Table 2. Comparison of detection performance of YOLOv4-GNet and other models.
| Model | F1-score | Precision (%) | Sensitivity (%) | Specificity (%) |
|---|---|---|---|---|
| R-CNN | 0.39 | 56.25 | 30.25 | 33.63 |
| SPP-Net | 0.26 | 68.95 | 16.03 | 20.75 |
| Fast R-CNN | 0.45 | 58.31 | 36.83 | 39.98 |
| Faster R-CNN | 0.56 | 70.00 | 47.06 | 46.88 |
| FPN | 0.57 | 83.00 | 43.70 | 46.87 |
| Yolov4-GNet | 0.87 | 86.34 | 86.69 | 90.63 |
R-CNN, region-convolutional neural network; SPP, spatial pyramid pooling; CNN, convolutional neural network; FPN, feature pyramid networks.