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ABSTRACT 

Biophysical cues of the cellular microenvironment tremendously influence cell behavior by 
mechanotransduction. However, it is sti l l unclear how cells sense and transduce the mechanical signals from 

3D geometry to regulate cell function. Here, the mechanotransduction of human mesenchymal stem cells 
(MSCs) triggered by 3D micropatterns and its effect on the paracrine of MSCs are systematically 
investigated. Our findings show that 3D micropattern force could influence the spatial reorganization of the 
cytoskeleton, leading to different local forces which mediate nucleus alteration such as orientation, 
morphology, expression of Lamin A/C and chromatin condensation. Specifically, in the triangular prism 

and cuboid micropatterns, the ordered F-actin fibers are distributed over and fully transmit compressive 
forces to the nucleus, which results in nuclear flattening and stretching of nuclear pores, thus enhancing the 
nuclear import of YES-associated protein (YAP). Furthermore, the activation of YAP significantly enhances 
the paracrine of MSCs and upregulates the secretion of angiogenic growth factors. In contrast, the fewer 
compressive forces on the nucleus in cylinder and cube micropatterns cause less YAP entering the nucleus. 
The skin repair experiment provides the first in vivo evidence that enhanced MSCs paracrine by 3D 

geometry significantly promotes tissue regeneration. The current study contributes to understanding the 
in-depth mechanisms of mechanical signals affecting cell function and provides inspiration for innovative 
design of biomaterials. 

Keywords: bioactive materials, tissue regeneration, 3D micropattern force, paracrine, 
mechanotransduction 
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cells, specifically the nucleus, affect the nucleocyto- 
plasmic localization of specific transcriptional regu- 
lators involved in different signalling pathways, such 
as MRTF-A, β-catenin or YAP, which further regu- 
late gene expression to control cellular phenotypes 
[ 7–9 ]. For example, the mechanical properties of the 
cellular microenvironment reveal the fundamental 
effects on human mesenchymal stem cells (MSCs) 
function and tissue regeneration [ 10 , 11 ]. 

Among these mechanical cues, the micropatterns 
with various geometries have shown to significantly 
tune cell behaviors [ 12 ]. 2D micropatterned sub- 
strates have been used to investigate the correlation 
between cell shape and cel l viabi lity. Reduced 
micropattern area has been shown to result in 

©The Author(s) 2023. Published
Commons Attribution License ( h
work is properly cited. 
NTRODUCTION 

ells have the ability to sense and respond to
iophysical properties of the extracellular matrix
ECM), such as matrix elasticity, rigidity and topog-
aphy [ 1–3 ]. These biophysical cues mediate cell
ehav iors v ia mechanotransduction, a process that
ntegrates and converts biophysical cues in the mi-
roenvironment to intracellular biochemical signals
 4 ]. In general, these mechanical stimuli alter the
ormation of focal adhesions (FAs) and alignment
f the cytoskeleton, initiating the signaling cascades
hat activate transcription factors [ 5 ]. In addition,
row ing ev idence shows that the cell nucleus is di-
ectly or indirectly submitted to a force that can act

s a mechanosensor [ 6 ]. The forces transmitted to 
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ecreased cell proliferation and increased cell death
 13 , 14 ]. Studies have verified that the geometries
an affect the organization of stress fibers and FAs
n 2D substrates [ 15 ]. Furthermore, the aggregation
f tensional stress in the corner areas of rectangular
slands can improve lamellipodia contractility [ 16 ].
n addition, the stem cells on adhesive islands of
ultifarious geometries but with invariable area
ave the diverse potential of cell differentiation [ 17 ].
extral geometry enhanced osteogenic differenti-
tion of MSCs compared with sinistral geometry
 18 ]. Current studies have demonstrated that rather
han stem cell differentiation, the paracrine function
f MSCs plays a vital role in their therapeutic bene-
ts for tissue regeneration, however, the knowledge
f how geometry affects MSCs paracrine is sti l l
acking [ 19–21 ]. 
Despite extensive studies on 2D substrate ge-

metry to direct cell behavior, they do not fully
ecapitulate the critical characteristics of the native
D cell niche. Stem cells reside in a complex 3D
icroenvironment in vivo , where the multidimen-
ional stimuli integrate to control a series of cell fates
nvolving cell survival, self-renewal, differentiation
nd paracrine [ 22 , 23 ]. It is instructive to under-
tand how mechanosensing of stem cells works in
he 3D niche, as it would lead to a much better
nderstanding of how cells develop and enhance
heir distinctive function, and thus provide the
uidance for the material design to remodel tissue
egeneration. Recent studies have investigated the
xtent to which the confinement of 3D microniches
mpact actin polymerization, cel l viabi lity and dif-
erentiation [ 24 , 25 ]. However, it remains unknown
ow stem cells sense mechanical signals from 3D
eometry and subsequently transmit them to the
ucleus to regulate cell paracrine function. 
In this work, we constructed well-defined 3D
icropattern arrays with different curvature shapes
cylinder, triangular prism) and diverse aspect ra-
ios (cubic, cuboid) to reveal the mechanotransduc-
ion of MSCs triggered by 3D geometry and its ef-
ect on the paracrine of MSCs. The 3D micropat-
erns enable control of the individual cell adhesion
nd spread to the constrained geometry shape. The
ffect of 3D micropatterns on the spatial reorganiza-
ion of FAs, orientation and tension of stress fibers,
nd their mechanical connection to the nucleus have
een systematically explored. Our findings showed
hat the triangular prism and cuboid micropatterns
nfluenced the orientation of F-actin and stretch of
uclear pores, further enhancing the nuclear import
f YAP, which significantly enhanced the angiogenic
aracrine responses of MSCs, resulting in enhanced
ascularization and wound restoration in a rat model.
Page 2 of 14 
RESULTS AND DISCUSSION 

