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Abstract. Background/Aim: Increasing evidence has revealed
FGFR?2 as an attractive therapeutic target for cancer including
cholangiocarcinoma (CCA). The present study investigated the
oncogenic mechanisms by which FGF10 ligand activates
FGFR2 in CCA cells and determined whether FGFR inhibitors
could suppress FGF10-mediated migration of CCA cells.
Materials and Methods: Effects of FGF10 on the proliferation,
migration, and invasion of KKU-M213A cells were assessed
using clonogenic and transwell assays. Protein expression
levels of FGFR2 and pro-angiogenic factors were determined
via immunoblotting and antibody array analysis. FGFR2
knockdown using a small interfering RNA was used to validate
the role of FGF10 in promoting cell migration via FGFR2. The
effects of infigratinib (FGFR inhibitor) on cell viability, were
determined in KKU-100, KKU-M213A, KKU-452 cells.
Moreover, the efficacy of the FGFR inhibitor in suppressing
migration via FGFI0/FGFR2 stimulation was assessed in
KKU-M213A cells. Results: FGF10 significantly increased the
expression of phospho-FGFR/IFGFR2 and promoted the
proliferation, migration, and invasion of KKU-M213A cells.
FGF10 increased the expression levels of p-Akt, p-mTOR,
VEGF, Slug, and pro-angiogenic proteins related to metastasis.
Cell migration mediated by FGF10 was markedly decreased
in FGFR2-knockdown cells. Moreover, FGFI10/FGFR2
promoted the migration of cells, which was suppressed by the
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FGFR inhibitor. Conclusion: FGFI0/FGFR2 activates the
Akt/mTOR and VEGF/Slug pathways, which are associated
with the stimulation of migration and invasion in CCA.
Moreover, the FGF10/FGFR?2 signaling was inhibited by an
FGFR inhibitor resulting suppression of cell migration, which
warrants further studies on their clinical utility for CCA
treatment.

Cholangiocarcinoma (CCA) is a malignancy of the biliary
duct with a 5-year survival rate of less than 10% and very
poor response to standard chemotherapy (1). In recent years,
oncological therapy tailored to the features of individual
tumors has emerged as a promising approach for CCA
treatment. One of the most promising targets for CCA is the
fibroblast growth factor receptor 2 (FGFR2), and its
aberrations have been detected in 10-15% of intrahepatic
CCA cases (2, 3). At least two FGFR inhibitors have been
approved by the United States Food and Drug Administration
(USFDA) for the treatment of advanced stage CCA with
FGFR fusion (4, 5). FGFR2 can be expressed as multiple
transcript variants via tissue-specific splicing. FGFR2-IIIb is
one of FGFR2 isoforms (6, 7) which binds specifically to
FGF7 and FGF10 ligands (8).

FGF10, a member of the FGF7 ligand subfamily, is
secreted by mesenchymal cells and stromal cells surrounding
cancer cells. FGF10 has been reported to orchestrate
epithelial-mesenchymal interactions during gastrointestinal
tract development (9), possesses broad mitogenic and cell
survival activities and is involved in various biological
processes, including cell growth, morphogenesis, tissue
repair, and tumor growth and invasion (10). FGFRs are
involved in multiple signaling pathways, including
Ras/mitogen-activated protein kinase, phosphoinositide 3-
kinase (PI3K)/Akt, Janus kinase/signal transducer and
activator of transcription 3, and phospholipase Cy pathways
(8). FGF10 acts as a canonical FGFR ligand via the activation
of FGFR2-IIIb. Upon FGF10 binding, FGFRs dimerize,
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leading to tyrosine residue phosphorylation, subsequently
activating key intracellular signaling pathways in various cell
types. Notably, the interplay between FGF10 and FGFR?2 is
necessary for the development of branches and tubules in the
biliary tract and for pancreatic organogenesis (9).

