Table 2.
Architecture of our proposed ANN model and parameter information used in each layer.
| Type of Layer | Output Shape | Number of Parameters |
|---|---|---|
| Input_1 (InputLayer) | [(None, 1024)] | 0 |
| dense (dense) | (None, 256) | 262,400 |
| dense_1 (Dense) | (None, 128) | 32,896 |
| flatten (Flatten) | (None, 128) | 0 |
| dense_2 (Dense) | (None, 10) | 1290 |
| Total: | 296,586 | |
| Trainable: | 296,586 | |
| Non-trainable: | 0 |