Fabrication of 3D micropattern arrays 
and single MSCs occupancy 
in the microwells 
We manufactured gelatin hydrogel 3D microwell ar- 
rays that contained the controlled geometry and 
volume through lithography techniques and micro- 
fabrication (Fig. 1 a). To explore the influence of 
3D geometry on MSCs function, we generated 3D 

micropattern arrays with different curvature shapes 
(cylinder and triangular prism) and aspect ratios 
(cubic and cuboid), with the same project area 
of 1256 μm 

2 and height of 40 μm (see Sup- 
plementary Fig. S1 in the online supplementary 
file). 

After the preparation of 3D microwell arrays, 
MSCs were sedimented into the microwells by seed- 
ing a suspension of cells on the top of the pat-
terned hydrogel surface. Once the MSCs deposited 
into the microwells, the excess cells were removed 
from the platform surface by washing with culture 
medium. The MSCs numbers were counted by nu- 
cleus staining to determine the individual cell oc- 
cupancy efficiency of 3D microwells. The staining 
results proved that the modified 3D micropatterns 
possessed excellent individual MSC occupancy ef- 
ficiency (Fig. 1 b and c). The quantitative results 
showed that over 75% of microwells were occupied 
by a single cell (Fig. 1 d). The MSCs spreading pro-
cess in the microwells was recorded during 24 h cul- 
turing (Supplementary Fig. S2). The cell obtained 
a spread shape after 5 h, and remained stable dur- 
ing the subsequent imaging experiment. Figure 1 c 
and e showed that single cells spread well in the mi-
crowells and grew into the shape of the micropat- 
terned geometry by up to 90%. The 3D reconstruc- 
tion images further showed that the cytoskeleton of 
the single cell was completely confined by 3D mi- 
cropatterns (Fig. 1 f). To clearly visualize 3D mi- 
cropatterned MSCs, the confocal images from differ- 
ent z-stacks were acquired and then merged into an 
overlaid image. As shown in Fig. 1 g, F-actin formed 
arches above the nucleus at the two ends along 
the principal axis of the cells. The overlaid image 
also demonstrated that the micropatterns fabricated 
with our method could well confine the cytoskeleton 
(Fig. 1 g). Taken together, we have manufactured dif- 
ferent 3D micropattern arrays with high individual 
MSC occupancy efficiency (over 75%) and favorable 
cell shape confinement capability, which provide 
support for subsequent studies on the mechanism 

of mechanical signaling transduction induced by 3D 

geometry. 
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Figure 1. Fabrication of 3D micropattern arrays and single MSCs occupancy in the microwells. (a) Schematic illustration of the process for fabricating 
hydrogel 3D micropattern arrays. (b) Fluorescence images showed nuclear staining of the single cell encapsulated in 3D micropatterns with different 
geometries but the same volume (cylinder, triangular prism, cubic, and cuboid). Scale bar, 50 μm. (c) Confocal images showed that MSCs morphology 
was well controlled by the 3D micropattern. The F-actin and nucleus were labeled with phalloidin (green) and DAPI (blue), respectively. Scale bar, 50 μm. 
(d) Quantitative results of MSCs encapsulation efficiency in the 3D micropattern with different geometries. (e) Quantitative results of cells filling in 3D 
microwells with different geometries; the regions for quantitative analysis were selected randomly, n ≥ 4. (f) Three-dimensional reconstruction of 
F-actin and nucleus in different 3D micropatterns, green: F-actin, blue: nucleus. Scale bar, 50 μm. (g) The overlaid confocal image showed that F-actin 
was well arranged in cuboid micropatterns. Overlaid image was generated by merging multi–z-stack images into a single stack. Scale bar, 20 μm. 
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D micropatterns affect single-cell 
ontractility by inducing spatial 
eorganization of focal adhesions 
nd cytoskeleton 

he mechanical characteristics of the extracellular
atrix (ECM) can be perceived through focal adhe-
Page 3 of 14 
sions (FAs), which transform the physical cues into 
intracellular biochemical signals that further regulate 
downstream signaling pathways [ 26 ]. Thus, FAs play 
an important role in mediating the attachment and 
anchorage of cells to the ECM. Studies have shown 
that the size of FAs could directly reflect the ten-
sion level of cells [ 27 ]. When the FAs are large, the