The tumor-promoting role of FGF10 has
substantiated in many malignant models and cancers,
including pancreatic cancer (11), small cell lung cancer (12),
and prostate adenocarcinoma (13). FGF10 was identified as
a poor prognostic biomarker in gastric adenocarcinoma,
wherein the expression of FGF10 was significantly
associated with lymph node invasion and distant metastasis
(14). In a CCA model, FGF10 induced malignancy in
intraductal papillary neoplasm of the bile duct with time that
changed from low grade disease to high grade disease via the
FGF10/FGFR2/RAS/extracellular signal-regulated protein
kinase (ERK) signaling pathway (15).

FGEFR inhibitors are small-molecule tyrosine kinase inhibitors
that competitively inhibit ATP binding to tyrosine kinase domain
of FGFR, leading to the suppression of its downstream signaling
(16). Pemigatinib, the first FGFR inhibitor, and infigratinib
(BGJ398), an orally active pan-FGFR inhibitor acting against
FGFR1-3, are approved by the USFDA for advanced or
metastatic CCA (4). In CCA treatment, most FGFR inhibitors
show beneficial effects on CCA subgroups with FGFR fusion,
rather than other FGFR aberrations (2).

In this study, we comprehensively explored the oncogenic
role of FGF10/FGFR2 in CCA cells. We determined the
underlying FGF10/FGFR2-mediated
proliferation, migration, and invasion of CCA cells via the
mammalian target of rapamycin (mTOR) and vascular
endothelial growth factor (VEGF)/Slug pathways. In
addition, the inhibitory effect of a pharmacological inhibitor
of FGFR on FGF10/FGFR2-mediated migration of cells in a
CCA model was investigated. In this study we demonstrated
that FGF10/FGFR2 signalling could be a therapeutic target
in ligand-responsive cancer cells including CCA cells.

been

mechanisms  of

Materials and Methods

Cell lines and cell culture. The human CCA cell lines KKU-452
(JCRB1772) (17), KKU-213A (JCRB1557) (18) and KKU-100
(JCRB1568) (19) were developed at the Cholangiocarcinoma
Research Institute, Khon Kaen University, and deposited in the
Japanese Cancer Research Resources Bank (JCRB, Ibaraki, Japan).
CCA cells were cultured and maintained as previously described
(20). Briefly, CCA cells were cultured in Ham’s F12 media
containing 10% fetal bovine serum (HiMedia Laboratories,
Mumbai, India) and maintained in an atmosphere of 5% CO, at
37°C and subcultured every 2 or 3 days using 0.25% trypsin-EDTA
(Gibco BRL Life Technologies, Grand Island, NY, USA).

Sulphorhodamine B (SRB) assay. KKU-100, KKU-M213A, and
KKU-452 cells were seeded into a 96-well plate at a density of 3-
5x103 cells/well and incubated overnight. For the treatment, the

culture medium was replenished with various concentrations of
FGF10 in culture medium containing 2%FBS or infigratinib in
culture medium containing 10% FBS and incubated for 48 and 72
h. After incubation, the cells were fixed with 10% trichloroacetic
acid for 1 h and stained with 0.4% SRB in 1% acetic acid solution
for 30 min. The absorbance was measured at a wavelength of 540
nm using a microplate reader.

Clonogenic assay. KKU-M213A cells were seeded into a 6-well
plate (1x105 cells/well) and treated with 1, 10, and 100 ng/ml FGF10
for 48 h. After treatment, cells were subcultured into a 6-well plate
at a density of 400 cells/well with fresh media and further incubated
for 7 d. Then, the colonies were stained as previously described (20).
The number of colonies in each well was measured using Image-Pro
Plus software (Media Cybernetics, Rockville, MA, USA).

Cell migration and invasion assays. KKU-M213A cells were seeded
into the transwell inserts at the density of 20,000 cells/well. Ham’s
F12 medium with 10% (v/v) FBS (700 ul) was added to the lower
chamber of the transwell. Then, 100 ul of FGF10 in serum-free
media was added to the insert before seeding cells. The assay of cell
migration and cell invasion were determined using a transwell
chamber (Corning®Transwell®, Corning, NY, USA) as previously
described (20). The invading cells were captured and analyzed by
ImagePro Plus software (Media Cybernetics).

