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Abstract: Colorectal cancer (CRC) risk is influenced by dietary patterns and gut microbiota en-
terotypes. However, the interaction between these factors remains unclear. This study examines this
relationship, hypothesizing that different diets may affect colorectal tumor risk in individuals with
varied gut microbiota enterotypes. We conducted a case-control study involving 410 Han Chinese
individuals, using exploratory structural equation modeling to identify two dietary patterns, and a
Dirichlet multinomial mixture model to classify 250 colorectal neoplasm cases into three gut micro-
biota enterotypes. We assessed the association between dietary patterns and the risk of each tumor
subtype using logistic regression analysis. We found that a healthy diet, rich in vegetables, fruits,
milk, and yogurt, lowers CRC risk, particularly in individuals with type I (dominated by Bacteroides
and Lachnoclostridium) and type II (dominated by Bacteroides and Faecalibacterium) gut microbiota
enterotypes, with adjusted odds ratios (ORs) of 0.66 (95% confidence interval [CI] = 0.48–0.89) and
0.42 (95% CI = 0.29–0.62), respectively. Fruit consumption was the main contributor to this protective
effect. No association was found between a healthy dietary pattern and colorectal adenoma risk or
between a high-fat diet and colorectal neoplasm risk. Different CRC subtypes associated with gut
microbiota enterotypes displayed unique microbial compositions and functions. Our study suggests
that specific gut microbiota enterotypes can modulate the effects of diet on CRC risk, offering new
perspectives on the relationship between diet, gut microbiota, and colorectal neoplasm risk.

Keywords: dietary patterns; gut microbiota; enterotypes; colorectal cancer; colorectal adenoma

1. Introduction

Colorectal cancer (CRC) is one of the most common and deadly malignancies world-
wide, accounting for approximately 10% of all cancer cases and fatalities [1]. CRC de-
velopment is influenced by both genetic and environmental factors, among which diet
plays a pivotal role. Several dietary patterns have been associated with different CRC
risks, such as the Western diet (characterized by high intakes of red meat, processed meat,
refined grains, and sugar-sweetened beverages) [2], the prudent diet (marked by high
intakes of fruits, vegetables, whole grains, fish, and poultry) [3], the Mediterranean diet
(emphasizing high intakes of olive oil, legumes, nuts, fruits, vegetables, fish, and moderate
wine consumption) [4], and the Asian diet (featuring high intakes of rice, soy products,
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vegetables, fish, and seaweed) [5]. However, the mechanisms by which dietary patterns
modulate CRC risk remain poorly understood.

One potential explanation is that dietary patterns influence the composition and
function of gut microbiota—a complex ecosystem of microorganisms inhabiting the human
gastrointestinal tract [6]. Gut microbiota is involved in various aspects of human health and
disease, particularly CRC pathogenesis. Previous studies have shown that CRC patients
have altered gut microbiota compared to healthy controls, indicating a dysbiosis between
beneficial and harmful bacteria [7]. Dietary patterns can modulate the composition and
function of gut microbiota, which in turn can affect human health and disease [8]. Different
dietary components, such as carbohydrates, proteins, fats, fibers, polyphenols, and vitamins,
can affect the abundance and diversity of gut microbes, as well as their metabolic activities
and interactions [6]. Additionally, dietary patterns can also influence the functional potential
of gut microbiota, as revealed by metagenomic and metabolomic analyses [8,9]. For example,
a Western dietary pattern has been associated with lower levels of genes related to short-
chain fatty acids (SCFAs) synthesis, amino acid metabolism, and bile acid transformation
in the gut microbiome [6,10]. Moreover, different gut microbiota enterotypes have been
identified based on their predominant bacterial genera, such as Bacteroides (enterotype 1),
Prevotella (enterotype 2), and Ruminococcus (enterotype 3) [11]. These enterotypes may reflect
different metabolic capacities and responses to dietary interventions.

Based on these findings, we hypothesized that different dietary patterns could affect
the risk of developing colorectal tumors, including CRC and colorectal adenoma (CRA), in
individuals with different gut microbiota enterotypes. To test this hypothesis, we conducted
a case-case-control study to identify dietary patterns and gut microbiota enterotypes, and
to evaluate their association with colorectal tumor risk. We also compared the diversity,
composition, and function of gut microbiota among different tumor subtypes to better
understand how dietary patterns influence tumor risk by modulating gut microbiota. Our
study aims to provide valuable insights into the relationship between dietary patterns, gut
microbiota, and colorectal tumor risk, potentially informing future preventive strategies.

2. Materials and Methods
2.1. Study Population

We conducted a case-control study involving 410 Han Chinese individuals aged 40 or
older who underwent colonoscopy at Changhai Hospital (Shanghai, China) between 2015
and 2016. We applied exclusion criteria to ensure the validity of our results. The inclusion
and exclusion criteria are summarized in Table S1 in the Supplementary Materials. The
CRC group and CRA group comprised patients diagnosed with CRC or CRA, respectively,
after colonoscopy. The control group consisted of individuals diagnosed with hyperplastic
polyps or those with no significant findings after colonoscopy. We classified participants
with multiple tumors according to the most advanced pathological changes. We defined
the proximal colon as the caecum, ascending colon, hepatic flexure, transverse colon,
and splenic flexure, and the distal colon as the descending colon, sigmoid colon, and
rectosigmoid junction.

In this study, we considered any malignant or premalignant lesions in the colorectum,
including CRC and CRA, as colorectal neoplasms. We diagnosed CRC by histopathological
confirmation of invasive adenocarcinoma in the colorectum and CRA by histopathological
confirmation of tubular adenoma, tubulovillous adenoma, or villous adenoma in the
colorectum. We also classified colorectal neoplasms into three subtypes based on their gut
microbiota profiles using the Dirichlet multinomial mixture model (DMM) (see Section 2.5.3
and Figure S1 in Section 3 for details).

We recruited participants from three sources at Changhai Hospital: the gastroenterol-
ogy clinic, the general surgery clinic, and the health examination center. Research staff
screened potential participants based on a brief medical history interview to determine
their eligibility for the study.
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2.2. Study Procedures

We invited eligible participants to join the study on site and obtained their informed
consent. They then completed a self-reported questionnaire on potential risk factors,
such as age, sex, body mass index (BMI), education degree, physical activity, smoking,
drinking, dietary intake, and other factors, as previously described [12]. We used a simple
semiquantitative food frequency questionnaire to assess dietary intake, including green
vegetables, fresh fruits, milk, yoghurt, pickled food, fried food, red meat (beef, pork,
and lamb), and white meat (fish, chicken, and duck). Participants reported the average
frequency of each food item consumed during the past year as occasional (less than 3 times
per week) or regular (at least 3 times per week).

