Skip to main content
. 2023 Jun 27;23(13):5960. doi: 10.3390/s23135960

Table 1.

Feature-based approaches for abnormality detection in EGG using TUAB dataset.

Studies Year Input Architecture ACC (%)
Lopez et al. [37] * 2017 band power-based features using Cepstral coefficients CNN + Multilayer Perception (MLP) 78.8
Alhussien et al. [27] * 2019 FFT band-limited signals AlexNet + MLP 89.13
Gemein et al. [12] 2020 DWT + CWT + DFT + Statistical features RG 85.90
Cisotto et al. [40] 2020 Statistical features + spectral power in specific frequency bands LSTM+attention 79.18
Sharma et al. [41] 2020 Wavelet-based statistical features SVM 79.34
Albaqami et al. [21] 2021 WPD + Statistical features CatBoost 87.68
Singh et al. [17] 2021 Spectrogram image based on STFT VGG-19 + RF 88.04
Bajpai et al. [14] 2021 Spectrogram image based on STFT SeizNet + SVM 96.56
Mohsenvand et al. [42] 2021 EEG contrastive learning Simple Contrastive Learning of Visual Representations(SimCLR) 87.45
Wu et al. [16] 2022 Statistical features from DWT coefficients CatBoost 89.13
Wu et al. [23] 2022 Statistical features from WPD coefficient Catboost 89.76
Tasci et al. [25] 2023 Multilevel Discrete Wavelet Transform (MDWT) + Statistical features KNN 87.78
Zhong et al. [38] 2023 Statistical features from WPD coefficients CatBoost 89.13
Kohad et al. [15] 2022 EMD and EWT based features Linear SVM 88.48

* Used extra training data not included in TUAB.