Skip to main content
. 2023 Jun 26;23(13):5922. doi: 10.3390/s23135922
Algorithm 1 Algorithm training of DG-GAN model.
  • θC,θG,θD1f,θD2f,θD1i,θD2i Initialize the network parameters

  • Repeat

  • Real defect-free image sample fPrf

  • Real defect image sample iPri

  • Obtain generated defect-free image f^ where f^=Ci

  • Update discriminator D1f’s parameters to maxmize:

  •      θD1fEfPrflogD1ff+EiPrilog1D1ff^

  • Update discriminator D2f’s parameters to maxmize:

  •      θD2fEiPrilogD2ff^+EfPrflog1D2ff

  • Update generator F’s parameters to minimize:

  •      θFEiPrilogD1ff^+EiPrilog1D2fCi+Gf^i

  • Obtain generated defect image i^ where i^=Gf

  • Update discriminator D1i’s parameters to maxmize:

  •      θD1iEiPrilogD1ii+EfPrflog1D1ii^

  • Update discriminator D2i’s parameters to maxmize:

  •      θD2iEfPrflogD2ii^+EiPrilog1D2ii

  • Update generator G’s parameters to minimize:

  •      θGEfPrflogD1ii^+EfPrflog1D2iGi+Ci^f

  • Until convergence

  • Real defect-free image sample fPrf

  • Obtain generated defect image i^ where i^=Gf

  • Return i^