We collected fresh stool samples (≥1 g) from participants and stored them in a −80 ◦C
refrigerator for subsequent DNA extraction and metabolomics analysis. We performed
DNA extraction using the OMEGA-soil DNA Isolation Kit (USA Omega Bio-Tek, Norcross,
GA, USA) and 16S rDNA sequencing on the Illumina MiSeq platform (Illumina, San Diego,
CA, USA) [13]. We also performed metabolomics analysis using Agilent 1290 Infinity
UHPLC and Agilent 6538 UHD and Accurate-Mass Q-TOF/MS according to a previ-
ously reported protocol [14]. We describe the details of these analytical methods in
Sections 2.3 and 2.4, respectively.

Participants underwent colonoscopy within two or three days of completing the
questionnaire and providing stool samples. The colonoscopy procedure was consistent
with our previous study [12].

2.3. 16S rDNA Sequencing and Data Processing

We amplified the V3-V4 region of the bacterial 16S rDNA gene using the primers 341F
(5′-CCTACGGGNGGCWGCAG-3′) and 805R (5′-GACTACHVGGGTATCTAATCC-3′). We
purified the PCR products using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
Union City, CA, USA) and quantified them using QuantiFluor-ST (Promega, Madison, WI,
USA). We pooled the purified amplicons in equimolar amounts and performed paired-end
sequencing (2 × 300) on an Illumina MiSeq platform (Illumina, San Diego, CA, USA)
according to the standard protocols.

We quality filtered the raw reads using Trimmomatic v0.27 (Usadel Lab, German
Center for Biotechnology, Aachen, Germany) with the following parameters: LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:200. We merged the paired-end reads
using FLASH v1.2.11 (The FLASH Team, University of Illinois at Urbana-Champaign,
Champaign, IL, USA) with a minimum overlap of 10 bp and a maximum mismatch den-
sity of 0.25 [15]. We identified and removed the chimeric sequences using Usearch v7.1
(Robert C. Edgar, Drive5 Bioinformatics, Mill Valley, CA, USA) with the reference database
Gold.fa. We clustered the remaining high-quality sequences into operational taxonomic
units (OTUs) at 97% similarity using Usearch v7.1 with the UPARSE algorithm. We assigned
the representative sequence of each OTU to a taxonomic level using QIIME v1.9.1 (The
QIIME Development Group, multiple institutions and laboratories in the USA, Canada,
Europe and Australia) with the RDP Classifier v2.2 (Ribosomal Database Project, Michigan
State University, East Lansing, MI, USA) and the Silva database (Release 123) (SILVA Team,
Max Planck Institute for Computer Science and the Institute for Microbial Ecology at the
University of Bremen, Germany) [16,17].

We obtained the taxonomic information corresponding to each OTU by counting the
community composition of each sample at each taxonomic level (domain, phylum, class,
order, family, genus).

2.4. Metabolome Analysis

We thawed fecal samples at room temperature, suspended them in a methanol: water
(8:2) solvent, and obtained the supernatant by centrifugation. We used a Waters XSelect
HSS T3 chromatographic column on the UHPLC-Q-TOFMS platform and performed mass
spectrometry analysis in both positive and negative ion modes. We executed data pre-
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processing, including peak detection, retention time correction, and integration, using
XCMS on the R software platform (version 4.1.2) [18]. We conducted data acquisition using
Agilent Masshunter Qualitative Analysis B.04.00 software, generating total ion current
chromatograms for fecal samples in both ionization modes. We identified a total of 1755 fea-
tures in the positive ion mode and 606 features in the negative ion mode. We imported the
processed data into Simca-P software (version 11.0), where we performed centering and
Pareto scaling before multivariate statistical analysis. We included quality control samples
in the analysis to ensure system stability.

2.5. Statistical Analysis

We describe the statistical analyses we performed to address our research questions
in this section. Table S2 summarizes the statistical parameters and methods we used for
each analysis. We conducted all statistical analyses using IBM SPSS Statistics for Windows
(version 26.0), R for Windows (version 4.1.2), and Mplus (version 8.3), with a two-tailed
p value of less than 0.05 considered statistically significant.

2.5.1. Identification of Dietary Patterns

To identify dietary patterns based on the consumption frequency of eight food items,
we used exploratory structural equation modeling (ESEM), a statistical technique that
allows for cross-loadings between factors and indicators. ESEM provides a more realistic
representation of dietary patterns than traditional methods such as principal component
analysis (PCA) or factor analysis (FA) [19]. We extracted dietary patterns using oblique
rotation and determined the number of factors based on eigenvalues greater than 1.0
and the interpretability of the factors. We named each dietary pattern according to the
food item with high factor loadings (≥0.3 or ≤−0.3). We calculated factor scores for each
participant by summing the products of factor loadings and standardized intakes of each
food item within a pattern. Higher factor scores indicated greater adherence to a specific
dietary pattern.

2.5.2. Relationship between Dietary Patterns and Risk of Colorectal Neoplasm

We conducted univariate analyses to compare each case group (CRC and CRA) with
the control group and assess the associations of potential risk factors with colorectal
neoplasms. We used the chi-square test for categorical variables and the unpaired t-test
or Mann-Whitney U test for continuous variables. We then used binary logistic backward
stepwise regression analyses to investigate the association between dietary patterns and
colorectal neoplasms, controlling for other potential risk factors that had a p value of <0.10
in the univariate analyses.

2.5.3. Relationship between Dietary Patterns and Risk of Colorectal Neoplasm Subtypes

We applied DMM using the R package “DirichletMultinomial” and clustered all
250 cases, including CRC and CRA cases, into gut microbiota enterotypes based on their
OTU abundance profiles. DMM is a probabilistic method for community typing of microbial
data that can infer the optimal number of community types [20]. We assigned each case to
the most probable enterotype based on its posterior probability.

