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Abstract

The diagnosis of nephrotic syndrome relies on clinical presentation and descriptive patterns 

of injury on kidney biopsies, but not specific to underlying pathobiology. Consequently, there 

are variable rates of progression and response to therapy within diagnoses. Here, an unbiased 

transcriptomic-driven approach was used to identify molecular pathways which are shared 

by subgroups of patients with either minimal change disease (MCD) or focal segmental 

glomerulosclerosis (FSGS). Kidney tissue transcriptomic profile-based clustering identified 

three patient subgroups with shared molecular signatures across independent, North American, 

European, and African cohorts. One subgroup had significantly greater disease progression 

(Hazard Ratio 5.2) which persisted after adjusting for diagnosis and clinical measures (Hazard 

Ratio 3.8). Inclusion in this subgroup was retained even when clustering was limited to those 

with less than 25% interstitial fibrosis. The molecular profile of this subgroup was largely 

consistent with tumor necrosis factor (TNF) pathway activation. Two TNF pathway urine markers 

were identified, tissue inhibitor of metalloproteinases-1 (TIMP-1) and monocyte chemoattractant 

protein-1 (MCP-1), that could be used to predict an individual’s TNF pathway activation score. 

Kidney organoids and single nucleus RNA-sequencing of participant kidney biopsies, validated 

TNF-dependent increases in pathway activation score, transcript and protein levels of TIMP-1 

and MCP-1, in resident kidney cells. Thus, molecular profiling identified a subgroup of patients 

with either MCD or FSGS who shared kidney TNF pathway activation and poor outcomes. A 
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clinical trial testing targeted therapies in patients selected using urinary markers of TNF pathway 

activation is ongoing.
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Introduction

Nephrotic syndrome is characterized by proteinuria, hypoalbuminemia, hyperlipidemia 

and edema. Two nephrotic diseases, minimal change disease (MCD) and focal segmental 

glomerulosclerosis (FSGS), currently diagnosed based on histopathologic features, have 

broadly overlapping clinical presentations and treatment approaches1. Within each 

diagnosis, however, some patients respond well to current therapy, while others either 

do not respond or relapse upon stopping therapy with variable risk of loss of kidney 

function. These clinical observations suggest a heterogenous biology underlying current 

disease classification.2–4 Due to limited understanding of pathobiology, interpretation of the 

clinical outcome variability in observational studies and clinical trials is challenging5, 6, and 

molecularly-driven7, 8, personalized6 treatments for MCD and FSGS are unavailable.

Nevertheless, nephrotic syndrome is well-positioned for implementing precision medicine. 

Clinically procured kidney biopsy tissue allows for unbiased identification of molecular 

signatures that can be linked to histopathology, non-invasive biomarkers and evaluated 

against clinical outcomes. With the goal of identifying molecular pathways which are shared 

by subgroups of MCD and FSGS patients, this study implemented a multi-dimensional 

data integration approach (Figure 1) in the prospective North American Nephrotic 

Syndrome Study Network (NEPTUNE)9, then replicated in the European Renal cDNA 

Bank (ERCB)10, 11 and the Human Heredity and Health in Africa Kidney Disease Research 

Network cohort (H3Africa)12, 13.

The study aims to agnostically identify groups of patients with shared molecular signatures, 

to identify the relevant pathways from that signature that could then be evaluated 

in individual patients using potential non-invasive markers. Such markers of disease 

mechanism may enable targeted therapeutic interventions.

Methods

Study Participants

The study included 220 NEPTUNE9, 35 H3Africa 12, and 30 ERCB10, 11 participants 

with biopsy-proven MCD or FSGS and compartment-enriched genome-wide kidney mRNA 

expression profiles.

NEPTUNE (NCT01209000) is a prospective study of children and adults with proteinuria, 

recruited from 21 sites at the time of their first clinically indicated kidney biopsy9, 14. 

ERCB is a European study of adults recruited at 28 sites, with biopsy tissue for gene 

expression profiling and cross-sectional clinical information, at the time of a clinically 
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indicated kidney biopsy10, 11. H3 Africa12 is a prospective study of participants aged 

15 years and above, eligible for a kidney biopsy, recruited from 13 clinical centers in 

Nigeria and Ghana with estimated glomerular filtration rate (eGFR) ≥15 mL/min/1.73m2 

and proteinuria (albuminuria >500 mg/day) 12.

For all cohorts, informed consent was obtained from individual patients or parents/

guardians, on approval by Institutional Review Boards or local ethics committees of 

participating institutions.

Clinical Data

NEPTUNE participants were followed 2-3 times per year, for up to 5 years. Medical history, 

medication use, laboratory results, blood and urine samples for measurement of serum 

creatinine and urine protein/creatinine ratio (UPCR) were collected at each study visit. 

eGFR (mL/min/1.73m2) was calculated using the CKD-Epi formula for participants ≥18 

years old and the modified CKiD-Schwartz formula for participants <18 years old, with an 

average taken for young adults age 18-26 years 15–17. The endpoint of kidney functional 

loss was defined by 40% reduction in eGFR or onset of ESKD (initiation of dialysis, receipt 

of kidney transplant or eGFR <15 mL/min/1.73m2 measured at two sequential visits)18. 