Small interfering RNA (siRNA) transient transfection. siRNA
transient transfections were performed to silence FGFR2 gene
expression. Briefly, 1x105 KKU-M213A cells were seeded into a 6-
well plate overnight. After transfection, the cells were transfected
with 100 pmol of siRNA against FGFR2 (si-FGFR2) (J-003132-19-
0010; Dharmacon, Lafayette, CO, USA) and non-targeting siRNA
(si-NT) (D-001810-10-20; Dharmacon) for 72 h using Lipofectamine
2000 reagent (Invitrogen, Carlsbad, CA, USA), as previously
described (20). After transfection, knockdown efficiency of FGFR2
gene expression was examined via western blotting analysis.

Western blotting analysis. Whole cell extracts were applied onto a 10%
sodium dodecyl sulfate (SDS)-polyacrylamide gel composed of 1.5 M
Tris buffer (pH 8.8), 10% SDS, 10% ammonium persulfate, and 0.04%
TEMED (Bio-Rad, Hercules, CA, USA). Proteins were then
transferred onto a polyvinylidene fluoride membrane. Then, blotting
membranes were blocked with 5% bovine serum albumin in Tris-
buffered saline consisting of 0.1% Tween-20 (TBST) for 2 h. Blotting
membranes were incubated overnight at 4°C with the following
primary antibodies: phospho-FGFR (3471s), phospho-mTOR (5536s),
mTOR (2983s), Slug (9585s; Cell Signaling, Danvers, MA, USA),
FGFR2 (ab75984; Abcam, Cambridge, UK), VEGF (sc-7269), and
actin (sc-1616; Santa Cruz Biotechnology, San Diego, CA, USA).
Next, the blots were incubated with horseradish peroxidase-conjugated
secondary antibodies (Santa Cruz Biotechnology) for 3 h at room
temperature. Then, proteins were detected using Luminata Forte
Western HRP substrate (Merck Millipore Corporation, Billerica, MA,
USA). The protein bands were photographed using a ChemiDoc MP
Imaging System, and the intensity of the target bands was analyzed
using the Image Lab software (version 6.0; Bio-Rad).

Angiogenesis antibody array. Protein lysates from KKU-M213A
cells treated with 10 ng/ml FGF10 for 48 h were hybridized with a
RayBio human angiogenesis antibody array (AAH-ANG-1000-8;
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Figure 1. Fibroblast growth factor 10 (FGF10) stimulates fibroblast growth factor receptor 2 (FGFR2) expression and promotes proliferation of
KKU-M213A cells. (A) KKU-M213A cells were treated with 1, 10, and 100 ng/ml of FGF10 for 48 h. Protein expression was determined via western
immunoblotting. Bars represent the relative expression of p-FGFR (B) and FGFR2 (C) normalized to 3-actin expression. (D) Clonogenic assay was
performed in cells treated with 1, 10, and 100 ng/ml FGF10 for 48 h. (E) Bars represent the number of colonies in the treatment group compared
to the untreated group. Data are presented as the meanzstandard deviation (SD) from three independent experiments. *p<0.05 compared to the

untreated control group.

RayBiotech, Peachtree Corners, GA, USA). The levels of protein
expression were analyzed according to the manufacturer’s
instructions. The signal intensities of individual spots were captured
using the ChemiDoc MP Imaging System and were analyzed using
the Image Lab software (version 6.0; Bio-Rad).

