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Abstract 
Background.  IDH-wildtype glioblastoma (GBM) is a highly malignant primary brain tumor with a median survival 
of 15 months after standard of care, which highlights the need for improved therapy. Personalized combination 
therapy has shown to be successful in many other tumor types and could be beneficial for GBM patients.
Methods.  We performed the largest drug combination screen to date in GBM, using a high-throughput effort 
where we selected 90 drug combinations for their activity onto 25 patient-derived GBM cultures. 43 drug combin-
ations were selected for interaction analysis based on their monotherapy efficacy and were tested in a short-term 
(3 days) as well as long-term (18 days) assay. Synergy was assessed using dose-equivalence and multiplicative 
survival metrics.
Results.  We observed a consistent synergistic interaction for 15 out of 43 drug combinations on patient-derived 
GBM cultures. From these combinations, 11 out of 15 drug combinations showed a longitudinal synergistic effect 
on GBM cultures. The highest synergies were observed in the drug combinations Lapatinib with Thapsigargin and 
Lapatinib with Obatoclax Mesylate, both targeting epidermal growth factor receptor and affecting the apoptosis 
pathway. To further elaborate on the apoptosis cascade, we investigated other, more clinically relevant, apoptosis 
inducers and observed a strong synergistic effect while combining Venetoclax (BCL targeting) and AZD5991 (MCL1 
targeting).

Screening of predicted synergistic multi-target 
therapies in glioblastoma identifies new treatment 
strategies  
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Conclusions.  Overall, we have identified via a high-throughput drug screening several new treatment strat-
egies for GBM. Moreover, an exceptionally strong synergistic interaction was discovered between kinase 
targeting and apoptosis induction which is suitable for further clinical evaluation as multi-targeted combi-
nation therapy.

Key Points

1. Identification of novel synergistic drug combinations via high-throughput drug 
screening in GBM.

2. Co-inhibition of kinases and apoptosis signaling highlights that inhibition of 
compensatory survival pathways form a deep vulnerability in GBM

Isocitrate dehydrogenase (IDH)-wildtype glioblastoma 
(GBM) is a highly aggressive and heterogeneous brain 
tumor in adults. The standard therapy consists of a regime 
defined 2 decades ago: maximal surgical resection and ra-
diotherapy combined with temozolomide.1,2 Acquired or 
inherent therapy resistance, as well as tumor cell hetero-
geneity, are seen as the cause of the inevitable relapse of 
the tumor resulting in a median survival of approximately 
15 months.3,4 Over the last decade, extensive efforts have 
been made to discover new targeted therapies against 
GBM based on the favorable results observed in other 
tumor types.5–7 Most of these efforts have not been suc-
cessful, although partial efficacy in up to 20% of patients 
has been seen.8–10 For example, Larotrectinib has shown 
benefits and even led to durable disease control in some 
patients with primary central nervous system tumors.9,11,12 
These partial efficacies provide a starting point from which 
to treat larger patient populations.

As an alternative to overcome drug resistance and tackle 
tumor cell heterogeneity in GBM, the focus has shifted 
from targeted monotherapies to studying the effect of drug 
combination therapy.13,14 Such drug combination therapies 
can successfully overcome therapy resistance by simulta-
neously targeting multiple redundant or independent sur-
vival pathways, crucial for cell growth and survival.15,16

Assessing the effect of drug combination therapy in a 
preclinical setting is challenging in comparison to mono-
therapy. First, drug interaction measurements should be 
reflective of biological intracellular interactions. These 

interactions can have their own, non-linear dynamics, 
ranging from synthetic lethal, synergistic, additive to un-
desired antagonistic interactions.17–19 Second, an almost 
unlimited number of theoretical drug combinations ne-
cessitates the pre-selection of the most promising drug 
combinations.

There are two major metrics by which synergistic inter-
actions can be assessed, either through a dose equiva-
lence or through a multiplicative survival-based method. 
As yet, there is no consensus as to which method should 
be used given their different, sometimes mutually ex-
clusive, interpretations of the interaction.20–24 Dose 
equivalence is based on the idea that if drug concentra-
tion A is reduced, it can be compensated by increasing 
drug concentration B to reach the same lethal effect.25 
Multiplicative survival assumes that both drugs act in-
dependently where the viability effect of each drug con-
tributes to its expected additive lethal effect.26–28 Since 
dose-equivalence and multiplicative survival are either 
based on multiple doses or viability at a single dose, the 
interpretation can lead to conflicting outcomes ranging 
from a drug combination that leads to lower viability 
without showing a dose shift to a drug combination that 
yields a dose shift without a noticeable viability effect. For 
completeness, here we use both methods in parallel to 
determine synergy.