Complete remission was defined as UPCR <0.3 mg/mg on a single void urine or a 24-hour 

urine collection. In ERCB and H3 Africa, clinical information, including demographics and 

clinical laboratory results, were obtained at time of biopsy.

Kidney Pathology:

Diagnosis in NEPTUNE was assigned by study pathologists based on biopsy reports and/or 

digital images. The degree of interstitial fibrosis (IF) was visually assessed and scoredby 

2-5 pathologists using biopsy whole slide images of trichrome, PAS, or silver-stained 

sections, recorded as the percent of cortex involved, and averaged across the pathologists’ 

measures19, 20.

Transcriptome profiling

In NEPTUNE, RNA-sequencing (RNAseq) was performed on manually micro-dissected 

kidney biopsy tissue that separated tubulointerstitial and glomerular compartments of the 

research core. For H3 Africa, a 5 mm cortical segment (not needed for clinical diagnosis) 

was manually micro-dissected, RNA isolated, and sequenced to generate RNAseq profiles 

(see Supplementary Methods).

In ERCB, compartment specific transcriptomic profiles of the research core were generated 

using the Affymetrix microarray platform (Santa Clara, CA). NEPTUNE RNAseq and 

ERCB microarray data are available at Nephroseq.org and through Gene Expression 

Omnibus21 (GSE219185, GSE197307, GSE104954, GSE104948).

Cluster analysis, differential expression and functional enrichment analysis

R Software (R Core Team (2013), Vienna) was used for Kmeans, PAM and hierarchical 

HCL clustering analyses22, 23. Optimal clustering was determined using delta-K and the 

Consensus Cluster Plus Package22. Linear models for microarray data (limma) package24 
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was used for differential expression analysis. Differentially expressed genes (absolute 

fold change >1.5 and q-value<0.05) between clusters were analyzed for enrichment of 

canonical pathways using the Ingenuity Pathway Analysis Software Suite (IPA, Qiagen, 

Hilden, Germany)25. Previously published26 single cell RNA-seq (scRNAseq) cell-type 

selective expression clusters from adult reference kidney tissue can be accessed at http://

nephrocell.miktmc.org/ and GEO (GSE14098).

Tumor Necrosis Factor (TNF) Activation Score:

A TNF activation network was generated from expert curated interactions from NETPro 

annotations in the Genomatix Genome Analyzer database (Precigen Bioinformatics, 

Germany). From the database, 272 causally downstream genes or proteins that increased 

expression from TNF exposure were used to generate a TNF activation score. Individual 

gene expression values were first Z-transformed. The TNF activation score for each 

participant was the average Z-score of the 272 genes in their kidney RNAseq profile.

Urine Marker Profiling:

Urine proteins were identified and measured using the multiplex Luminex platform (Eve 

Technologies, Alberta, Canada) composed of a panel of 54 urinary cytokines, matrix 

metalloproteinases and tissue inhibitor of metalloproteinases (see Supplementary Methods). 

A candidate protein had to satisfy the following criteria to be considered a potential non-

invasive marker of TNF activation: 1) protein must be a product of a gene expressed 

downstream of TNF; 2) urine protein expression must correlate with the corresponding 

intra-renal tissue gene expression (mRNA levels) and 3) gene expression must correlate with 

the TNF activation score.

Putative urine markers were assayed in duplicate using Quantikine ELISA kit Human 

chemokine (C-C motif) ligand 2 (CCL2) / monocyte chemoattractant protein-1 (MCP-1) 

(DCP00) and tissue inhibitor of metalloproteinases 1(TIMP-1, DTM100, R&D Systems, 

Minneapolis, MN). Absorbance was measured with a VersaMax ELISA plate reader, and 

results were calculated with SoftMax Pro (Molecular Devices). Markers were normalized to 

urine creatinine concentration and log2 transformed.

Statistical Analysis of the Association with Clinical data and Urine Markers:

Descriptive statistics were used to characterize baseline (time of biopsy) participant 

characteristics by molecular cluster. Differences in Kaplan-Meier curves, by molecular 

cluster, were tested by the log rank test. Univariate Cox proportional hazard models were fit 

separately for time from biopsy to complete remission and time to the composite of ESKD 

and 40% decline in eGFR to assess association of molecular cluster and TNF score with 

clinical outcomes. Models were adjusted for diagnosis (MCD, FSGS), eGFR, and UPCR. 

Interstitial fibrosis and glomerular sclerosis were assumed to be on the causal pathway 

and therefore not included in the models. Pearson’s correlation was used to assess the 

relationship between TNF score, marker tissue mRNA expression and urinary concentration. 