Statistical analysis. All values are presented as the mean+standard
deviation of three experiments. Statistical differences among
treatment groups were analyzed using one-way analysis of variance
with the Student-Newman—Keuls post-hoc test. Statistical
significance was set at p<0.05.
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Results

FGFI10 stimulated FGFR2 expression and promoted
proliferation of KKU-M213A cells. We investigated whether
exogenous FGF10 promoted FGFR2 activation and CCA cell
proliferation. KKU-M213A cells were selected to perform
the immunoblotting and clonogenic assays because a
preliminary experiment revealed that the KKU-M213A cells
exhibit constitutive phosphorylated FGFR expression.
Treatment with FGF10 for 48 h caused a dose-dependent
increase in FGFR2 expression (Figure 1A and C). FGF10
induced a remarkable increase in FGFR phosphorylation
compared to basal expression (Figure 1A and B).
Furthermore, treatment with FGF10 increased cell renewal,
as the number of colonies was increased by 50% compared
to the control (Figure 1D and E).

FGF10/FGFR?2 promoted migration and invasion of KKU-
M213A cells. FGF10 plays roles in the initiation and
progression cancer in various models (15). To determine
whether exogenous FGF10 promotes metastasis in vitro, we
performed invasion and migration assays using the
transwell chamber. KKU-M213A cells were treated with
different concentrations (1, 10, and 100 ng/ml) of FGF10.
Treatment with FGF10 significantly increased the number
of migrating and invading cells compared to that in the
untreated group (Figure 2A-D). FGF10 showed a trend of
increasing the number of migrating and invading cells, even
at low concentrations.

We further evaluated whether FGFR?2 is essential for FGF10
to promote the migration of CCA cells. FGFR2 expression in
KKU-M213A cells was knocked down using siRNA.
Immunoblotting confirmed that FGFR2 expression was
significantly suppressed compared to that in the non-target
knockdown group (Figure 2E and 2F). Migration of FGFR2
knockdown cells was reduced by more than 50% compared to
non-targeted or parental groups, and their migratory activity
was comparable to the parental group without FGF10 treatment
(Figure 2G and H). Consistently, treatment with FGF10
significantly stimulated p-FGFR and FGFR2 expression in
non-targeted cells, whereas the expression levels of both were
unchanged in FGFR2 knockdown cells (Figure 2I-K). These
results confirm the crucial role of FGFR2 in FGF10-mediated
cell migration and invasion.

FGFI0/FGFR2 stimulated key metastatic proteins. To
determine the molecular mechanism  underlying
FGF10/FGFR2-mediated metastasis, an immunoblotting
assay was used to determine the expression levels of key
metastatic proteins. KKU-M213A cells were treated with 10
ng/ml FGF10 for various time periods (6, 24, and 48 h).
FGF10 showed a trend to increase expression of p-AKT
within 24 h that was significantly increased at 48 h (Figure

3A-C). The expression of p-mTOR was increased at 24 and
48 h (Figure 3A-C). Furthermore, FGF10 significantly
increased the expression levels of the pro-angiogenic
regulator VEGF (Figure 3A and D) and the mesenchymal
marker Slug after 48 h of incubation (Figure 3A and E).

To further investigate the signaling pathways involved in
tumor progression, a protein array assay containing
antibodies against pro-angiogenic factors was used to screen
for proteins related to angiogenesis. KKU-M213A cells were
treated with FGF10 for 48 h. FGF10 increased the levels of
angiogenic platelet-derived growth factor (PDGF)-BB,
interleukin (IL)-1a, IL-1p, IL-8, and uPAR, while it reduced
the levels of the endogenous inhibitor of angiogenesis
TIMP1 (Figure 3F and G).

FGFR inhibitor suppressed FGFR2 expression. As FGFR
plays a significant role in promoting cancer cell survival, we
evaluated the effects of pharmacological FGFR inhibitors on
CCA cells. Three CCA cell lines were treated with various
concentrations of infigratinib for 48 and 72 h. The drug
suppressed proliferation in KKU-100, KKU-M213A, and
KKU-452 cells in concentration- and time-dependent manner
(Figure 4A-C). As shown in Table I, the ICs, values of
infigratinib in CCA cells were in the range of 4.23-4.98 uM
for KKU-100, 4.53-5.28 uM for KKU-M213A, and 4.92-
5.60 uM for KKU-452 cells. Among all CCA cell lines,
KKU-100 cells were slightly more sensitive to infigratinib
than KKU-M213A or KKU-452 cells (Table I).

