Table 2.
End-to-end machine learning approaches for abnormality detection in EGG using TUAB dataset.
Studies | Year | Input | Architecture | ACC (%) |
---|---|---|---|---|
Schirrmeister et al. [13] | 2017 | Raw EEG data | Deep CNN | 85.42 |
Roy et al. [44] | 2018 | Raw EEG data | 1D-CNN–RNN | 82.27 |
Amin et al. [45] * | 2019 | Raw EEG data | AlexNet + SVM | 87.32 |
Roy et al. [11] | 2019 | Raw EEG data | 1D-CNN–GRU ChronoNet | 86.57 |
Yildirim et al. [43] | 2020 | Raw EEG data | 1D-CNN | 79.34 |
Gemein et al. [12] | 2021 | Raw EEG data | TCN Model | 86.16 |
Khan et al. [46] | 2023 | Raw EEG data | Hybrid Model (LSTM and CNN) | 85.00 |
Kiessner et al. [47] * | 2023 | Raw EEG data | Deep CNN [13] | 86.59 |
* Used extra training data not included in TUAB.