Linear regression models were fit to assess the association of urinary markers and clinical 

features with TNF score and to calculate a predicted score. Pearson’s correlation was used to 
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correlate the predicted and observed TNF activation scores. Analyses were performed using 

STATA, v12.1 (College Station, TX).

Single nuclear RNA-seq

Nuclei were prepared from biopsy tissue of 10 NEPTUNE participants (5 from cluster 

3, with high TNF activity scores (defined as TNF High) and 5 from clusters 1 and 2, 

with lower TNF activity scores (defined as TNF Low)) stored in RNAlater using protocols 

from the Kidney Precision Medicine Project27, 28 (Supplementary Methods, GSE213030). 

Nuclear cluster annotation was determined by defining enriched genes in each cell cluster 

and comparing cluster selective gene profiles with previously identified human kidney cell 

marker gene sets26–28.

Kidney organoid culture, treatment and analysis

Kidney organoids were generated from UM77-2 human embryonic stem cells (hESC) as 

previously described29. Organoids were treated with TNF (R&D Systems, Cat# 10291-TA) 

resuspended in phosphate-buffered saline (PBS) on day 23 at the indicated concentrations. 

Organoid supernatants were removed at specified times, RNA extracted and sequenced 

(Supplementary Methods). Organoid culture supernatants and cell lysates were diluted 

150-fold to measure MCP-1 and 10-fold to measure TIMP-1 using ELISA as described 

above. Quantitative real-time PCR analysis were performed in triplicate using TaqMan 

Fast Universal PCR Master Mix (2X) for CCL2, TIMP1 and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH).

Results

Unbiased Consensus Clustering of Gene Expression Profiles Identifies Shared Molecular 
Signatures

Transcriptomic profiles of micro-dissected kidney biopsy compartments were used to group 

participants into distinct subclusters. Due to the known association of tubulointerstitial 

changes with risk of loss of eGFR, tubulointerstitial transcriptional data were analyzed 

first. Transcriptomes from NEPTUNE participants clustered into three groups (n=85, 76 

and 59, respectively), with one cluster (T3) demonstrating the highest cluster stability 

(Figure 2A). The delta-K revealed the 3-cluster solution was optimal across clustering 

approaches (Supplementary figure S1A). To validate the molecular profiles identified in 

NEPTUNE, Kmeans, PAM and hierarchical consensus clustering22, 23 were also applied 

to the tubulointerstitial transcriptome data from two independent FSGS/MCD cohorts, 

ERCB (N=30) and H3 Africa (N=35) resulting in three distinct clusters (Figure 2B and 

C) with high cluster stability. Glomerular compartment clustering also identified three 

clusters (Supplementary Figure S2A, B and C) with a transcriptional signature largely 

shared with the tubulointerstitium (Figure 2D). Differential expression analysis of the 

tubulointerstitial transcripts between T3 and the other two clusters in each cohort showed a 

robust, directionally conserved molecular signal across cohorts (correlation of fold change 

0.94, p<0.001 for NEPTUNE vs. ERCB and 0.93, p<0.001 for NEPTUNE vs. H3, Figure 

2E and F). Finally, of the 179 NEPTUNE participants with measured interstitial fibrosis, 

Mariani et al. Page 5

Kidney Int. Author manuscript; available in PMC 2023 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clustering was repeated in only those participants with interstitial fibrosis <25% (n=148). All 

26 participants originally in T3 from this group, again clustered together.

NEPTUNE participants in T3 were older, and had a lower eGFR, greater interstitial fibrosis 

and higher UPCR at biopsy (Table 1, Supplementary Figure S3). In ERCB and H3Africa, 

participants in T3 also had lower eGFR and were older. Although T3 had a greater 

proportion of FSGS in all three cohorts, it also included participants with MCD (Figure 

2G, Supplementary Figure S1D and E). In an unadjusted survival model, NEPTUNE T3 

participants were more likely to reach the composite of ESKD or 40% decline in eGFR 

[unadjusted HR 5.23 (95% CI 1.9, 14.5), p<0.001 for overall differences in curves, Figure 

2H] and fewer complete proteinuria remission events were observed [unadjusted HR 0.73 

(95% CI 0.43, 1.26), p=0.068 for overall difference in curves, Figure 2I] compared to T1.

Biological and molecular relevance of cluster 3

Differential mRNA expression profiles were used to elucidate the molecular functions 

associated with cluster T3. In NEPTUNE, there were 2721 transcripts in T3 with an absolute 

1.5-fold-change and q<0.05 (2199 up-regulated, 522 down-regulated), compared to T1 and 

T2 (Supplementary Table S1a). This gene set was analyzed to identify enriched canonical 

pathways, predicted upstream regulators30, and gene interaction networks. These analyses 

converged on TNF pathway activation.