Infigratinib is a selective FGFR inhibitor that binds to the
kinase domain and prevents the autophosphorylation of the
receptor and blocks the downstream signaling cascades of
FGFR. We examined the suppressive effect of infigratinib on
p-FGFR/FGFR2 expression in KKU-M213A cells. Protein
expression was determined via western blotting analysis. The
results showed that infigratinib significantly decreased the p-
FGEFR levels at 5 and 7.5 uM to approximately 40% to 50%
of controls (Figure 4D and E). In addition, three
concentrations of infigratinib (2.5, 5, and 7.5 uM)
significantly suppressed the expression levels of FGFR2
(Figure 4D and F).

The FGFR inhibitor infigratinib suppressed cell migration
mediated by FGF10/FGFR2. To explore whether infigratinib
could suppress FGF10/FGFR2-mediated migration we
performed transwell migration assays using KKU-M213A cells
treated with infigratinib and FGF10. Treatment with FGF10
alone significantly increased cell migration. In contrast,
infigratinib inhibited cell migration promoted by FGF10.
Notably, the inhibition of cell migration by infigratinib was
significantly stronger in the presence of FGF10 at both lower
(2.5 uM) and higher concentrations (5 uM) (Figure 5A and B).
This indicates that infigratinib suppresses cell migration
mediated by FGF10/FGFR2 signaling.
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Figure 2. FGF10/FGFR2 mediates migration and invasion of KKU-M213A cells. KKU-M213A cells were treated with 1, 10, and 100 ng/ml FGF10
48 h before the cells were used for migration and invasion assays using the transwell chamber (A-D). The cells were transiently transfected with
si-FGFR2 or non-target control (si-NT) for 72 h, and immunoblots of FGFR2 expression were analyzed (E and F). Knockdown cells were treated
with FGF10 for 48 h before migration assay (G-H). The effect of FGF10 on the activation of FGFR2 was analyzed via immunoblotting assay (I-
K). Bars represent the relative expression of specific protein normalized to -actin expression as the mean=SD (F, J, and K). *p<0.05 compared to

the untreated parental group, **p<0.05 compared to the non-target siRNA alone group, *p<0.05 compared to the non-target siRNA treated with
FGF10 group.
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Figure 3. Effect of FGF10/FGFR2 on downstream signaling proteins related to cancer metastasis and angiogenesis. (A-E) KKU-M213A cells were
treated with FGF10 (10 ng/ml) for 6, 24, and 48 h. Protein expression levels of p-AKT, AKT, mammalian target of rapamycin (mTOR), p-mTOR,
VEGF, and Slug were determined via western blotting analysis. Bars represent the relative expression of specific protein normalized to f-actin
expression as the mean=SD from three independent experiments. *p<0.05 compared to the untreated control group. (F-G) KKU-M213A cells were
treated with or without FGF10 (10 ng/ml) for 48 h. The cells were harvested and subjected to human angiogenesis antibody analysis. The positions
of selected pro-angiogenic factors on the membranes are marked with colored boxes. (G) The protein expression profiles, are presented in a heatmap.
Rows indicate the protein expression, while columns represent the condition of the treatment. Double gradient color indicates the expression value:
light green, lowest; red, highest.
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Figure 4. Suppressive effect of infigratinib on viability and FGFR2 expression in cholangiocarcinoma (CCA) cells. KKU-100 (A), KKU-M213A (B),
and KKU-452 cells (C) were treated with 0-12 uM of infigratinib for 48 and 72 h. Cell viability was analyzed using the sulphorhodamine B (SRB)
assay and presented as % cell viability. Bars represent the mean+SD from three independent experiments. (D-F) Infigratinib suppressed the
expression levels of p-FGFR and FGFR2 in KKU-M213A cells. The cells were treated with 0-7.5 uM of infigratinib. Expression levels of p-FGFR
and FGFR2 were determined via western blotting analysis. Representative figures of protein expression from one experiment (D). Bars represent
the relative expression of specific protein normalized to f-actin expression as the mean=SD from three independent experiments (E and F).

