Skip to main content
. 2023 Jun 30;17:1222751. doi: 10.3389/fnins.2023.1222751

Table 2.

Comparison with other methods.

Method MAE RMSE PCC
SVR 6.38 ± 0.72 7.90 ± 0.70 0.39 ± 0.08
GPR 6.55 ± 0.72 8.24 ± 0.80 0.40 ± 0.11
RFR 6.14 ± 0.65 7.59 ± 0.59 0.43 ± 0.11
LR 6.03 ± 0.65 7.46 ± 0.64 0.47 ±0.10
Alexnet 5.98 ± 0.59 7.57 ± 0.72 0.42 ± 0.10
AE 7.65 ± 1.04 10.04 ± 1.07 0.25 ± 0.14
Our proposed model using data before the Combat 6.68 ± 0.52 8.48 ± 0.72 0.35 ± 0.13
Our proposed model using data after the Combat 5.92 ±0.62 7.56 ±0.78 0.44 ± 0.11

SVR, support vector regression; GPR, Gaussian process regression; RFR, random forest regression; LR, least absolute shrinkage and selection operator (LASSO) regression; AE, autoencoder; MAE, mean absolute error; RMSE, root mean square error; PCC, Pearson Correlation Coefficient.