In signal transduction pathway over-representation (enrichment), the granulocyte 

adhesion and diapedesis signal transduction pathway had the highest enrichment score 

(−log(p)=21.4). Of the 180 genes in this pathway, 70 (38.9%) were found differentially 

regulated in T3, including TNF (2.4-fold up-regulated in T3, q<0.001, Figure 3A). Causal 

analysis of predicted upstream regulators predicted TNF as the top biological mediator 

activated in T3 (IPA network Z-score=13.2, enrichment p=2.09E-120). An expanded causal 

mechanistic network centered on downstream effects of predicted TNF activation (Figure 

3B) explained 48% (1299/2721) of the differentially expressed genes between T3 and T1 

and 2. Regulated transcripts included multiple transcription factors previously implicated 

in chronic kidney disease progression, such as nuclear factor kappa B [including NFκB 1 

(p105/p50), RELA (p65) subunits]11, 31, 32, signal transducer and activator of transcription 

(STAT1 and 3)33. In the gene interaction network analysis, TNF was identified as the 

hub gene connecting the T3 regulated gene set (Figure 3C). Mapping the upstream 

regulators using differential expression profiles from each cohort (Supplementary Table S1a) 

recapitulated the NEPTUNE signal in the ERCB and H3 Africa cohorts, with TNF identified 

as the top upstream regulator (Supplementary Table S1b).

Next, previously published cell-selective transcripts from human kidney scRNAseq data 

sets26 were used to interrogate the cluster-specific tubulointerstitial expression profiles in 

NEPTUNE. The top 10 genes selectively enriched in kidney cell types26 served as cell 

type specific markers. Bulk RNAseq expression data were filtered for markers from each 

cell type to see which cell types contributed most to the transcriptional signal in T3. 

Increased contributions in T3 were observed from kidney cells (fibroblasts, endothelial, 

parietal epithelial, ascending thin loop of Henle and descending loop of Henle) and immune 

cell lineages while genes specific for proximal tubules, intercalated cells, thick ascending 
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loop of Henle, distal convoluted tubule, connecting tubule, principal and transitioning cells 

were expressed at lower levels in T3 (Figure 3D). Taken together, these findings demonstrate 

TNF activation in T3 represents a molecular signature derived from both resident kidney and 

immune cells.

Patient-level TNF activation score and relationship to cluster information

Multiple lines of evidence converged on TNF; therefore, individual-level kidney TNF 

activation was assessed. Using a rich knowledge base34–36, in silico analysis extracted a set 

of 272 genes causally downstream of TNF activation (Supplementary Table S2). Expression 

of these 272 genes formed the readout of TNF activation in kidney biopsies. A TNF 

activation score was calculated for each participant 19, 37, 38 and evaluated across the three 

cohorts (Figure 4A). Consistent with TNF activation accounting for the clustering, the range 

of TNF activation scores were similar, with the highest scores in cluster T3 (Figure 4A). The 

TNF activation score was also calculated from glomerular samples and found to be strongly 

correlated with the tubulointerstitial TNF activation score in the two cohorts where matched 

gene expression samples were available (Figure 4B). A TNF z-score was generated using 

the PROGENy TNF-pathway signature gene set39. This 98 gene signature shared 41 genes 

with our in silico TNF signature. Both signatures were strongly correlated with one another 

(R2>0.94, p<0.0001) in the tubulointerstitial NEPTUNE transcriptomic data.

Association of cluster 3 and TNF activation with interstitial fibrosis and clinical outcomes

The Spearman correlation of TNF activation scores with severity of interstitial fibrosis in 

NEPTUNE was significant (n=179, rho = 0.59, p<0.001, Figure 4C). However, among the 

148 participants with minimal interstitial fibrosis (<25% of the kidney cortex), elevated TNF 

activation scores (TNF activation score >0) were observed in 47 (32%), indicating that the 

TNF activation score may be more sensitive to early signs of kidney damage that are not yet 

visible by histopathological examination.

To evaluate the extent to which the molecular information from the kidney tissue captured 

the variability in loss of eGFR over time observed in T3 versus T1 and 2, a survival model 

was fit separately with cluster membership (Model 1, Table 2) and TNF activation score 

(Model 2, Table 2) as primary predictors of interest in NEPTUNE . After adjustments for 

diagnosis (MCD vs. FSGS), baseline eGFR and UPCR, cluster 3 was associated with a 

higher hazard of reaching the composite outcome, HR 3.8, p=0.035. T2 was not significantly 

different from T1. Similarly, an increase in TNF activation score was associated with 

higher hazard of the composite outcome (unadjusted HR 2.6, p<0.001). After adjusting for 

diagnosis, the HR remained elevated (2.3, p=0.003). The association was attenuated after 

further adjustment for eGFR and UPCR (HR 1.7, p=0.12), suggesting that these factors may 

be on the causal pathway of GFR decline.