Discussion

FGF10 is a multifunctional mesenchymal-epithelial signaling
growth factor that plays a crucial role in the development of
multiple organs and tissue homeostasis (21). However,
FGF10 deregulation has been shown to be associated with
human genetic disorders as well as carcinogenesis in various
cancer types (22). FGF10 promotes the premalignant lesion
of CCA in a mouse model. However, the role of FGF10 in
CCA oncogenesis remains unclear. The present study showed
that exogenous FGF10 stimulates oncogenic phenotypes,
including proliferation, migration, and invasion of ligand-
responsive CCA cells. Moreover, FGF10 mediated oncogenic
stimulation via FGFR2 activation and increased the
activation of AKT/mTOR signaling, together with the up-
regulation of pro-angiogenic VEGF, Slug, PDGF-BB, IL-1a.,
IL-B, and IL-8. This study also showed that the pan FGFR
inhibitor infigratinib could suppress the FGF10/FGFR2-
mediated CCA growth and migration.

Ligand-dependent FGFR signaling plays a role in
carcinogenesis through either autocrine production by cancer
cells or paracrine production of ligands by stromal cells (23).
In the present study, we examined the role of exogenous

Table 1. Half-maximal inhibitory concentration (IC50) values (uM) of
infigratinib in cholangiocarcinoma cells.

CCA cells IC5( for 48 h (Mean+SD)  ICs( for 72 h (Mean+SD)
KKU-100 4.98+0.52 uM 4.23+0.20 uM
KKU-M213A 5.28+0.89 uM 4.53+0.19 uM
KKU-452 5.60+0.51 pM 4.92+0.19 uM

FGF10 in a CCA model. We found that FGF10 stimulated
FGFR signaling via the up-regulation of p-FGFR and
FGFR2 expression in KKU-M213A cells. It also promoted
CCA cell proliferation as shown using the clonogenic assay.
Our result are consistent with previous reports in breast
cancer models where recombinant FGF10 protein promoted
colony formation by MCF-7 breast cancer cells (24). Another
study has demonstrated the oncogenesis of pancreatic cancer
was mediated by paracrine FGF/FGFR activation. FGF10
secreted from stromal cells surrounding cancer cells
promotes the migration and invasion of pancreatic cancer
cells expressing FGFR2b (11).
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Figure 5. Infigratinib suppresses cell migration mediated by FGF10/FGFR2. KKU-M213A cells were treated with infigratinib for 24 h, subcultured,
and reseeded onto a transwell chamber in a serum-free medium containing infigratinib with/without 10 ng/ml FGF10 for another 48 h. (A) KKU-
M213A cells were photographed using fluorescence microscope (magnification, 10°). (B) Data present the percentage of migrating cells in each
treatment group as the mean+SD from three independent experiments. *p<0.05 compared to the control group, *p<0.05 compared to the infigratinib

alone group.

The role of FGF ligands in cancer progression, including
migration and invasion, has been investigated. We
demonstrated that FGF10 induced migration and invasion of
CCA cells. The effects of FGF10 were mediated via the
FGFR?2 activation, which is consistent with previous reports
that FGF10 is the specific ligand of FGFR2 (22). The result
was confirmed by the knockdown of FGFR2 where the cell
migration mediated by FGF10 was suppressed.