Natl Sci Rev , 2023, Vol. 10, nwad165 

a  

m  

F  

3  

(  

b  

w  

F  

t  

t  

i  

a  

m  

p  

q  

F  

c  

(  

g  

fl  

c  

t  

h
 

a  

s  

m  

r  

p  

w  

m  

a  

o  

a  

c  

h  

a  

c  

t  

t  

t  

s  

w  

c  

i  

s  

c  

T  

t  

F  

S  

s  

a  

α

 

c  

 

nchorage is firm, and the cell is in a state of strong
echanical tension. Therefore, we focused on the
As spatial assembly after MSCs being confined in
D micropatterns with different curvature shapes
cylinder and triangular prism) and aspect ratios (cu-
ic and cuboid). A s shown in Fig. 2 a, FA s of MSCs
ere observed in all 3D micropatterns, while larger
As were expressed in the curvature regions of the
riangular prism compared with the cylinder and at
he long axis edge of the cuboid compared with cube,
ndicating firm anchorage of MSCs in both the tri-
ngular prism and cuboid patterns. As shown in the
erged fluorescence images, large FAs mainly ap-
eared at the ends of F-actin stress filaments. The
uantification of FAs displayed that the total area of
As was significantly higher in triangular prism and
uboid groups compared to the other two groups
Fig. 2 b). Our findings showed that the spatial or-
anization and extent of FAs were significantly in-
uenced by 3D micropattern parameters including
urvature shape and aspect ratio. Specifical ly, cel lular
ension would increase with sharper curvature and
igher aspect ratio of the pattern. 
It has been reported that FA s and c ytoskeleton

re involved in regulating the cellular mechanical re-
ponse to ECM signals [ 28 ]. In addition, the acto-
yosin cytoskeleton has been shown to play critical
oles in mechanosensing and mechanotransduction
rocesses [ 29 ]. The F-actin and myosin of MSCs
ere fluorescence stained to examine the effect of 3D
icropatterns on cytoskeleton organization (Fig. 2 c
nd g). F-actin staining showed different stress fiber
rganization, with more stress fibers observed in tri-
ngular prism and cuboid patterned cells. Quantifi-
ation of F-actin fluorescence revealed significantly
igher levels of F-actin in cells with triangular prism
nd cuboid geometry compared to cells in cylindri-
al and cubical micropatterns (Fig. 2 d). Similarly,
he thickness of F-actin stress fibers increased with
he increase of cells geometry curvature or aspect ra-
io (Fig. 2 e and f, and Supplementary Fig. S3). This
uggested that the cytoskeleton was strengthened
hen MSCs were confined in the triangular prism or
uboid micropattern. The thickness of stress fibers
s positively correlated with F-actin tension, because
tress fibers are composed of F-actin bundles that are
ross-linked by various actin-binding proteins [ 30 ].
he amount and activity of these cross-linking pro-
eins can be regulated by the mechanical tension of
-actin, resulting in changes in stress fiber thickness.
tudies have shown that increased mechanical ten-
ion on F-actin leads to enhanced recruitment and
ctivity of stress fiber cross-linking proteins, such as
-actinin and filamin [ 31 ]. 
Moreover, MSCs with the triangular prism and

uboid geometry demonstrated 140% and 145%
Page 4 of 14 
higher intensity signals for myosin compared with 
MSCs cultured in cylindrical and cubical microwells, 
respectively (Fig. 2 h). It implied that the expressed 
level of myosin was also dependent on cellular cur- 
vature shape or aspect ratio. The bound myosin has 
been reported to generate traction force along the 
F-actin stress filaments, and thereby affecting cell 
mechanics [ 24 ]. Consequently, we confirmed that 
the 3D micropatterned MSCs with increased curva- 
ture shape or aspect ratio underwent an enhanced 
force-dependent mechanism through FAs and spa- 
tial reorganization of the actomyosin cytoskeleton. 

3D micropatterns regulate nuclear shape 

remodeling and nuclear mechanics 
The cell nucleus where transcription takes place is 
another important part of mechanotransduction that 
affects the cellular mechanical properties and bioac- 
tivities [ 7 ]. Following adhesion, the cytoskeleton 
reassembles to transmit signals from the ECM to 
the nucleus, triggering multifarious cellular events 
[ 32 , 33 ]. While the nuclear morphology in 3D mi-
cropatterned MSCs and its correlation with F-actin 
filaments are still a mystery, we therefore focused on 
the response of nucleus morphology and mechanics 
to 3D micropatterns. 

Figure 3 a and c showed the spatial distribution 
of nucleus position in MSCs with different geome- 
tries. Note that the nucleus was located further from 

the pattern boundary in cylinder than that in trian- 
gular prism microwell, while the nucleus site was 
closer to the long axis of cuboid pattern with higher 
aspect ratio compared with cube pattern. The F- 
actin arrangement of MSCs in 3D micropatterns was 
further assessed quantitatively according to a previ- 
ous report [ 34 ]. The F-actin orientation order pa- 

rameter = 

√ 

(sin2 θi ) 
2 + ( cos 2 θi ) 