Identification of non-invasive surrogates of TNF activation

Based on prior work40, an intra-renal pathway activation signal might be reflected in 

participants’ urine profiles. In NEPTUNE, genes in the TNF activation signature were cross-

referenced with the urine proteomic profile. Fourteen genes in the TNF activation network 

had corresponding urinary proteins (Figure 5A). Of these, intra-renal gene expression 
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of CCL2 and TIMP1 correlated with urine protein levels (r=0.58, p<0.0001 and r=0.50, 

p<0.0001, respectively). Urinary MCP-1 (the protein encoded by CCL2) and TIMP-1 were 

also correlated with the TNF activation score (p<0.0001, r≥0.50 for both biomarkers, Figure 

5B and 5C, respectively). Mean levels of both markers were higher in MCD and FSGS 

participants in cluster T3 (Supplementary Figure S4). Thus, these two urine proteins were 

identified as potential non-invasive surrogates reflective of intra-renal TNF activation.

TNF effect on kidney organoids

Human organoids were used to further support the relationship of the non-invasive surrogate 

markers to intra-renal TNF activation. TNF treatment of organoids resulted in an early, dose-

dependent increase in TNF activation scores (3h), that was slightly dampened but sustained 

for 20 hours in culture (Figure 6A). TNF activation was reflected in the up-regulation of 

CCL2 and TIMP1 mRNA expression (Figure 6B) followed by increased detection of the 

encoded proteins MCP-1 and TIMP-1 in the organoid culture medium (Figure 6C).

TNF activation and expression of surrogate markers in kidney cells

To test the cellular source of the non-invasive surrogate markers in human biopsies, 

snRNAseq analysis of 10 NEPTUNE biopsies, five with high and five with moderate 

to low TNF activation scores in the tubulointerstitial profiles (Supplementary Table S3). 

The analysis identified 22 unique nuclear clusters representing the major cell types of the 

kidney (Figure 7A). In the TNF High samples, cell type specific gene expression for both 

CCL2 and TIMP1 were higher across both immune and intrinsic kidney cell types (Figure 

7B), consistent with findings from kidney organoids. Thus, the TNF-responsive surrogate 

markers reflect alterations in inflammatory and resident kidney cells in participants with 

TNF pathway activation.

Predictive ability of surrogate markers

NEPTUNE participants with TNF activation scores, and urinary cytokine measurements 

obtained within 45 days following biopsy (N=90), were included in predictive models. 

Using a combination of urine biomarkers (MCP-1 and TIMP-1), eGFR and UPCR, a 

predicted TNF score was calculated and highly correlated with the transcriptionally derived 

intra-renal TNF activation score (r=0.61, p<0.001), Figure 8. Thus, a non-invasive biomarker 

signature of MCP-1 and TIMP-1, coupled with routinely obtained clinical information, 

predicts intra-renal TNF activation profiles in participants with FSGS and MCD.

Discussion

This study used tissue transcriptomics to address the heterogeneity in disease progression 

under routine clinical care, in children and adults with biopsied MCD and FSGS, to 

agnostically identify patient subgroups with a shared molecular signature. In the subgroup 

with highest risk of eGFR loss, activation in the kidney of a targetable pathway was 

identified that could be quantified at an individual level, and predicted non-invasively, 

through urine surrogate markers. Such approaches for identifying molecular markers 

provide a strategy for precision medicine in nephrology, where patients can be matched 

to mechanistically relevant therapies2.
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For the first time, from a cluster of participants with shared molecular profiles in three 

geographically diverse cohorts, a subgroup of high-risk participants, comprising both MCD 

and FSGS diagnoses, was identified. Clustering remained consistent when limiting to those 

with low levels of interstitial fibrosis and, after adjusting for diagnosis, eGFR and UPCR, 

this subgroup had increased risk of GFR loss. This suggests that transcriptomic data 

captures prognostic information not currently captured by clinical-pathologic evaluation, 

and potential disease pathways not targeted by current treatments. The pathways within the 

subgroup’s molecular profile could represent a variety of biological process, including both 

disease initiating and progression mechanisms, both of which could be valuable targets for 

therapy.

The kidney tissue molecular profile of the poor outcome subgroup centered on TNF 

activation, a cytokine linked to a range of diseases41–44. From several lines of evidence, 

including human and animal studies in kidneys 45, 46, TNF is produced in immune 

and resident kidney cells47, 48, has been implicated early in disease causation49, 50 and 

progression44, 47, 49, 51, but has not been implemented in clinical care. Although TNF 

activation was associated with the degree of fibrosis in this study, many participants without 

significant scarring had elevated TNF activation scores, demonstrating pathway activation 

may occur early in the disease course. Two candidate urine markers of TNF activation 

were identified; MCP-1, a marker of active inflammation,52 and TIMP-1, associated with 

tissue remodeling and scarring53. These markers were elevated in the poor outcome cluster 

and along with existing clinical measures, accurately predicted intra-renal TNF activation. 

Cell-specific transcriptional signals characterizing the poor outcome cluster were derived 

from both infiltrating immune cells and resident kidney cells, including endothelial cells. 