We used similar univariate and multivariate analyses to evaluate the associations
between dietary patterns and the risk of colorectal neoplasm subtypes in our two case-case-
control studies, as described previously. We conducted a Wald test to assess heterogeneity
between different subtypes of colorectal tumors in relation to dietary patterns [21], aiming
to determine whether there was a significant difference in their associations. In the case
of significant heterogeneity, we compared the differences in gut microbiota diversity,
composition, and function between different tumor subtypes to gain a better understanding
of how dietary patterns influence tumor risk.
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2.5.4. Gut Microbiota Composition Analysis between Subgroups

We used the Kruskal-Wallis test to compare alpha-diversity among CRC or CRA
subgroups, including microbial abundance indices (Chao and abundance-based coverage
estimator [ACE]) and diversity indices (Shannon and Simpson). If the Kruskal-Wallis
test indicated significant differences, we performed post-hoc pairwise comparisons with
Dunn’s test for multiple comparisons. We visualized beta-diversity between subgroups
using principal coordinates analysis (PCoA) based on Bray-Curtis distances. Moreover, we
performed permutational multivariate analysis of variance (PERMANOVA) with distance
matrices to ascertain significant differences in microbial communities while accounting for
potential confounding factors.

We used the linear discriminant analysis (LDA) effect size (LEfSe) method to in-
vestigate alterations in gut microbiota composition among subtypes [22]. The signifi-
cance criteria for identifying differentially abundant features were (1) a Kruskal-Wallis
test p value < 0.05 and (2) a logarithmic LDA score > 3. We visualized the results of the
LEfSe analysis using LDA score plots and cladograms to effectively convey the observed
differences in microbial composition between subtypes.

2.5.5. Metabolomics-Based Analysis of Gut Microbiota Functional Differences
between Subgroups

To evaluate the functional disparities in gut microbiota among subtypes within both
CRC and CRA groups, we performed metabolomic profiling, which included several
specific analyses. First, we preprocessed the metabolite peak area data using logarithmic
transformation and Z-score standardization. Then, we used PCoA based on Manhattan
distances to assess the overall metabolite feature differences between subtypes in the CRC
and CRA groups. Next, we applied the LEfSe method to identify significantly distinct
metabolites between these subtypes, using a Kruskal-Wallis test p value < 0.05 and a
logarithmic LDA score > 2 as the significance criteria. To investigate the metabolic pathway
variations between the subtypes, we mapped the selected differential metabolites to well-
established metabolic pathways using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [23]. Moreover, we conducted pathway enrichment and pathway topology analyses
using MetaboAnalyst 5.0 [24]. Finally, we assessed the correlations between differential
metabolites and differential bacterial genera in subtypes using Spearman’s correlation
coefficient, controlling the false discovery rate (FDR) with the FDR correction.

3. Results

We included three groups in this study: the CRC group with 130 patients, the CRA
group with 120 patients, and a control group consisting of 160 participants. Table 1 presents
the characteristics of all participants. Using ESEM, we identified two distinct dietary
patterns from eight food items, which we termed the healthy dietary pattern and the
high-fat dietary pattern (Table S3). The healthy dietary pattern is characterized by high
consumption of vegetables, fruits, milk, and yogurt, and low intake of high-fat food
products. Conversely, the high-fat dietary pattern is marked by high consumption of
pickled, fried, and red meat products, and low intake of healthy foods.

Participants with higher healthy dietary scores were predominantly female, older,
more educated, and had lower smoking and drinking rates (Table S4). On the other
hand, those with higher high-fat dietary scores were more likely to be male, younger, less
educated, have higher BMIs, and higher smoking and drinking rates (Table S4).

We explored the associations between dietary patterns and the overall risk of colorectal
neoplasms. After adjusting for potential confounders, we found that higher adherence to
a healthy dietary pattern was associated with a lower risk of CRC (adjusted odds ratio
[OR] = 0.62, 95% confidence interval [CI] = 0.48–0.81, p = 0.001) (Table 2). The adjusted OR
for overall CRC was 0.38 (95% CI = 0.20–0.71; p = 0.001 for trend) for participants in the
highest tertile of healthy dietary scores compared to those in the lowest tertile (Table 3).
However, we found no associations between a healthy dietary pattern and the overall risk
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of CRA or between a high-fat dietary pattern and the overall risk of colorectal neoplasms
(Tables 2 and 3).

Table 1. Characteristics of the study population.

Variable Colorectal Cancer
(n = 130)

Colorectal Adenoma
(n = 120)

Control Group
(n = 160)

Healthy dietary pattern a

Median −0.21 0.02 0.22
Range −2.37 to 1.93 −2.09 to 1.93 −1.62 to 1.93

High-fat dietary pattern a

Median −0.2 −0.01 −0.04
Range −1.77 to 3.02 −1.77 to 2.89 −1.42 to 2.89

Age, years
Mean (SD) 60.54 (9.84) 59.06 (10.11) 57.98 (8.82)
Range 40 to 88 40 to 84 40 to 79

Sex, No. (%)
Female 65 (50.0) 49 (40.8) 80 (50.0)
Male 65 (50.0) 71 (59.2) 80 (50.0)

Education degree, No. (%)
Illiteracy 15 (12.0) 5 (4.2) 6 (4.0)
Primary 20 (15.0) 22 (18.3) 23 (14.0)
Middle 79 (61.0) 65 (54.2) 101 (63.0)
High 16 (12.0) 28 (23.3) 30 (19.0)

Physical activity, No. (%)
Sedentary 22 (16.9) 30 (25.0) 29 (18.0)
Mild 53 (40.8) 55 (46.0) 75 (47.0)
Moderate 31 (23.8) 25 (21.0) 41 (26.0)
Severe 24 (18.5) 10 (8.0) 15 (9.0)

Smoking, No. (%)
No 91 (70.0) 75 (62.5) 126 (79.0)
Yes 39 (30.0) 45 (37.5) 34 (21.0)
Mean (SD), pack-years 8.38 (15.05) 9.08 (15.34) 5.86 (14.37)
Range, pack-years 0 to 60 0 to 100 0 to 70

Drinking, No. (%)
No 98 (75.0) 87 (72.5) 133 (83.0)
Yes 32 (25.0) 33 (27.5) 27 (17.0)

Body mass index b, kg/m2

Mean (SD) 23.59 (3.09) 24.03 (3.33) 23.87 (3.28)
Range 17.02 to 33.33 15.43 to 32.24 16.53 to 35.16

Abbreviations: SD, standard deviation. a A healthy dietary pattern is characterized by a high intake of vegetables,
fruits, milk, and yogurt, and a low intake of high-fat food products. Conversely, a high-fat dietary pattern is
characterized by a high intake of pickled, fried, and red meat products, and a low intake of healthy foods. The
median and range of factor scores are displayed in the table. b Body mass index: weight (kg)/height (m)2.