Several in silico models have been developed to prese-
lect drugs for synergy studies, including SynergyFinder 
2.0 and the Cancer Drug Atlas.29–31 In this study, we 

Importance of the Study

Despite intensive efforts in the last decade to improve 
the treatment of IDH-wildtype glioblastoma (GBM) pa-
tients, recurrence of the tumor remains inevitable. 
Identifying effective drug combinations against GBM 
could improve therapeutic effects but has been difficult 
so far. Here we report the largest high-throughput drug 
combination screen to date, where we matched multi-
target combinations to common genetic events as seen 
in patients. We identified 15 synergistic drug combin-
ations, among those we observed exceptionally high 

synergy with drug combinations targeting EGFR, ERBB2, 
BCL2, MCL1, or Calcium ATPase. Our results implicate 
that simultaneous survival pathway inhibition of mul-
tiple proteins within the kinase and apoptosis pathway 
is needed to come to strong drug interactions. Our data 
provide a strong basis for further clinical assessment 
of the identified tailored multi-target therapy and point 
toward the need for pharmacokinetic assessment to 
translate our findings towards the clinic.
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evaluated 90 drug combinations predicted to work syn-
ergistically according to the Cancer Drug Atlas.29 These 
drug combinations were matched to personalized ge-
netic features as they occur in GBM patients and as-
sessed through a drug combination screen on a panel of 
25 patient-derived and molecular-defined GBM cultures 
that reflect intra- and interpatient heterogeneity as well as 
tumor resistance.

The drug combination screens showed, in both short- 
and long-term, a high synergistic effect between agents 
that target kinases, like epidermal growth factor receptor 
(EGFR) and erythroblasts oncogene B2 (ERBB2/HER2), and 
agents that broadly target the apoptosis pathway including 
BCL2, MCL1, or Calcium ATPases. Overall, our results sug-
gest that combined survival pathway inhibition within the 
kinase and apoptosis pathways is a major vulnerability of 
GBM which can be further exploited.

Methods

Frequency of Genetic Events

GBM clinical data of 393 patients present in the Cancer 
Genome Atlas (TCGA) was analyzed for copy number var-
iations and mutations to assess the frequency of genetic 
events.32 Our analysis excluded gene fusions since they 
are very uncommon in GBM. We evaluated the frequency 
of amplifications, deep deletions, gains, and losses, as well 
as mutations in 14 genes that are frequently affected in 
GBM. Driver genes were selected based on their presence 
in the Cosmic-Cancer Mutation Census database (https://
cancer.sanger.ac.uk/cosmic). For tumor suppressors, ho-
mozygous loss was considered a driving event. For pa-
tients where no apparent tumor-driving genes could be 
defined, drug combinations that included general cytotoxic 
or metabolic drugs were chosen. If no drugs were available 
for the target, the genes were excluded at the time of re-
trieving the data.

Cell Culture and Compounds

BS153 was kindly provided by Prof. Zippelius (Beatrice 
Dolder Universitatsspital, Basel, Switzerland) and cul-
tured in Dulbecco’s Modified Eagle’s Medium (DMEM, 
ThermoFisher Scientific, Waltham, MA, USA) supple-
mented with 10% Fetal Bovine Serum (Serana, Pessin, 
Germany) and 1% penicillin/streptomycin (ThermoFisher 
Scientific, Waltham, MA, USA). Glioblastoma sphere 
cultures (GSCs) were kindly provided by Dr. Bhat (The 
University of Texas MD Anderson Cancer Center, Houston, 
TX, USA) and Prof. Sulman (NYU Langone’s Perlmutter 
Cancer Center/NYU Grossman School of Medicine, New 
York, NY, USA), they were established via single-patient 
surgical resection. GBM8 was kindly provided by Dr. 
Bakhos Tannous (Harvard/MGH, Boston, MA, USA). Cells 
were cultured as described earlier.29 All GBM cultures were 
certified mycoplasma free by regular testing via http://
www.microbiome.nl/.

Stock concentrations of 10  mM in 100% dimethyl 
sulfoxide (DMSO) were used for drug experiments, 

except for Bleomycin Sulfate, for which a stock con-
centration of 7.4 mM was used due to a lower solubility. 
See Supplementary Table 3 for storage and supplier 
information. For Drug selection and IC50 assays see 
Supplementary Methods.