This was confirmed in the snRNAseq data where participants with high TNF scores showed 

increased expression of CCL2 and TIMP1 across multiple cell types. Additionally, TNF-

treated organoids had increased TNF pathway activation scores, transcript and protein levels 

of TIMP-1 and MCP-1.

Case reports and small studies suggest anti-TNF therapy may be effective in a subset of 

patients with nephrotic syndrome, but intra-renal TNF activation was not assessed 54–56. The 

FONT trial (Novel Therapies for Resistant FSGS) tested the TNF inhibitor adalimumab in 

patients with multi-drug resistant FSGS 57, 58. Of the 17 patients treated in the combined 

phase I and phase II studies, 4 patients had ≥50% reduction in proteinuria; 2 patients 

achieved dramatic improvements, from UPCR of 17 to 0.6 mg/mg in one and from 3.6 to 

0.6 mg/mg in the other. Although the study was considered unsuccessful in demonstrating 

efficacy of anti-TNF therapy for FSGS patients as a group, a response in any patient 

with this severe phenotype is notable and consistent with underlying biologic heterogeneity 

within the diagnosis. Other clinical trials in MCD and FSGS have also observed variable 

responses to other interventions 59, 60.

These examples highlight the need for precision medicine and for clinical trials to 

incorporate markers (serum, urine, or genetic) indicating activation of the targeted injury 

pathway to ensure alignment of the molecular profile of participants with that of the 

intervention. Molecular categorization could be combined with consensus clustering based 

on clinical and laboratory data, as outlined here for nephrotic syndrome, and recently 
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applied to the Chronic Renal Insufficiency Cohort 61, for precise delineation of patient 

prognosis and optimization of therapy.

The subgroup of highest clinical need, those with greatest risk of GFR loss, was the 

focus for this initial study. Tubulointerstitial damage and fibrosis have been shown to 

strongly associate with eGFR decline, and treatment response across diagnoses19, 62–64. 

Therefore, although MCD and FSGS are glomerular diseases, the premise for this study 

was that pathways associated with disease progression were more likely to be detected 

in the tubulointerstitial profiles. Nevertheless, the TNF activation signal in the glomerular 

and tubular compartments were strongly correlated, capturing similar activation in both 

compartments. Further, even when only the participants with low fibrosis were clustered, 

their high-risk subgroup membership persisted. Therefore, the tubulointerstitial TNF 

pathway merits investigation and may represent both disease initiating as well as chronic 

progression mechanisms in glomerular diseases.

Several limitations of the present study are acknowledged. This study included only biopsy 

proven MCD and FSGS. The TNF pathway and associated urine markers are likely 

relevant to other kidney diseases that could be addressed in future studies using this 

pipeline. Relatedly, this study included all MCD and FSGS participants to be broadly 

inclusive of the spectrum of presentation at the time of a clinical biopsy. However, 

MCD patients, particularly children, who respond well to therapy and may not receive a 

clinical biopsy, are not represented in this cohort. Similar analyses could identify pathways 

relevant within clinical subgroups of these diagnoses (e.g., only those with high degrees of 

proteinuria). Future work using non-tissue based -omic technology could identify molecular 

subclusters in non-biopsied patients, not included here. Genetic information is expanding 

our understanding of nephrotic syndrome. However, in NEPTUNE, a low frequency of 

mutations in 21 monogenic nephrotic syndrome-associated genes were detected65, and likely 

prevented us from finding an association of TNF with monogenic glomerular diseases. 

Similar data are unavailable for ERCB and H3 Africa. In many patients, a single pathway 

is unlikely to drive disease progression and additional or combination therapies may 

be appropriate. Future work using this pipeline and data from this study can uncover 

additional pathways and surrogate markers relevant to each of the tubular and glomerular 

transcriptomic clusters.

As next steps, clinical studies are needed to validate the use of predicted TNF activation 

scores as a target engagement biomarker during the treatment of FSGS and other glomerular 

diseases. Reprising the FONT trial design by limiting trial eligibility to patients with high 

predicted TNF pathway activation would enable assessment of response to TNF inhibition, 

stratified by TNF activation levels. A Phase IIa proof of concept trial with this design has 

been initiated for children and adults with biopsy proven FSGS and MCD (clinicaltrials.gov/

NCT04009668).

In conclusion, this study provides a road map for implementing precision medicine 

in primary podocytopathies. It identified a molecularly defined subset of patients with 

nephrotic syndrome who have poor clinical outcomes and increased activation of a 

targetable pathway, TNF, as a key driver of disease progression. Non-invasive markers, 
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validated in an organoid model system, are available to identify the participants with 