2 increases from 

0 for randomly oriented features up to 1 for perfectly 
aligned features. The statistical results suggested that 
the F-actin arrangement tended to be more aligned 
as MSCs curvature angles or aspect ratios increased 
(Fig. 3 b). The nuclei shape factor was calculated 
based on the projection of nuclear morphology on 
the XY-plane (Fig. 3 d). It revealed that the nucleus in 
triangular prism and cuboid micropatterns exhibited 
an elongated shape compared with those in cylin- 
der and cubic groups, respectively (Fig. 3 d). It could 
be concluded from Fig. 3 b and d that the shape 
of the nucleus became more elongated when the 
F-actin orientation order increased. Next we studied 
the correlation between 3D geometry and nuclear 
orientation. Nuclear orientation of MSCs in cylin- 
drical micropatterns showed a random assignment 
spanning 360°. However triangular prism-patterned 
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Figure 2. Spatial reorganization of focal adhesions and cytoskeletal in response to cell shape changes in 3D micropatterns. (a) Representative con- 
focal images of vinculin (red) identifying focal adhesions, F-actin (green) and nucleus (blue) for the single cell in 3D micropatterns. Scale bar, 50 μm. 
(b) Quantification of the total focal adhesions area of cells confined in 3D micropatterns. (c) Fluorescence images of F-actin filament staining for MSCs 
cultured in 3D micropatterns. Scale bar, 50 μm. (d) Quantification of fluorescence intensity of F-actin in different 3D micropatterns. (e and f) F-actin 
fibers thickness in 3D micropatterns evaluated by fluorescence intensity. (g) Representative fluorescence images of myosin staining of MSCs cultured 
in 3D micropatterns. Scale bar, 50 μm. (h) Quantification of myosin intensity of MSCs cultured in 3D micropatterns. The data are represented as the 
mean ± SD, n = 30–40 cells per condition, ** p < 0.01, *** p < 0.001. 
Page 5 of 14 
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Figure 3. 3D geometric constraints regulate cellular F-actin orientation, nuclear morphology and mechanics. (a) F-actin immunofluorescence intensity 
heat maps of MSCs cultured in 3D micropatterns. N was the number of cells used for heatmap generation. Scale bar, 50 μm. (b) F-actin orientation 
order parameter in 3D micropatterned cells. (c) Nucleus location heat maps of cells cultured in 3D micropatterns. (d) Quantification of nuclear shape 
factor estimated from projected nuclear morphology. (e) Angular graphs, superimposed on micropattern drawings in reseda, showed the different 
orientations of nuclei in response to different 3D micropatterns. Here, N was the number of cells used for nucleus orientation analysis. (f and g) Chromatin 
condensation was visualized by generating a heatmap of the DAPI intensity. Quantitation of nucleus average spatial density (overall fluorescence 
intensity per nuclear volume) for 3D micropatterned cells. Scale bar, 20 μm. (h and i) Representative confocal images of nucleus Lamin A/C and 
quantitation of nucleus Lamin A/C intensity level of MSCs cultured in 3D micropatterns. Scale bar, 20 μm. The data were represented as the mean ± SD, 
n = 30–40 cells per condition, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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SCs had a preferential nucleus orientation toward
hree boundary sides (Fig. 3 e). As micropatterns
spect ratio increased, the F-actin orientation or-
er parameter increased, and nuclei became a well-
riented state aligned with the long axis of cuboid
icropatterns (Fig. 3 e). 
Nuclear mechanics regulated by substrate stiff-

ess is associated with chromatin remodeling, which
mpacts a sequence of essential cellular processes,
uch as mRNA transcription, secretome, repair and
o on [ 6 , 35 ]. We investigated chromatin conden-
ation by creating heatmaps based on DAPI stain-
ng (Fig. 3 f). Indeed, the uptake of DAPI depends
n the entire amount of DNA and its level of con-
ensation. The higher average nuclear spatial den-
ity in triangular prism and cuboid patterned MSCs
Page 6 of 14 
showed a higher gene clustering level compared with 
those in cylinder and cube groups (Fig. 3 f and g).
This indicated that chromatin remodeling in MSCs 
was regulated by cell mechanics that triggered by 
3D micropatterns. As an intermediate filament pro- 
tein, Lamin A/C exists in almost al l cel ls and plays
an important role in nucleus-cytoskeleton junction- 
dependent mechanotransduction [ 36 ]. Therefore, 
the Lamin A/C is usually regarded as a sensor for 
nuclear mechanics [ 37 ]. We then investigated the 
mechanical reply of the nucleus to 3D micropat- 
terned physical signals with fluorescence images of 
Lamin A/C (Fig. 3 h). The MSCs in triangular prism 

and cuboid patterns showed higher expression of 
Lamin A/C and a grooved surface of nuclear mem- 
brane. Quantitative results of Lamin A/C intensity 
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isplayed 1.4 times higher Lamin A/C expression
evels in MSCs with triangular prism geometry com-
ared to those w ith c ylinder geometry. The Lamin
/C intensity was 1.6 times higher in MSCs with
uboid geometry compared to those with cube ge-
metry (Fig. 3 i). These results indicated that greater
ntracellular tensions were imposed on the nucleus
f MSCs in triangular prism and cuboid patterns. It
as reported that increased Lamin A/C levels were
ound in stiff tissues and in cells cultured on stiff arti-
cial substrates [ 38 ]. Therefore, our findings showed
hat 3D geometry was a further parameter that could
egulate the orientation order of stress fiber, nucleus
emodeling and associated changes in Lamin A/C
xpression. 