Akt/mTOR signaling is the hallmark of metastasis in
many cancers, including CCA. This pathway is one of the
downstream effectors of FGFR signaling. Our results are
consistent with previous findings by Lau et al., who
demonstrated that FGF2 promoted cell invasion of ovarian
cancer cells through PI3K/Akt/mTOR activation (25). Our
results demonstrated that FGF10 increased the expression of
p-AKT, p-mTOR, and their downstream VEGF in KKU-
M213A cells. Signal activation induced by FGF10/FGFR2 in
CCA cells is mediated by the Akt/mTOR pathway. However,
a recent study has shown that in premalignant lesions,
intraductal papillary neoplasm of the bile duct (IPNB) and
FGF10 induced human IPNB phenotypes via the RAS/ERK
signaling pathway (15). Indeed, FGF10 may exert its effects
via both pathways. In addition, there is evidence supporting
that FGF10 could be regulated at the translational level by
mTORCI1 in skin tumors, where an increase in FGF10
expression was found to be dependent on PTEN-PI3K-
mTOR signaling in squamous cell carcinoma (SCC). These
studies also revealed that the FGF10-FGFR2 autocrine
feedback loop greatly amplifies FGF signaling (26).

The FGF-VEGF axis is a potentiating factor contributing to
cancer metastasis (27). We determined the expression of VEGF,

which acts as a pro-angiogenic regulator in tumorigenesis and
indicator of poor survival outcome (28). Our results showed that
FGF10 increased the expression levels of VEGF and Slug in
KKU-M213A cells. Likewise, FGF2 induces angiogenesis by
activating the SRSF1/SRSF3/SRPK1 pathway that regulates
VEGFRI1 alternative splicing in endothelial cells (29). In
addition, VEGF-C has been implicated in epithelial-
mesenchymal transition (EMT) through Slug up-regulation in
skin cancer (30). Notably, Slug expression is a crucial factor in
EMT and a prognostic marker for intrahepatic CCA with lymph
node metastasis (31). Other pro-angiogenic factors were also
investigated following FGF10 treatment. The result of protein
array showed that FGF10 induced the up-regulation of PDGF-
BB expression, which plays roles in the regulation of survival
and apoptosis in CCA (32). Moreover, FGF10 also increased
the expression levels of IL-1a and IL-1f, which are required
for tumor invasiveness and angiogenesis (33). IL-1f can
activate VEGF expression through the PI3-K/mTOR pathway
(34). This is consistent with our finding of up-regulated levels
of VEGF in CCA cells after exposure to FGF10. Additionally,
a study on breast cancer cells showed that FGF10 induction
enhanced matrix metalloproteinase-9 expression and decreased
TIMP1 expression, which is an inhibitor of angiogenesis (24).
This result is consistent with our study that found the expression
levels of TIMP1 to be decreased in CCA.

Pemigatinib, the first FGFR inhibitor, was approved by the
USFDA in April, 2020 for the treatment of CCA patients with
FGFR2 fusion or rearrangement. Among all the FGFR
inhibitors, infigratinib was used to suppress FGFR2 activity in
our CCA model. Immunoblotting analysis confirmed that
infigratinib suppressed p-FGFR and FGFR2 expression levels
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in KKU-M213A cells. The drug also decreased the
proliferation and migration of CCA cells. Notably, infigratinib
interrupted cell migration mediated by FGF10 through FGFR2
and probably via AKT/mTOR signaling. This finding is
consistent with a previous report in a gastric cancer model.
Huang et al. reported that exogenous FGF7 promotes the
invasion and migration of human gastric cancer cells via
FGFR?2 and thrombospondin 1. Moreover, this signal activation
can be suppressed using FGFR and mTOR inhibitors (35).

In conclusion, the present study demonstrated that
FGF10/FGFR2 promotes the up-regulation of the Akt/mTOR
and VEGF/Slug pathways, which are associated with the
regulation of migration and invasion in CCA. The role of
FGFR inhibitors in suppressing cell migration mediated by
FGF10 was also highlighted. Our findings warrant further
elucidation of FGF10/FGFR2/AKT/mTOR as a potential
target for metastatic CCA.
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