TNF activation, an approach currently being tested in an interventional trial. The concepts 

developed here for FSGS/MCD, and the TNF pathway represents a first step towards a 

comprehensive map of targetable pathways for glomerular diseases and a move towards 

precision medicine where the right medicine is administered to the right patient with 

glomerular disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Analysis strategy.
Flowchart of tubulointerstitial compartment gene expression to identify molecular subgroups 

and associated non-invasive urinary markers.
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Figure 2: Kidney transcriptomic cluster membership and unadjusted Kaplan Meier curves.
Consensus clustering using kmeans identified optimal cluster membership from 

tubulointerstitial transcriptomic profiles with 3 clusters (Clusters were designated by tissue 

compartment and cluster number, T1, T2, T3 for tubulointerstitial clusters) in a cluster 

matrix from (A) NEPTUNE, (B) ERCB, and (C) H3 Africa cohorts. The values ranged 

from 0 (pale yellow, samples do not cluster together) to 1 (brown, samples demonstrate 

high affinity and cluster together). Scatter plots showed strong correlation of significant fold 

change differences of genes differentially expressed in (D) tubulointerstitial and glomerular 
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compartments in NEPTUNE; (C) Tubulointerstitium Cluster 3 (T3) compared to T2 and T1 

from NEPTUNE (y-axis) and cluster T3 compared to T1 and T2 from ERCB (x-axis); and, 

similarly, for (F) H3 Africa (x-axis). (G) Alluvial plot of correspondence between diagnosis 

and cluster membership of participants in the NEPTUNE cohort. Unadjusted Kaplan Meier 

survival curves by NEPTUNE tubulointerstitial cluster for (H) composite endpoint of 40% 

loss of eGFR or ESKD and (I) complete remission.
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Figure 3. Molecular and functional context of cluster T3 expression profiles.
Differential expression profiles from T3 compared to T1 and T2 in the NEPTUNE cohort 

were generated, and enrichment analysis was performed using Ingenuity Pathways Analysis. 

(A) Granulocyte adhesion and diapedesis was the top enriched canonical pathway; a subset 

of the pathway is shown highlighting TNF as an input to the pathway. Genes highlighted 

in red were up-regulated in the differential expression profile. (B) A mechanistic network 

of predicted upstream regulators from the differential expression profile indicating TNF as 

an input. (C) TNF was identified in a gene interaction network (red indicates the gene was 
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up-regulated in the differential expression profile, while green indicates down-regulation). 

(D) Cell selective gene expression markers were previously identified26 and were intersected 

with voom-transformed gene (row) normalized expression data (yellow indicates higher 

expression, blue indicates lower expression) to elucidate probable cell contribution to 

differential expression profiles.
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Figure 4: 
TNF activity scores across all profiled participants (A) from the indicated cohorts 

colored by cluster membership in tubular transcriptomes (B) Pearson’s correlation of 

TNF activity scores from the glomeruli (y-axis) and tubular (x-axis) transcriptomes in the 

same NEPTUNE participants. (C) Correlation of the TNF activity score from the tubular 

transcriptome with interstitial fibrosis. The horizontal bar (red) indicates 25% interstitial 

fibrosis.
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Figure 5: Non-invasive surrogate selection for TNF activation.
(A) Fourteen genes up-regulated in cluster T3, were downstream of TNF activation, as 

characterized by curated cause and effect relationships, and were present on the Luminex 

panel used to profile urine profile from NEPTUNE participants. TNF activation score 

plotted against (B) Log2 uMCP1/Cr and (C) Log2 uTIMP1/Cr.
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Figure 6: TNF effects on kidney organoids and surrogate markers.
TNF directly stimulates TNF activation and expression of the selected surrogate markers 

in human pluripotent stem cell derived-kidney organoids. (A) TNF activation scores were 

calculated from bulk RNAseq data obtained from kidney organoids treated with vehicle 

control (VC) or 1, 5, 25ng/ml TNF for 3 or 20h. Quantification of (B) CCL2 (left) and 

TIMP1 (right) transcript levels in kidney organoid cell lysates by qRT-PCR relative to 

control, and of (C) MCP-1 (left) and TIMP-1 (right) protein levels in kidney organoid 

culture supernatant by ELISA normalized to total protein, generated from the same samples 
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following treatment with 5 ng/ml TNF or vehicle control for 24h. Each data point was 

generated from a unique sample and represents the average of analysis in triplicate. Long 

bar, mean; short bar, 1 S.D. ; *p-value < 0.05 by Student’s t-test. Representative experiment 

(1 of 4 independent) shown.
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Figure 7: TNF effects on kidney and immune cell types by single nucleus RNAseq from 
glomerular-depleted biopsies.
(A) UMAP plot of snRNAseq profiles from TI of selected NEPTUNE participants found to 

have elevated TNF activation scores (TNF high) and low to moderate TNF activation scores 

(TNF low) and (B) Single nuclear cluster expression of CCL2 and TIMP1 by TNF activation 

status. Cell type specific markers were based on Lake et al, 202128.

Abbreviations: ATL = ascending thin limb cells; DCT = distal convoluted tubule cells; DTL 

= descending thin limb cells; EC-GC = glomerular endothelial cells; FIB = fibroblast cells; 
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Immune = several types of immune cells; PC/IC = principal cells / intercalated cells; POD = 

podocytes; PT = proximal tubule cells; TAL = thick ascending limb cells.
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Figure 8: Correlation of observed TNF activation score with a predicted score based on urinary 
biomarkers and clinical features.
Linear regression models were used to generate predicted tissue TNF activation scores based 

on eGFR, UPCR, urinary TIMP1 and urinary MCP1. Correlation was 0.61, p-value <0.001.
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Table 1.