Drug Combination Screen Short-term

BS153, GBM8, and 23 GSCs were seeded in µClear® 384-
well Flat-bottom plate 24 h before treatment. All cells were 
plated at a cell density of 3000 cells/well, except BS153 
(2000 cells/well), GSC7-2, and GSC23 (2500 cells/well). 
Based on the sensitivity of each cell line, we adapted the 
drug range in which the drug combination was tested per 
cell line aiming to start around the IC50. We defined the 
highest tested drug concentration and from there diluted 
it 3-fold (Supplementary Tables 5–7). The drug combina-
tion treatment was added with the Tecan D300E dispenser. 
After 72 h of drug exposure, cell viability was measured 
with CellTiter-Glo 3D luminescent Cell Viability Assay as 
described above. RLUs were normalized based on DMSO 
control (≤0.1% DMSO in dual combinations, ≤0.5% in triple 
combinations). Each drug combination treatment was per-
formed in technical duplicates and biological replicates 
were established for 15 drug combinations that showed 
synergy.

Ethics Statement

The derivation and use of human cell lines derived from 
patients is covered under the approval of the institutional 
Biobank review board at the Amsterdam UMC location 
VUMC, MDACC Institutional Review Board at MD Anderson 
and Massachusetts General Hospital. Patient materials 
were obtained after routine diagnostics, coded according 
to the National Code for the Good Use of Patient Material, 
were exempt from informed consent.

Results

Drug Combinations Were Selected Based on 
Sensitivity Results

GBM is difficult to treat due to therapy resistance and 
intratumoral heterogeneity, resulting in the recurrence of 
the tumor in patients. We envision that personalized combi-
nation therapies might lead to more effective treatment by 
providing more than additive (ie, synergistic) interactions. 
Synergy leads to stronger efficacies, may delay or even 
prevent therapy resistance, and avoids toxicity because 
lower doses can be applied. For this reason, we selected 
drug combinations for which the majority was matched to 
patients’ tumor-driving genes as commonly seen in GBM 
patients (frequencies are based on TCGA; n = 393 patients; 
Figure 1A).

Around 68% of GBM patients showed tumor-driving 
amplifications, mutations, or deep deletions in the 
following driver genes: EGFR, cyclin-dependent ki-
nase inhibitor 2A (CDKN2A), Phosphatase and tensin 

https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
http://www.microbiome.nl/
http://www.microbiome.nl/
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
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homolog (PTEN), PDGFRA, Phosphatidylinositol-4,5-
Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA), 
Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1), 
MDM2, Neurofibromin 1 (NF1), and IDH. IDH1 mutation (ie, 
R132H) was excluded since we had no models representing 
this mutation. Gene fusions were also excluded due to 

infrequent occurrences. The genes human Telomerase 
Reverse Transcriptase (hTERT), cyclin-dependent ki-
nase inhibitor 2B (CDKN2B), Tumor protein P53 (TP53), 
Retinoblastoma 1 (RB1), and Alpha Thalassemia/Mental 
Retardation Syndrome X-Linked (ATRX) were excluded 
due to the absence of a target or the non-availability of a 
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Figure 1. Overview of drug combination selection. (A) Pie chart showing the frequency of genetic events in GBM based on clinical data from 
TCGA and alongside a table with the clinical manifestation represented in percentage per driver gene. (B) Overview of the Cancer Drug atlas 
which was used, combined with the frequency of genetic events, to select the 90 drug combinations for driver and non-driver genes as pre-
sented in the table. Including 61 drug combinations targeting proteins of driver genes (68%) and 29 drug combinations for non-drivers (32%). (C) 
Dose-response curve of Lapatinib on 5 GBM cultures which was used, combined with all the other dose-response curves (see data availability, 
IC50 curves), to filter the 90 drug combinations based on the individual sensitivity of each monotherapy on each of the GBM cultures. The table 
includes the distribution of the 43 drug combinations selected, including 31 drug combinations targeting driver genes and 12 drug combinations 
for non-drivers.



N
eu

ro-O
n

colog
y 

A
d

van
ces

5Houweling et al.: Multi-target therapies in glioblastoma

drug. Since CDKN2A loss leads to Cyclin-dependent kinase 
4/6 (CDK4/6) activation, we included CDK4 as a substitution 
for CDKN2A loss. The remaining 32% of patients had no 
druggable genetic aberration or no clear driver gene (n = 
124 patients).

Previously, our laboratory created a computer algo-
rithm called the Cancer Drug Atlas, which enables us 
to predict which drug combinations are likely to syn-
ergistically eliminate cancer cells in a tailored way.29 
This synergy prediction algorithm was based on Sanger 
GDSC1000 and Novartis/Broad CCLE drug-encyclopedia 
data and was applied here to predict drug combinations 
that match tumor-driver genes. Drug combinations were 
matched based on the frequency of the presence or ab-
sence of genetic events (Supplementary Tables 1 and 2). 
In total, 88 drug combinations were selected (Figure 1B), 
reflecting 45 monotherapies (Supplementary Table 3). We 
assessed the sensitivity of each of these monotherapies 
on our panel of patient-derived GBM cultures (See data 
availability: Supplementary Data IC50). Based on the lack 
of drug sensitivity, we excluded 15 monotherapies re-
sulting in a final list of 43 drug combinations (Figure 1C 
and Table 1).