We applied DMM to analyze 250 colorectal neoplasm cases and identified three unique
microbial community profiles (enterotypes or subtypes), designated as type I, type II, and
type III (Figure S1). Figure S2 shows that each enterotype has distinct microbial compo-
sitions, with type I dominated by Bacteroides, Lachnoclostridium, and Escherichia shigella;
type II dominated by Bacteroides, Faecalibacterium, and Phascolarctobacterium; and type III
characterized by Prevotella 9, Bacteroides, and Faecalibacterium.

We further examined the relationship between dietary patterns and colorectal neo-
plasm risk, stratified by gut microbiota enterotypes. Our results revealed that higher
adherence to a healthy dietary pattern was associated with a reduced risk of type I CRC
(adjusted OR = 0.66, 95% CI = 0.48–0.89, p = 0.006) and type II CRC (adjusted OR = 0.42,
95% CI = 0.29–0.62, p < 0.001), compared to lower adherence (Table 2). Participants in
the highest tertile of healthy dietary scores showed a trend of negative associations with
type I CRC (adjusted OR = 0.52, 95% CI = 0.25–1.11; p = 0.054 for trend) and a strong
negative association with type II CRC (adjusted OR = 0.19, 95% CI = 0.07–0.48; p < 0.001
for trend) (Table 3). Although we observed a trend of negative associations between a
healthy dietary pattern and the risk of type I CRA and type II CRA, this trend did not
reach statistical significance. We found no association between a healthy dietary pattern
and the risk of type III colorectal neoplasm, nor did we detect any association between
a high-fat dietary pattern and the risk of colorectal neoplasm subtypes (Tables 2 and 3).
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The association between a healthy dietary pattern and colorectal neoplasm risk differed
significantly by gut microbiota enterotypes (type I or type II vs. type III: p < 0.05 for
heterogeneity; type I vs. type II: p > 0.05 for heterogeneity).

Table 2. Dietary patterns and risk of colorectal neoplasms, overall and subclassified by gut microbiota
enterotypes a.

Group Healthy Pattern p b pheterogeneity
c High-Fat Pattern p b pheterogeneity

c

Control (N = 160)
Median (Range) 0.22 (−1.62 to 1.93) −0.04 (−1.42 to 2.89)

All colorectal cancer (N = 130)
Median (Range) −0.21 (−2.37 to 1.93) <0.001 −0.20 (−1.77 to 3.02) 0.997
Multivariable-adjusted OR (95% CI) d 0.62 (0.48 to 0.81) 0.001 1.06 (0.83 to 1.35) 0.631

Type I colorectal cancer (N = 68) 0.345 0.601
Median (Range) −0.18 (−1.83 to 1.93) 0.007 (type I vs. II) −0.20 (−1.77 to 3.02) 0.868 (type I vs. II)
Multivariable-adjusted OR (95% CI) d 0.66 (0.48 to 0.89) 0.006 1.04 (0.77 to 1.40) 0.801

Type II colorectal cancer (N = 48) 0.026 0.132
Median (Range) −0.82 (−2.37 to 1.72) <0.001 (type II vs. III) −0.23 (−1.53 to 2.64) 0.581 (type II vs. III)
Multivariable-adjusted OR (95% CI) d 0.42 (0.29 to 0.62) <0.001 0.94 (0.67 to 1.32) 0.940

Type III colorectal cancer (N = 14) 0.037 0.225
Median (Range) 0.02 (−1.40 to 1.93) 0.592 (type I vs. III) −0.08 (−0.81 to 2.65) 0.128 (type I vs. III)
Multivariable-adjusted OR (95% CI) d 0.94 (0.52 to 1.69) 0.828 1.44 (0.88 to 2.37) 0.149

All colorectal adenoma (N = 120)
Median (Range) 0.02 (−2.09 to 1.93) 0.099 −0.01 (−1.77 to 2.89) 0.668
Multivariable-adjusted OR (95% CI) d 0.83 (0.65 to 1.07) 0.146 1.01 (0.79 to 1.29) 0.957

Type I colorectal adenoma (N = 50) 0.860 0.830
Median (Range) −0.11 (−1.85 to 1.93) 0.042 (type I vs. II) −0.11 (−1.77 to 2.89) 0.839 (type I vs. II)
Multivariable-adjusted OR (95% CI) d 0.72 (0.51 to 1.01) 0.059 0.99 (0.72 to 1.35) 0.930

Type II colorectal adenoma (N = 52) 0.010 0.623
Median (Range) 0.00 (−2.09 to 1.72) 0.082 (type II vs. III) −0.01 (−1.77 to 2.73) 0.869 (type II vs. III)
Multivariable-adjusted OR (95% CI) d 0.70 (0.49 to 1.00) 0.050 1.00 (0.71 to 1.41) 0.988

Type III colorectal adenoma (N = 18) 0.007 0.740
Median (Range) 0.93 (−0.86 to 1.93) 0.118 (type I vs. III) −0.01 (−0.56 to 1.62) 0.147 (type I vs. III)
Multivariable-adjusted OR (95% CI) d 1.47 (0.84 to 2.56) 0.178 1.23 (0.74 to 2.04) 0.436

Abbreviations: CI, confidence interval; OR, odds ratio. a The colorectal cancer and colorectal adenoma groups
were divided into three enterotypes (or subtypes), labeled as type I, type II, and type III, based on their gut
microbiota profiles, using the Dirichlet multinomial mixture model. b The p values represent the comparison
between the case group (colorectal cancer or adenoma, including their subtypes) and the control group, either
in the univariate or multivariate analysis. c The pheterogeneity value represents a test for heterogeneity to assess
whether there is a significant difference in the association between dietary patterns and the risk of different
subtypes of colorectal tumors. d The multivariable odds ratio (OR) was adjusted for potential risk factors with
p-values less than 0.1 in the univariate analysis.

To investigate the potential role of specific food items in explaining the differential
associations between a healthy dietary pattern and the risk of colorectal neoplasm, both
overall and subclassified by gut microbiota enterotypes, we analyzed the top four con-
tributing food items to the healthy dietary pattern: vegetables, fruits, milk, and yogurt
(Table S5). Our findings revealed that only fruit exhibited a similar pattern to the healthy
dietary pattern, with a significant reduction in the risk of both overall colorectal neoplasm
and its subtypes.