uclear deformations reduce the 

echanical restriction of nuclear pores 
n YAP translocation 

es-associated protein (YAP) is a mechanosensitive
ranscriptional regulator that plays a critical role in
egeneration, development, differentiation and or-
an size control [ 39 ]. YAP has been reported to be
 master regulator of mechanotransduction, and its
unctions rely on the translocation from cytoplasm
o nucleus [ 8 , 40 ]. Therefore, the nuclear transloca-
ion of YAP in MSCs cultured in 3D micropatterns
as investigated to determine the behavior of YAP
n response to different geometries. The level of YAP
uclear accumulation was noticeably higher in trian-
ular prism and cuboid patterned MSCs compared
o that in cylindrical and cubical patterns, which was
onsistent with the stress fiber results above (Fig. 4 a
nd b). How mechanical signals induced by 3D mi-
ropatterns regulate translocation of YAP into nu-
leus remains unknown. 
Further, the mechanism by which 3D
icropattern-induced mechanical signals regu-

ate YAP translocation into nucleus was investigated.
D reconstruction results showed that F-actin fibers
ere distributed throughout the whole nucleus in
riangular prism and cuboid patterned MSCs while
ew F-actin fibers were observed overlapping with
he nucleus in cylindrical and cubic patterned MSCs
Fig. 4 e). Intensity plot and quantification results
f F-actin fibers over nucleus further proved this
endency (Fig. 4 f and g) This discrepancy may
e due to 3D geometrical constraints inducing
lterations of F-actin level, F-actin orientation, nu-
lear orientation and nuclear location. In triangular
rism and cuboid micropatterns, the stress fibers
verlapping the nucleus exert a strong force on the
ucleus, leading to nuclear flattening (Fig. 4 e and
Page 7 of 14 
h). The small white triangles in Fig. 4 e indicate the
indentations caused by strong pressure of F-actin on 
the nuclear envelope, resulting in changes in nuclear 
morphology. In addition, there was no significant 
difference in nuclear volume among the different 
3D micropatterns (Supplementary Fig. S4). There- 
fore, it is reasonable to assume that the nucleus 
was under vertical pressure from the stress fibers 
above. All the results implied that the nucleus of 
MSCs with triangular prism and cuboid geome- 
try acted under stronger force exerted by F-actin 
fibers compared with those in cylindrical and cubic 
patterns. 

Nuclear pore complexes regulate nucleo- 
cytoplasmic transport, controlling the nuclear 
concentration of several transcription factors [ 41 ]. 
Because the nuclear pore lumen is composed of a 
flexible, disorganized protein meshwork contain- 
ing phenylalanine-glycine repeats which impairs 
free diffusion and exerts mechanical resistance, 
the nuclear flattening may increase nuclear pore 
permeability [ 42 ]. Thus, nuclear pores in micropat- 
terned MSCs were investigated with transmission 
electron microscopy (TEM). The size of nucleus 
pores was considerably larger in triangular prism 

and cuboid patterned MSCs than that in cylindrical 
and cubic micropatterns (Fig. 4 c and d). To further
prove that the increased nuclear pore size was due 
to F-actin contractility on the nucleus, MSCs in 
triangular prism and cuboid micropatterns were 
treated with cytochalasin D, an F-actin stress fiber 
polymerization inhibitor. It was found that after the 
treatment, the size of nuclear pores in MSCs was 
significantly reduced (Fig. 4 i and Supplementary 
Fig. S6), and YAP nuclear localization was decreased 
(Fig. 4 j). These results suggested that the pressing 
force onto the nucleus from the F-actin was suffi- 
cient to increase the nuclear entry of YAP by nuclear
pore stretching. The mechanical mechanism of YAP 

nuclear translocation in triangular prism and cuboid 
micropatterns was the pressing force of F-actin on 
the nucleus decreasing the mechanical restriction of 
nuclear pores to molecular transport, thus enhanc- 
ing the nuclear import of YAP. Our findings revealed 
a mechanosensing mechanism ultimately mediated 
by nuclear pores, demonstrated for YAP but with 
potential general applicability in nucleocytoplasmic 
shuttling of other proteins. This may contribute, for 
instance, to the localization of other mechanosen- 
sitive transcriptional proteins such as MRTF-A or 
β-catenin [ 43 , 44 ]. This mechanism may be central
to influence long-term gene expression in response 
to mechanical cues, placing force transmission to 
the nucleus as a fundamental factor. 



Natl Sci Rev , 2023, Vol. 10, nwad165 

f

YAP/
Nuclei

YAP

500 nm

Nuclear
pore

* **

0

2

4

6

8

YA
P 

nu
cle

ar
/cy

to 
ra

tio

** **

20
40
60
80

100
120
140

Nu
cle

ar
 po

re
 si

ze
 (n

m)

Nuclei / F-actin
3D reconstruction

3D cross-section
Side (XZ-plane)Side (XY-plane) 10 μm

8 μm
6 μm
4 μm
2 μm
0 μm

Nuclei / F-actin
3D reconstruction

3D cross-section
Side (XZ-plane)Side (XY-plane)

Nuclei / F-actin
3D reconstruction

3D cross-section
Side (XZ-plane)Side (XY-plane)

Nuclei / F-actin
3D reconstruction

3D cross-section
Side (XZ-plane)Side (XY-plane)10 μm

8 μm
6 μm
4 μm
2 μm
0 μm

10 μm
8 μm
6 μm
4 μm
2 μm
0 μm

10 μm
8 μm
6 μm
4 μm
2 μm
0 μm

a

b

c

d

e

Nuclei
F-actin

0
50

100
150
200
250
300

10 15 20 25 30 (μm)

Int
en

sit
y (

a.u
.)

