Skip to main content
. 2023 Jun 28;23(13):6006. doi: 10.3390/s23136006
Algorithm 1 The federated AMBR method. The K clients are indexed by k, rounds are indexed by r, n is the number of samples, {Di} represents the individual dataset owned by each client, E is the number of local epoch, B is the local batch size and w is the model parameters

Server executes: initialize w0

for each round r=1,2, do

    K ← (random subset of M clients)

    for each client kK in parallel do

        wr+1k← ClientUpdate (k,wr)

    end for

    wr+1k=1Knknwt+1k

end for

 

ClientUpdate(k,w)://Run on client k

Get parameters w from FL server

for each local epoch i from 1 to E do

    for batch bB do

        Extract audio embeddings ea and visual embeddings ev from local dataset {Dk}

        Fuse the ea, ev through the fusion network

        Fine-tune and update w with loss function

    end for

end for

return w to Server