Furthermore, we investigated the relationship between the healthy dietary pattern
and the risk of colorectal neoplasms, classified by lesion site, both overall and by subtype
(Table S6). Our analysis revealed that a higher score for the healthy dietary pattern was
associated with a lower overall risk of colorectal neoplasms in both the proximal and distal
colon and rectum. In the distal colon and rectum, participants in the highest tertile of the
healthy dietary pattern score had significantly negative associations with type I and type II
colorectal neoplasms compared to those in the lowest tertile (all p < 0.05 for trend). The
association between the healthy dietary pattern score and colorectal neoplasm risk varied
significantly by gut microbiota enterotypes (type I or type II vs. type III: all p = 0.002 for
heterogeneity; type I vs. type II: p = 0.826 for heterogeneity). However, no significant
heterogeneity was observed between the subgroups in the proximal colon.
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Table 3. Dietary patterns and risk of colorectal neoplasms, overall and subclassified by gut microbiota enterotypes a.

Group
Healthy Pattern

p b pheterogeneity
c

High-Fat Pattern
p b pheterogeneity

c

Quartile 1 Quartile 2 Quartile 3 Quartile 1 Quartile 2 Quartile 3

Control (N = 160)

No. (%) 56 (35.0) 52 (32.5) 52 (32.5) 59 (36.9) 51 (31.9) 50 (31.2)

All colorectal cancer (N = 130)

No. (%) 80 (61.5) 24 (18.5) 26 (20.0) <0.001 53 (40.8) 36 (27.7) 41 (31.5) 0.704

Multivariable-adjusted OR (95% CI) d 1 (Referent) 0.36
(0.19 to 0.66)

0.38
(0.2 to 0.71) 0.001 1 (Referent) 0.80

(0.45 to 1.44)
0.99

(0.55 to 1.76) 0.925

Type I colorectal cancer (N = 68) 0.644 0.636

No. (%) 39 (57.4) 12 (17.6) 17 (25.0) 0.006 (type I vs. II) 31 (45.6) 15 (22.1) 22 (32.3) 0.283 (type I vs. II)

Multivariable-adjusted OR (95% CI) d 1 (Referent) 0.40
(0.18 to 0.86)

0.52
(0.25 to 1.11) 0.054 1 (Referent) 0.62

(0.30 to 1.31)
0.97

(0.48 to 1.95) 0.824

Type II colorectal cancer (N = 48) 0.046 0.139

No. (%) 35 (72.9) 7 (14.6) 6 (12.5) <0.001 (type II vs. III) 20 (41.7) 15 (31.2) 13 (27.1) 0.803 (type II vs. III)

Multivariable-adjusted OR (95% CI) d 1 (Referent) 0.21
(0.09 to 0.52)

0.19
(0.07 to 0.48) <0.001 1 (Referent) 0.84

(0.39 to 1.83)
0.69

(0.31 to 1.55) 0.369

Type III colorectal cancer (N = 14) 0.049 0.219

No. (%) 6 (42.9) 5 (35.7) 3 (21.4) 0.683 (type I vs. III) 2 (14.3) 6 (42.9) 6 (42.9) 0.236 (type I vs. III)

Multivariable-adjusted OR (95% CI) d 1 (Referent) 0.8
(0.22 to 2.85)

0.51
(0.12 to 2.19) 0.722 1 (Referent) 3.22

(0.61 to 16.91)
3.26

(0.62 to 17.18) 0.179

All colorectal adenoma (N = 120)

No. (%) 59 (49.2) 26 (21.7) 35 (29.2) 0.039 45 (37.5) 36 (30.0) 39 (32.5) 0.942

Multivariable-adjusted OR (95% CI) d 1 (Referent) 0.48
(0.27 to 0.88)

0.67
(0.38 to 1.18) 0.120 1 (Referent) 0.90

(0.50 to 1.60)
0.97

(0.54 to 1.73) 0.901

Type I colorectal adenoma (N = 50) 0.643 0.927

No. (%) 27 (54.0) 12 (24.0) 11 (22.0) 0.056 (type I vs. II) 21 (42.0) 12 (24.0) 17 (34.0) 0.565 (type I vs. II)

Multivariable-adjusted OR (95% CI) d 1 (Referent) 0.48
(0.22 to 1.06)

0.44
(0.20 to 0.99) 0.033 1 (Referent) 0.62

(0.27 to 1.39)
0.88

(0.42 to 1.88) 0.710

Type II colorectal adenoma (N = 52) 0.030 0.438
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Table 3. Cont.

Group
Healthy Pattern

p b pheterogeneity
c

High-Fat Pattern
p b pheterogeneity

c

Quartile 1 Quartile 2 Quartile 3 Quartile 1 Quartile 2 Quartile 3

No. (%) 26 (50.0) 12 (23.1) 14 (26.9) 0.147 (type II vs. III) 22 (42.3) 13 (25.0) 17 (32.7) 0.624 (type II vs. III)

Multivariable-adjusted OR (95% CI) d 1 (Referent) 0.46
(0.20 to 1.05)

0.50
(0.23 to 1.09) 0.068 1 (Referent) 0.58

(0.26 to 1.31)
0.94

(0.44 to 1.99) 0.804

Type III colorectal adenoma (N = 18) 0.013 0.477

No. (%) 6 (33.3) 2 (11.1) 10 (55.6) 0.085 (type I vs. III) 2 (11.1) 11 (61.1) 5 (27.8) 0.028 (type I vs. III)

Multivariable-adjusted OR (95% CI) d 1 (Referent) 0.30
(0.06 to 1.62)

1.63
(0.53 to 4.98) 0.295 1 (Referent) 6.38

(1.33 to 30.7)
2.67

(0.49 to 14.55) 0.346

Abbreviations: CI, confidence interval; OR, odds ratio. a The colorectal cancer and colorectal adenoma groups were divided into three enterotypes (or subtypes), labeled as type I, type II,
and type III, based on their gut microbiota profiles, using the Dirichlet multinomial mixture model. b The p values represent the comparison between the case group (colorectal cancer or
adenoma, including their subtypes) and the control group, either in the univariate or multivariate analysis. In the multivariate analysis, p values were determined by the linear trend test,
which utilized multivariable logistic regression. c The pheterogeneity value represents a test for heterogeneity to assess whether there is a significant difference in the association between
dietary patterns and the risk of different subtypes of colorectal tumors. d The multivariable odds ratio (OR) was adjusted for potential risk factors with p-values less than 0.1 in the
univariate analysis.
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In both CRC and CRA groups, the median values of Chao, ACE, Shannon, and Simp-
son indices demonstrated subtype-dependent trends, with significant differences observed
among subtypes (Kruskal-Wallis tests, all p < 0.001). Post-hoc Dunn’s test identified both
significant and non-significant pairwise comparisons within groups (Table S7). In the
PCoA plots (Figure S3), distinct microbial community profiles were evident in colorectal
neoplasm, CRC, and CRA samples. Type I and type III groups showed minimal overlap,
indicating unique microbial community structures, whereas type II overlapped with both
type I and type III, suggesting a more heterogeneous microbial composition. PERMANOVA
analysis further supported these findings (R2 = 0.08–0.12, all p = 0.001). The results highlight
the diverse microbial environments in colorectal tumors and may help to understand the
heterogeneity in associations between the healthy dietary pattern and tumor subtypes.
Further investigation will focus on comparing the microbial compositions and functions
between type I and type III.