0
50

100
150
200
250
300

15 20 25 30 35 (μm)

Int
en

sit
y (

a.u
.)

Nuclei
F-actin

0
50

100
150
200
250
300

5 10 15 20 25 (μm)

Int
en

sit
y (

a.u
.)

Nuclei
F-actin

0
50

100
150
200
250
300

30 35 40 45 50 (μm)

Int
en

sit
y (

a.u
.)

Nuclei
F-actin

ig h jF-actin over nucleus

** **

Nu
cle

ar
 th

ick
ne

ss
 (μ

m) ** **

Nu
cle

ar
 po

re
 si

ze
 (n

m)

+Cyto D +Cyto D

*** ***

YA
P 

nu
cle

ar
/cy

to 
ra

tio

+Cyto D

**
**

+Cyto D

0

40

80

120

160

200

0

3

6

9

12

15

20
40
60
80

100

140
120

0

2

4

8

6

F-
ac

tin
 in

ten
sit

y (
a.u

.)

Figure 4. Nuclear deformations decrease the mechanical restriction of nuclear pores on YAP translocation. (a) Confocal microscopy images of YAP 
(red) in MSCs cultured in 3D micropatterns. Scale bar, 50 μm. (b) Quantification of nuclear/cytosolic YAP ratios in MSCs cultured in 3D micropatterns; 
n = 30–40 cells per condition. (c) TEM images of nucleus pores in MSCs cultured in 3D micropatterns. The small red triangle indicates the position 
of the nuclear pore. (d) Quantification of nuclear pore size in MSCs cultured in 3D micropatterns; n ≥ 40 nuclear pores from ≥ 15 cells per condition. 
(e) Representative cell and nuclear morphology in 3D micropatterns were captured by 3D reconstruction of fluorescence confocal images along the 
z-axis. Note that side views of pseudocolored 3D z-depth rendered nuclei display the thickness of nucleus. Scale bars, 20 μm. (f) The intensity plot 
of F-actin fibers and the nucleus of the micropatterned cells 3D cross-section. (g) Quantification of F-actin intensity that overlaps with nucleus in a 3D 
microniche with various geometries. Individual points and means are shown; n = 30–40 cells per condition. (h) Quantification of nucleus thickness in 
a 3D microniche with various geometries; n = 30–40 cells per condition. (i) Effects of F-actin inhibitor on nuclear pore size in micropatterned MSCs; 
n ≥ 40 nuclear pores from ≥ 15 cells per condition. (j) Effects of F-actin inhibitor on nuclear/cytosolic YAP ratios in micropatterned MSCs; n = 30–40 
cells per condition. The data are represented as the mean ± SD, * p < 0.05, ** p < 0.01, *** p < 0.001. 
Page 8 of 14 



Natl Sci Rev , 2023, Vol. 10, nwad165 

3
r
a
m
T  

f  

i  

M  

n  

o  

s  

[  

t  

e  

f  

e  

s  

s  

a  

t  

t  

t  

t  

s  

s  

p  

a  

g  

i  

r  

g  

p  

s  

o  

s  

t  

p  

t  

i  

i  

a  

g  

a  

h  

t  

p
 

o  

f  

w  

p  

l  

s  

(  

f  

 

 

 

 

D micropattern mechanical force 

egulates the paracrine function of MSCs 
nd the underlying molecular 
echanisms 
he cellular function can be impacted by signals
rom the surrounding microenvironment [ 45 ]. For
nstance, numerous studies have demonstrated that
SC differentiation and tissue regeneration are sig-
ificantly influenced by the mechanical properties
f the cellular microenvironment, such as matrix
tiffness, topographic features and surface curvature
 46 , 47 ]. Although geometry has been demonstrated
o regulate MSCs differentiation, few studies have
xamined how geometry affects MSCs paracrine
unction, which plays a pivotal role in tissue regen-
ration [ 48 ]. Through the paracrine pathway, MSCs
ecrete all kinds of trophic factors that actively re-
pond to exterior environmental cues and medi-
te the immunomodulation, angiogenesis as well as
issue regeneration processes [ 49 , 50 ]. In this sec-
ion, gene chip analysis was performed to explore
he effects of 3D geometry on the paracrine func-
ion of MSCs. A differential gene expression analy-
is showed that different 3D geometry confinement
trongly regulated numerous genes of MSCs (Sup-
lementary Fig. S6). Gene ontology enrichment
nalysis revealed the differentially enriched gene
roups, including angiogenesis, growth factor activ-
ty, vascular endothelial growth factor production,
egulation of secretion and wound healing in trian-
ular prism patterned MSCs compared to cylindrical
atterned MSCs (Fig. 5 a). Similar results were also
hown in cuboid and cube groups (Fig. 5 b). More-
ver, the gene enriched in regulation of focal adhe-
ion assembly, cytoskeleton organization, response
o mechanical stimulus and regulation of protein im-
ort into nucleus further proved our above results
hat 3D micropatterns could exert various mechan-
cal signals on MSCs and induce different cell behav-
ors (Fig. 5 a and b). Detailed gene expression about
ngiogenesis and cell growth were further investi-
ated by gene heat map analysis (Fig. 5 c). Many pro-
ngiogenic and pro-regenerative genes were more
ighly expressed in triangular prism and cuboid pat-
erned MSCs compared with cylindrical and cubic
atterned MSCs, respectively (Fig. 5 c). 
Then, the mRNA and protein expression level

