Skip to main content
. 2023 Jul 7;23(13):6227. doi: 10.3390/s23136227

Table 3.

Architecture of our CNN model and parameter details for each layer utilized in our proposed method.

Type of Layer Output Shape Number of Parameters
Input_1 (InputLayer) [(None, 1024)] 0
tf.reshape (TFOpLambda) (None, 1024, 1) 0
conv1d (Conv1D) (None, 1022, 256) 1024
conv1d_1 (Conv1D) (None, 1020, 128) 98,432
flatten (Flatten) (None, 130,560) 0
dense_2 (Dense) (None, 10) 1,305,610
Total: 1,405,066
Trainable: 1,405,066
Non-trainable: 0