In our study, we utilized the LEfSe analysis method to investigate the gut microbiota
composition and identify differentially abundant taxa between type I and type III sub-
types in both CRC and CRA groups (Figure 1). The results showed 44 bacterial genera
with significant differences in abundance when comparing type I and type III subtypes
across both groups (Table S8). Taxa that were more abundant in both type I CRC and
type I CRA included multiple taxa from the Proteobacteria phylum, Gammaproteobacteria
class, Enterobacteriales order, Enterobacteriaceae family, and Escherichia shigella genus. Addi-
tionally, taxa from the Bifidobacteriales order, Bifidobacteriaceae family, and Bifidobacterium
genus exhibited higher abundance in type I subtypes. Other genera, such as Bacteroides,
Flavonifractor, Tyzzerella 4, and Lachnoclostridium, were also more abundant in type I sub-
types. In contrast, taxa more prevalent in type III colorectal neoplasms subtypes belonged
to the Bacteroidetes phylum and Bacteroidia class. These included genera such as Prevotella 9,
Alistipes, Alloprevotella, Prevotella 2, and Odoribacter.
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Figure 1. Gut microbiota composition comparison between type I and type III subtypes in CRC and
CRA groups using LEfSe analysis. (A) LEfSe analysis of gut microbiota differences in the CRC group.
Left panel: LDA score plot, with red bars representing type I taxa and green bars representing type
III taxa. Right panel: cladogram displaying the phylogenetic distribution of differentially abundant
taxa in the CRC group. (B) Cladogram illustrating the phylogenetic distribution of differentially
abundant taxa between type I and type III subtypes in the CRA group, as analyzed by the LEfSe
method. CRA, colorectal adenoma; CRC, colorectal cancer; LDA, linear discriminant analysis; LEfSe,
linear discriminant analysis effect size.

Metabolomic profiling using PCoA revealed significant differences in overall metabo-
lite profiles between type I and type III subtypes in both CRC and CRA groups (Figure S4).
Subsequently, we employed the LEfSe method to identify differential metabolites between
the subtypes (Figure 2, Tables S9 and S10), which revealed 50 metabolites with significant
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differences in both comparisons (Table S11). The type I subtypes in both groups were
characterized by elevated levels of L-valine, chenodeoxycholic acid sulfate, cholic acid,
allocholic acid, ursodeoxycholic acid 3-sulfate, and N,N,N-trimethyl-L-alanyl-L-proline
betaine, while the type III subtypes in both groups showed increased levels of stercobilin,
stercobilinogen, PA(18:1–2OH/8:0), and deoxycholic acid.
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Figure 2. Differential metabolites between type I and type III subtypes in CRC and CRA groups
identified by LEfSe analysis, with a logarithmic LDA score > 3. (A) LDA score plot for the CRC group
comparison. (B) LDA score plot for the CRA group comparison. Red bars on the left represent type I,
while green bars on the right indicate type III. Longer bars signify a greater degree of difference
between the subtypes for each metabolite. CRA, colorectal adenoma; CRC, colorectal cancer; LDA,
linear discriminant analysis; LEfSe, linear discriminant analysis effect size.

We conducted a pathway analysis on 96 differentially expressed metabolites between
type I and type III CRC groups (Figure S5A, Table S12). The results showed that the fatty
acid degradation, tryptophan metabolism, and primary bile acid biosynthesis pathways
were significantly enriched in type I CRC (all FDR adjusted p < 0.05), with their corre-
sponding matched differential metabolites being L-palmitoylcarnitine, tryptamine, and
cholic acid. The purine metabolism pathway was significantly enriched in type III CRC
(FDR adjusted p < 0.05), with its corresponding matched differential metabolites being
adenosine, hypoxanthine, and inosine. Additionally, thiamine metabolism, sphingolipid
metabolism, and nicotinate and nicotinamide metabolism pathways were significantly
enriched in type III CRC (all FDR adjusted p < 0.05), with their corresponding matched
differential metabolites being thiamine, sphinganine, and nicotinic acid. Furthermore,
the differential metabolites that matched with the pathways in sphingolipid metabolism,
tryptophan metabolism, purine metabolism, and glycerophospholipid metabolism had a
significant contribution to these pathways with impact values greater than zero.

We performed a pathway analysis on 111 differentially expressed metabolites between
type I and type III CRA groups (Figure S5B, Table S13). The results showed that the path-
ways of tryptophan metabolism, tyrosine metabolism, fatty acid degradation, one-carbon
pool by folate, primary bile acid biosynthesis, and glycerophospholipid metabolism were
significantly enriched in type I CRA (all FDR adjusted p < 0.05), with their correspond-
ing matched differential metabolites being tryptamine, tyramine, L-palmitoylcarnitine,
5-methyltetrahydrofolic acid, cholic acid, and LysoPC(16:0/0:0). The pathway of aminoacyl-
tRNA biosynthesis was also significantly enriched in type I CRA (FDR adjusted p < 0.05),
with its corresponding matched differential metabolites being L-phenylalanine and L-valine.
The pathways of valine, leucine, and isoleucine degradation; valine, leucine, and isoleucine
biosynthesis; and pantothenate and CoA biosynthesis were also significantly enriched
in type I CRA (all FDR adjusted p < 0.05), with their corresponding matched differential
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metabolites being L-valine. Additionally, the pathways of alpha-linolenic acid metabolism
and biosynthesis of unsaturated fatty acids were significantly enriched in type I CRA (all
FDR adjusted p < 0.05), with their corresponding matched differential metabolites being
linolenic acid. The pathway of purine metabolism was significantly enriched in type III
CRA (FDR adjusted p < 0.05), with its corresponding matched differential metabolites
being xanthosine and inosine. Furthermore, the pathways of folate biosynthesis, nicotinate
and nicotinamide metabolism and pyrimidine metabolism were significantly enriched
in type III CRA (all FDR adjusted p < 0.05), with their corresponding matched differ-
ential metabolites being 7,8-dihydropteroic acid, nicotinic acid and uridine. Moreover,
the differential metabolites that matched with the pathways of phenylalanine, tyrosine,
and tryptophan biosynthesis; phenylalanine metabolism; alpha-linolenic acid metabolism;
nicotinate and nicotinamide metabolism; sphingolipid metabolism; tryptophan metabolism;
tyrosine metabolism; glycerophospholipid metabolism; pyrimidine metabolism; and purine
metabolism demonstrated a significant contribution to these pathways, with impact values
greater than zero.