f several typical pro-angiogenic and pro-growth
actors in MSCs cultured in 3D micropatterns
ere examined by real-time reverse transcription-
olymerase chain reaction (RT-PCR) and enzyme-
inked immunosorbent assay (ELISA) analysis, re-
pectively. The vascular endothelial growth factor
VEGF), fibroblast growth factor (FGF) and trans-
orming growth factor (TGF) play important roles in
Page 9 of 14 
regulating intracellular signal transduction and pro- 
moting cell proliferation, migration, differentiation 
and angiogenesis [ 19 , 21 ]. The gene expression of
these growth factors was prominently increased in 
MSCs in triangular prism and cuboid micropatterns 
(Supplementary Fig. S8). Further, the protein secre- 
tion quantified by ELISA presented similar results to 
gene expression, which implied the triangular prism 

and cuboid micropatterns owned a better inducing 
effect on MSCs to secrete pro-regenerative cytokines 
(Fig. 5 d). 

Angiogenesis is considered a vital step for 
tissue regeneration, and there is a close cross- 
communication between HUVECS (Human 
Umbilical Vein Endothelial Cells) and MSCs. Sub- 
sequently, tube formation assay of HUVECs was 
applied to further verify the pro-angiogenesis abil- 
ity of paracrine factors secreted by micropatterned 
MSCs. As shown in Fig. 5 e, the conditioned medium 

(CM) from the triangular prism and cuboid pat- 
terned MSCs had the ability to promote microtube 
formation compared with the other groups, which 
may be due to the angiogenic effect of paracrine 
factors secreted by MSCs and accumulated in the 
media. The quantitative results showed that tube 
numbers were increased by 2.33-fold in triangu- 
lar prism-CM compared to cylinder-CM. It also 
showed a 1.67-fold increase in cuboid-CM group 
compared with cube-CM group. These results 
strongly proved the potent pro-angiogenesis ability 
of paracrine products derived from triangular prism 

and cuboid groups. NIH-3T3 (mouse embryo fi- 
broblasts) are an important cell type in skin tissue 
and play a crucial role in the synthesis of collagen
[ 51 ]. In addition, a favorable migration of fibroblasts
induces a fast re-epithelialization at the wound site, 
which is essential for skin repair [ 52 ]. Therefore,
NIH-3T3 were used for scratch assay in this study, 
which reflected the migration ability of fibroblasts. 
The migration results of NIH-3T3 verified that 
paracrine factors from the triangular prism and 
cuboid-CM groups showed better pro-migration 
ability compared to the cylinder and cube-CM 

groups (Fig. 5 g and h). 
Next, we explored the underlying mechanism by 

which the 3D micropatterns regulated the paracrine 
profiles of MSCs. We focused on the YAP path- 
ways, one of the most prominent pathways for ECM 

cues mechanotransduction. YAP localization was 
strongly dependent on the geometry of 3D mi- 
cropatterns. The triangular prism and cuboid mi- 
cropatterns significantly enhanced the activation of 
YAP compared to the cylindrical and cubical mi- 
cropatterns. To investigate the relationship between 
the mechanotransduction and paracrine function of 
MSCs triggered by 3D micropatterns, the inhibitor 
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Figure 5. 3D micropattern mechanical force regulates MSCs paracrine function by YAP nuclear localization. (a and b) Gene ontology analysis of sig- 
nificantly regulated genome in 3D micropatterned cells. (c) Gene chip heatmaps for the differential genes related to angiogenic factor and growth 
factor in 3D micropatterned cells. (d) ELISA measurement of the paracrine products of pro-angiogenic and pro-regenerative factors secreted by MSCs 
cultured in 3D micropatterns. (e) Tube formation images of HUVECS incubated with paracrine products from different 3D micropatterned MSCs for 
6 h. (f) Quantitative analysis of tube formation assay. (g) Representative images of NIH 3T3 migration to the defined ‘artificial wound’ after treat- 
ment with conditional medium from different 3D micropatterned MSCs for 24 h. (h) Quantification of wound healing percent on NIH 3T3 cells by 
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erteporfin was used to eliminate the function of
AP. The protein secretion levels of paracrine factors
EGF, FGF, TGF were substantially downregulated
hen YAP was inhibited (Fig. 5 i). Combining these
esults, the schematic representation in Fig. 5 j sum-
arizes the mechanical signals transduction mecha-
ism of MSCs triggered by 3D micropatterns and its
ffect on paracrine function of MSCs. 3D micropat-
erns trigger the spatial reorganization of cytoskele-
on, leading to different local forces, which mediate
mportant alterations of the nucleus including orien-
ation, morphology, expression of Lamin A/C and
hromatin condensation. Specifically, in the triangu-
ar prism and cuboid micropatterns, ordered F-actin
bers distribute over the nucleus and fully trans-
it compressive forces to the nucleus and result in
tretching of nuclear pores, thus enhancing the nu-
lear import of YAP. Furthermore, the activation of
AP enhances the angiogenic paracrine responses of
SCs. 

