that initial data preparation and used data split or
preprocessing methods can influence the results significantly, with some models being
more sensitive to such changes than others (as was the case with Gradient Boosting and
XGBoost classifiers).

Overall, the presented sensor-based approach achieved more than satisfactory results
for some of the parameter configurations, while the general experiments show the impact
that various changes in the used parameters or methods for data preprocessing can have on
the achieved accuracy. While preparing solutions for any work environments, these factors
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should be considered. Overall, the impact on the final score can be significant, while each
classifier’s susceptibility to such changes is different. Optimizing the used approaches for
each problem is a complicated topic, and further research for the best practices in various
cases is still required.

Looking towards the future, it is apparent that the quest to identify and establish the
best practices in a multitude of scenarios is ongoing. Potential areas for future research
include, but are not limited to, the investigation of different sensor-based approaches,
enhancement of data preprocessing techniques and further refinement of the classifier
parameters. Furthermore, the investigation of other machine learning algorithms that may
be more resilient to variations in data preprocessing or changes in parameters could also
prove beneficial. It can be anticipated that continual advancements in this field will reveal
more effective and efficient solutions for tool wear classification.
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