Table S14 shows that in the type I CRC subgroup, Bacillus had significant negative
correlations with allolithocholic acid, DG(22:6–2OH/0:0/20:0), dodecanedioic acid, glutaric
acid, inosine, lithocholic acid, methylglutaric acid, and PA(20:4-OH/i-22:0); Family XIII
AD3011 group had significant negative correlations with N,N,N-trimethyl-L-alanyl-L-proline
betaine and N1-acetylspermidine; Lachnospiraceae.incertae sedis had a significant negative
correlation with deoxycholylproline; and Odoribacter had a significant negative correlation
with PA(20:5–3OH/10:0) (all FDR adjusted p < 0.05). Actinomyces had a significant positive
correlation with L-valine; Alistipes had a significant positive correlation with methylglutaric
acid; Bacteroides had a significant positive correlation with tryptamine; and Eggerthella had
a significant positive correlation with asparaginyl-valine (all FDR adjusted p < 0.05). In
the type III CRC subgroup, only Christensenellaceae R7 group had a significant negative
correlation with ursodeoxycholic acid 3-sulfate (FDR adjusted p = 0.039). No significant
correlations were observed between differential metabolites and differential bacterial genera
in either subgroup of the CRA group.

4. Discussion

In this study, we identified two distinct dietary patterns and three gut microbiota
enterotypes among Han Chinese individuals with colorectal neoplasms or controls. We
found that a healthy dietary pattern, characterized by high consumption of vegetables,
fruits, milk, and yogurt, was associated with a reduced risk of CRC, especially in individuals
with type I and type II gut microbiota enterotypes, which were dominated by Bacteroides
and Lachnoclostridium or Bacteroides and Faecalibacterium, respectively. Fruit consumption
was the main contributor to this protective effect. We did not find any associations between
a healthy dietary pattern and the risk of CRA or between a high-fat dietary pattern and
the risk of colorectal neoplasms. These findings partially supported our hypothesis that
different dietary patterns could differentially affect the risk of developing colorectal tumors
in individuals with various gut microbiota enterotypes.

We first discussed how dietary patterns influence the risk of colorectal neoplasms.
We found that a healthy dietary pattern was inversely associated with CRC risk. This is
consistent with previous studies that have reported protective effects of a prudent diet [3],
a Mediterranean diet [4], or an Asian diet [5] on CRC risk. These diets share some common
features with our healthy dietary pattern, such as high intake of plant-based foods and low
intake of red meat and processed meat. The beneficial effects of these foods on CRC risk
may be attributed to their high content of antioxidants, phytochemicals, fiber, calcium, and
probiotics, which can modulate oxidative stress, inflammation, DNA damage, apoptosis,
and immune response in the colon [25]. Similar dietary patterns have also been described
by other authors in other studies [9,26], indicating that they may have universal effects
on colorectal neoplasm development. On the other hand, we did not find any association
between a high-fat dietary pattern, marked by high consumption of pickled, fried, and
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red meat products, and low intake of healthy foods, and CRC risk. This is somewhat
surprising given that several studies have linked a Western diet, characterized by high
intake of red meat, processed meat, refined grains, and sugar-sweetened beverages, to
increased CRC risk [2,25]. The discrepancy may be due to the differences in the definition
and measurement of dietary patterns, as well as the potential confounding or modifying
effects of other lifestyle factors. Moreover, we did not find any associations between dietary
patterns and CRA risk. This may suggest that dietary factors have a stronger impact on the
progression than the initiation of colorectal tumors [27,28]. Alternatively, this may reflect
the limited statistical power to detect small effects due to the relatively small sample size
and low exposure contrast in our study.

We then explored whether gut microbiota mediates or modifies the relationship be-
tween dietary patterns and colorectal neoplasm risk. Gut microbiota, a complex ecosys-
tem of microorganisms in the human gastrointestinal tract, affects various aspects of
human health and disease [29]. Gut microbiota influences CRC pathogenesis through
host metabolism, immunity, inflammation, and genotoxicity [30]. CRC patients have a
shifted gut microbiota compared to healthy controls [7], with different enterotypes based
on predominant bacterial genera [11]. These enterotypes reflect varied metabolic capacities
and responses to diet [8]. We hypothesized that dietary patterns affect colorectal tumor
risk differently in individuals with various enterotypes. We tested this hypothesis by
categorizing 250 cases into three enterotypes (subtypes) based on OTU abundance profiles
using DMM. We found that a higher adherence to a healthy dietary pattern reduced the risk
of type I CRC (dominated by Bacteroides and Lachnoclostridium) and type II CRC (dominated
by Bacteroides and Faecalibacterium), but not type III CRC (characterized by Prevotella 9). This
suggests that enterotypes modify the diet-CRC risk association. A possible explanation
is that enterotypes metabolize dietary components differently into compounds that affect
CRC development. For example, Bacteroides, Lachnoclostridium and Faecalibacterium produce
SCFAs from fiber fermentation [31,32], which have anti-inflammatory and anti-tumorigenic
effects in the colon [33,34]. Prevotella 9 produces trimethylamine (TMA) from choline and
carnitine [35,36], which converts to trimethylamine N-oxide (TMAO) in the liver and pro-
motes inflammation and oxidative stress in the colon [37]. Therefore, a healthy dietary
pattern benefits CRC risk more in individuals with type I and type II enterotypes than in
those with type III enterotype. We also observed that a healthy dietary pattern lowered the
risk of colorectal neoplasms in the distal colon and rectum, but not in the proximal colon.
This may be due to higher exposure of the distal colon and rectum to diet and microbial
metabolites than the proximal colon [38]. Moreover, different molecular pathways and
genetic alterations may be involved in the development of colorectal tumors in different
locations [39]. In addition to these general mechanisms, we also explored how specific food
items within a healthy dietary pattern, such as fruit, may influence CRC risk by modulating
gut microbiota.