aracrine products of 3D micropatterned 

SCs affect angiogenesis and skin 

ound regeneration in vivo 
 rat full-thickness skin wound model was estab-
ished to further validate the effects of paracrine
roducts secreted from MSCs cultured in different
D micropatterns in wound regeneration. The con-
our of the wound bed from each group was drawn
nd superimposed for all groups, and the wound area
radually decreased as healing progressed (Fig. 6 a).
articularly, the triangular prism and cuboid groups
erformed optimally in the acceleration of wound re-
air over the whole period (Fig. 6 a and b, and Sup-
lementary Fig. S9). This was consistent with the in
itro result that growth factors produced by the tri-
ngular prism or cuboid micropatterned MSCs ac-
elerated the migration of fibroblasts, one of the key
tages in wound healing. For wound healing, revascu-
arization is also a crucial factor [ 11 , 20 ]. The vascu-
ar density was observed and quantified by CD31 (a
arker of newly formed blood vessels) immunoflu-
rescence staining. On day 7, angiogenesis was en-
anced in wounds treated with paracrine factors of
riangular prism or cuboid-CM groups compared to
he other groups, respectively (Fig. 6 c and d), which
s consistent with the in vitro result of tube formation
ssay. 
To evaluate whether the specific shapes of mi-

ropatterned MSCs could promote the regeneration
f skin structures by secreted growth factors, HE
hematoxylin & eosin) staining and CK10 (marker
f keratinocytes) immunofluorescent staining were
erformed. On day 14, a completely regenerated ep-
Page 11 of 14 
ithelium tissue was formed in triangular prism and 
cuboid groups, suggesting that the healing was al- 
most complete (Fig. 6 e). The enlarged part of the
blank group displayed no histological connection 
between the regenerated epithelium and subcuta- 
neous granulation tissue. The epithelium tissue in 
the cylinder and cube groups had not been fully 
regenerated (Fig. 6 e). In 3D micropattern groups, 
the triangular prism and cuboid groups displayed 
stronger green color for CK-10 expression than the 
other groups, indicating a higher degree of kera- 
tinization and structural integrity of regenerated tis- 
sue (Fig. 6 f; see online supplementary material for 
a color version of this figure). The expression of 
CK-10 in the blank group was least showing an un-
accomplished keratinocyte layer structure. Collec- 
tively, histological and immunofluorescent staining 
clearly demonstrated that the paracrine factors of tri- 
angular prism or cuboid patterned MSCs could facil- 
itate wound healing by enhancing re-vascularization 
and re-epithelialization. 

The promotion of skin repair by the paracrine 
products of specific patterned MSCs may be related 
to the increased VEGF, FGF and TGF proved in the
cell experiments, which would facilitate vasculariza- 
tion of the wound and promote regeneration. Based 
on these new insights into how 3D micropatterns- 
mechanical signals influence the paracrine function 
of MSCs, our findings contribute to a better under- 
standing of mechanical regulation mechanisms in 
the interaction of cells with their extracellular envi- 
ronment. 

CONCLUSIONS 

In summary, 3D micropatterns triggered mechanical 
signals transduction and its influence on paracrine 
function of MSCs were investigated. We success- 
fully fabricated 3D micropattern arrays with differ- 
ent curvature shapes (cylinder and triangle prism) 
and aspect ratios (cube and cuboid). We discov- 
ered that the 3D micropatterned cues were sensed 
by FAs and transduced through F-actin stress fibers 
to regulate nuclear tension. 3D micropatterns in- 
duced the orientation of F-actin and affected nu- 
cleus remodeling. Specifically, the ordered F-actin 
fibers were distributed over the whole nucleus in 
triangular prism and cuboid micropatterns, which 
increased tension in the nucleus, stretched nuclear 
pores and enhanced YAP nuclear import. More 
importantly, the activation of YAP in triangular 
prism and cuboid micropatterns significantly en- 
hanced the paracrine function of MSCs, resulting in 
the enhancement of vascularization and wound re- 
modeling in a rat model. The current study indi- 
cates that the topographical characteristics and 3D 
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Figure 6. In vivo performance of the paracrine products of 3D micropatterned MSCs on skin wound regeneration. (a) Traces of wound-bed closure during 
14 days (day 0, 3, 7 and 14) for different groups based on rat full-thickness cutaneous wounds. (b) Wound healing rates for each group on day 3, 7 and 
14. (c and d) Quantification and representative immunofluorescent images of neovascularization for each group on day 7. (e) Skin regeneration in the 
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each group. The data are represented as the mean ± SD, * p < 0.05, ** p < 0.01. 
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icropattern force of biomaterials can be well de-
igned to regulate cell function and promote tis-
ue regeneration by mechanotransduction path-
ays. Such knowledge is anticipated to play a vital
ole in the development of future cell/gene-active
iomaterials. 

ATERIALS AND METHODS 

etailed materials and methods are available in the
upplementary information. 

UPPLEMENTARY DATA 

upplementary data are available at NSR online. 
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