Table 3.
Architecture of our CNN model and parameter details for each layer utilized in our proposed method.
| Type of Layer | Output Shape | Number of Parameters |
|---|---|---|
| Input_1 (InputLayer) | [(None, 1024)] | 0 |
| tf.reshape (TFOpLambda) | (None, 1024, 1) | 0 |
| conv1d (Conv1D) | (None, 1022, 256) | 1024 |
| conv1d_1 (Conv1D) | (None, 1020, 128) | 98,432 |
| flatten (Flatten) | (None, 130,560) | 0 |
| dense_2 (Dense) | (None, 10) | 1,305,610 |
| Total: | 1,405,066 | |
| Trainable: | 1,405,066 | |
| Non-trainable: | 0 |