Clinical characteristics of participants summarized by cluster identity and cohort

NEPTUNE ALL
(N = 220)

Cluster1
(N = 85)

Cluster 2
(N = 76)

Cluster 3
(N = 59)

P-value

AGE mean (sd) 28.2 (21.7) 22.3 (19.5) 26.8 (22.6) 38.5 (20.0) < 0.0001

Female (%) 89 (40) 33 (39) 30 (39) 26 (44) 0.82

Adult (%) 112(59) 31(36) 35(46) 46(78) < 0.0001

eGFR mean (sd) 89.5 (46.8) 102.1 (40.7) 104.2 (48.9) 52.3 (29.2) < 0.0001

Albumin mean (sd) 3.62 (0.89) 3.68(0.86) 3.62(0.89) 3.54(0.95) 0.3916

FSGS (%) 114 (52) 32 (38) 37 (49) 45 (76) < 0.0001

UPCR median (IQR) 2.76 (1.0, 7.04) 1.9 (0.6, 7.1) 2.56 (1.02, 5.5) 5.35 (2.0, 10.6) <0.0001

% IF median (IQR) 4 (0, 16) 1.5 (0,5) 3 (0, 8) 20 (10, 55) <0.0001

Disease duration prior to biopsy (months) mean (sd) 29.47 (69.46) 26.78 (46.56) 18 (50.6) 49 (108) 0.30

On RAAS Blockade (%) 86 (39) 34 (40) 26 (34) 26 (44) 0.0005

On IST (%) 101 (46) 49 (58) 37 (49) 15 (25) 0.0005

ERCB Cluster 1
(N = 18)

  Cluster 2
 (N = 4)

Cluster 3
(N = 8)

P-value

Age mean (sd) 42.2 (19.0)   29.4 (6.6) 49.2 (18.3) 0.63

Female (%) 10 (56)   1 (25) 3 (38) 0.59

eGFR mean (sd) 92.2 (34.5)   119.0 (4.0) 43.2 (31.0) 0.02

FSGS (%) 8 (44)   2 (50) 7 (87) 0.135

H3 Africa Cluster1
(N = 14)

  Cluster 2
 (N = 16)

Cluster3
(N = 5)

P-value

Age mean (sd) 24.1 (10.2)   30.0 (14.1) 30.8 (10.7) 0.19

Female (%) 3 (21)   4 (25) 0 (0) 0.90

eGFR mean (sd) 89.8 (42.6)   109.8 (14.7) 25.8 (11.7) 0.03

FSGS (%) 7 (50)   4 (25) 4 (80) 0.07

UPCR median (IQR) 1.4 (1.1, 2.2)   1.1 (0.3, 2.8) 3.6 (1.8, 7.5) 0.05

% IF median (IQR) 0 (0, 9)   0 (0, 1) 40 (0, 40) 0.01

Disease duration less than 6 months (%) 2 (14)   4 (25) 4 (80) 0.02

IST in past 6 months (%) 5 (36)   4 (25) 1 (20) 0.71

Abbreviations: FSGS, Focal segmental glomerulosclerosis; eGFR, estimated glomerular filtration rate (mL/min/1.73m2); UPCR, Urine protein to 
creatinine ratio (mg/mg); IF – interstitial fibrosis; IST – immunosuppressive therapy; RAAS-renin angiotensin aldosterone system.

Kidney Int. Author manuscript; available in PMC 2023 July 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mariani et al. Page 30

Table 2:

Unadjusted and adjusted Cox proportional hazards models for composite of ESKD and 40% decline in eGFR 

from baseline in the NEPTUNE study.

Unadjusted Model Adjusted for MCD/FSGS Adjusted for MCD/FSGS, eGFR 
and UPCR

Predictor HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

Model 1: Cluster 
Membership

Cluster 1 Ref Ref. Ref.

Cluster 2 1.7 (0.6, 5.1) 0.34 1.6 (0.5, 4.8) 0.40 2.3 (0.69, 7.57) 0.18

Cluster 3 5.2 (1.9, 14.5) 0.001 4.5 (1.6, 12.9) 0.005 3.80 (1.1, 13.1) 0.035

Model 2: TNF 
activation score*

TNF Activation 
Score

2.6 (1.5, 4.4) 0.001 2.3 (1.3, 4.1) 0.003 1.7 (0.9, 3.5) 0.12

*
HR for increase in z-score by 1.

MCD, Minimal Change disease; FSGS, Focal segmental glomerulosclerosis; eGFR, estimated glomerular filtration rate (mL/min/1.73m2); UPCR, 
Urine protein to creatinine ratio (mg/mg)
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