Among the food items within a healthy dietary pattern, we found that fruit consump-
tion was the main factor that lowered CRC risk in individuals with type I and type II gut
microbiota enterotypes. This may be explained by several mechanisms. First, fruit is rich
in antioxidants, such as vitamin C and polyphenols, which can scavenge reactive oxygen
species and reduce oxidative stress in the gut [40]. Second, fruit has anti-inflammatory
properties that can modulate immune responses and cytokine production in the gut [41].
Third, fruit can serve as a prebiotic substrate for beneficial bacteria, such as Bacteroides and
Faecalibacterium, which can produce SCFAs and other metabolites with anticancer effects [42].

To further elucidate the mechanisms underlying the differential associations of a
healthy dietary pattern with CRC risk by gut microbiota enterotypes, we compared the
diversity, composition, and function of gut microbiota between different tumor subtypes.
We found that type I and type III CRC subtypes had distinct microbial community pro-
files, with significant differences in alpha-diversity and beta-diversity. Alpha-diversity
denotes the richness and evenness of microbial species within a sample, whereas beta-
diversity reflects the similarity or dissimilarity of microbial communities across samples.



Nutrients 2023, 15, 2940 14 of 18

Lower alpha-diversity and higher beta-diversity indicate a dysbiosis between beneficial and
harmful bacteria that may increase CRC risk by disrupting the balance of host-microbe inter-
actions [43]. We also identified 44 bacterial genera that differed significantly in abundance
between type I and type III CRC subtypes. Some of these genera have been previously
reported to be associated with CRC risk, such as Escherichia shigella [44], Bifidobacterium [45],
Bacteroides [46], Prevotella 9 [47], Alistipes [48], and Odoribacter [49]. These bacteria may
affect CRC development by producing or modulating various metabolites with pro- or
anti-carcinogenic effects, such as SCFAs, TMA/TMAO, bile acids, secondary bile acids,
polyamines, nitrosamines, and hydrogen sulfide [50].

To investigate the functional differences of gut microbiota between type I and type
III CRC subtypes, we performed metabolomic profiling using UHPLC-QTOFMS. We
identified 50 metabolites that differed significantly in abundance between these subtypes.
These metabolites were involved in several metabolic pathways that have been implicated
in CRC pathogenesis, such as fatty acid degradation [34], tryptophan metabolism [51],
primary bile acid biosynthesis [52], purine metabolism [53], thiamine metabolism [54],
sphingolipid metabolism [55], and nicotinate and nicotinamide metabolism [56]. We also
assessed the correlations between differential metabolites and differential bacterial genera
in these subtypes. We found several significant correlations that may reflect the interactions
among diet, gut microbiota, and host metabolism. For example, we found a positive
correlation between Bacteroides and tryptamine, a metabolite derived from tryptophan that
can induce apoptosis and inhibit proliferation of CRC cells [57]. We also found a negative
correlation between Bacillus and allolithocholic acid, a secondary bile acid that can promote
inflammation and DNA damage in the colon [58]. These correlations suggest that some
bacteria may modulate the production or degradation of certain metabolites that influence
CRC risk.

Our study has several strengths. First, we used ESEM to identify dietary patterns based
on eight food items that are commonly consumed in China. ESEM is a novel technique
that allows for cross-loadings between factors and indicators, providing a more realistic
representation of dietary patterns than traditional methods such as PCA or FA [19]. Second,
we used DMM to classify colorectal neoplasm cases into gut microbiota enterotypes based
on their OTU abundance profiles. DMM is a probabilistic method for community typing
of microbial data that can infer the optimal number of community types [20]. Third, we
used UHPLC-QTOFMS to perform metabolomic profiling of fecal samples from colorectal
neoplasm cases. UHPLC-QTOFMS is a powerful technique that can detect a wide range of
metabolites with high sensitivity and accuracy.

However, our study also has some limitations. First, we did not perform sample
size calculation prior to the study, nor did we calculate the Beta error for each analysis
after the study. This was mainly due to the complexity and novelty of our study design
and methods, which involved multiple comparisons, data-driven approaches, and high-
throughput techniques. Moreover, there were no prior data available in the literature on
the relationship between dietary patterns, gut microbiota, and colorectal neoplasms that
we could use as references for sample size calculation. The sample size of our study was
comparable to or larger than most of the published studies on gut microbiota and colorectal
neoplasms before 2015, which rarely exceeded 100 cases. However, we acknowledge
that our sample size may not be sufficient to detect small or moderate effects, especially
for some subgroups or subtypes with low prevalence. Therefore, our results should be
interpreted with caution and validated in larger and more diverse cohorts. Future studies
may also consider using simulation methods or Bayesian approaches to estimate sample
size or statistical power for complex and exploratory studies similar to ours. Second,
we only assessed eight food items in our food frequency questionnaire, which may not
capture the full range of dietary intake and diversity. This may limit the accuracy and
generalizability of our results. Therefore, our results should be interpreted with caution and
validated by future studies with more comprehensive dietary assessments. Moreover, we
did not collect information on the types and quantities of fruit consumed by participants,



Nutrients 2023, 15, 2940 15 of 18

which may affect their impact on gut microbiota and CRC risk. Future studies should also
investigate how different types and amounts of fruit may modulate gut microbiota and
CRC risk in relation to individual and environmental factors. Third, our study population
was limited to Han Chinese and may not be representative of other populations with
different genetic and environmental backgrounds. Previous studies have shown that
gut microbiota composition and function can vary across different ethnic groups and
geographic regions [59,60]. Therefore, our findings may not be generalizable to other
populations and should be confirmed by future studies with more diverse samples. Fourth,
our gut microbiota analysis was based on 16S rDNA sequencing, which only provides
information on bacterial taxa but not on their functions or interactions. Metabolomics
analysis can partially reflect the functional potential of gut microbiota, but it may also be
influenced by other factors such as host metabolism and environmental exposure. Fifth,
our study was cross-sectional in nature, which precludes any causal inference between
dietary patterns, gut microbiota enterotypes, and colorectal neoplasm risk. Longitudinal
studies are needed to establish the temporal sequence and direction of these associations.

5. Conclusions

In conclusion, our study suggests that a healthy dietary pattern, rich in fruits, vegeta-
bles, milk, and yogurt, is associated with a decreased risk of CRC, particularly in individuals
with type I and type II gut microbiota enterotypes. These enterotypes are characterized
by distinct microbial compositions and functions that may modulate the effects of diet on
CRC development. Fruit consumption was the main contributor to this protective effect.
Our findings provide novel insights into the relationship between dietary patterns, gut
microbiota, and colorectal neoplasm risk, and may have implications for future prevention
strategies. However, further studies with larger sample sizes, more comprehensive dietary
assessments, more advanced gut microbiota and metabolomic analyses, and longitudinal
designs are needed to confirm and extend our results.
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