The Panel of GBM Cultures Matches Molecular 
GBM Characteristics

To test drug combinations, we first characterized our labo-
ratory tumor models since GBM shows strong inter-patient 
heterogeneity. To mimic the clinical setting as closely as 
possible, we used a panel of 24 patient-derived GBM cell 
lines which were cultured in Neuro-Basal Medium and 
grew in spheroids. One serum-grown cell line, BS153, was 
added to the panel since it has a strong amplification of 
the EGFR locus. Of all the 25 cell lines a copy number var-
iant profile was created based on the results of EPIC anal-
ysis (Figure 2A). All cell lines in the panel have a gain of 
chromosome 7 and therefore at least a gain of EGFR, char-
acteristic of GBM. In 9 cell lines, we observed high-copy 
amplification of the EGFR locus. Chromosome 10 partial 
or complete loss was observed frequently as well, further 
supporting the panel of GBM cell cultures matching mo-
lecular characteristics of human GBMs. Homozygous loss 
of CDKN2A/B was seen in 15 cell lines. Other interesting 
aberrations in our panel of GBM cultures were seen in RB1, 
PTEN, PDGFRA, MYC, MDM2/4, MYB, Patched 1 (PTCH1), 
and CDK4 (Figure 2B).

Genetic aberrations in patient-derived GBM cultures 
could to some degree be matched to the drug inhibiting the 
protein of the respective genetic event. For instance, higher 
sensitivity to Lapatinib, an EGFR, and ERBB2 targeting 
drug, was observed for GSC11 (which is highly EGFR amp-
lified) compared to GBM8 (EGFR gain) (Figure 2C). For the 
PDGFRA targeting drug Sunitinib, high sensitivity was 
seen for GBM8, matching its PDGFRA amplification, as 
compared to GSC11 for which a much lower sensitivity was 
seen (PDGFRA wildtype). Drugs not aimed at proteins of 
GBM driver genes but rather targeting mechanisms related 
to cell survival, such as MG-132 (Proteasome) and PHA-
665752 (MET), led to a more or less similar response in all 
GBM cultures.

15 Out of 43 Dual-Drug Combinations Work 
Synergistically on 25 GBM Cultures

To assess synergy, the 43 selected drug combinations were 
tested on all 25 GBM cultures. Drugs were titrated in a 6 × 6 
matrix in which the highest concentration was chosen such 
that the IC50 concentration was reached and from this con-
centration onwards diluted in 3-fold steps (Figure 3A and 
Supplementary Table 5). Given the ongoing debate in the 
field about whether synergy assessment should be dose 
or effect based, which cannot always be reconciled, we as-
sessed drug interactions through 2 fundamentally different 
approaches, that is, dose equivalence or multiplicative sur-
vival, respectively.20,22 Firstly, we assessed synergy allowing 
antagonism through 2 dose-equivalence methods (the Loewe 
additivity model and the Highest single agent (HSA) model). 
We also used a multiplicative survival method (the Bliss 
Independence model) and assessed per drug combination 
the lowest tumor cell viability to determine the tumoricidal ef-
fect because synergy does not always translate to therapy ef-
ficacy. Using the Combenefit software, we assessed synergy 
as the sum of synergy and antagonism simultaneously. To 
normalize the different numerical amplitudes of the synergy 
metrics and viability, we normalized them using z-values, 
which allowed clustering to identify similarities between dif-
ferent synergy models. Clustering was performed via Model-
based clustering, more specifically via Gaussian mixture 
models, which led to the optimal 3 clusters (Figure 3B). When 
comparing these 3 different clusters via the Loewe additivity 
model, Cluster 2 (Red) included drug combinations that have 
a higher synergy score compared to Cluster 3 (Yellow) and 
Cluster 1 (Blue) (Figure 3C). Furthermore, we observed a 
stronger tumoricidal effect in viability for the drug combin-
ations in Cluster 2 and Cluster 3 compared to Cluster 1 (Figure 
3D). We aimed to find drug combinations that consistently 
provide a synergistic effect as assessed through LOEWE, 
HSA, and Bliss in combination with a strong effect on via-
bility. As shown in Figure 3E, Cluster 2 (Red) contains 18 com-
binations that met these criteria.

To validate the data independently from the previous 
method, we analyzed the data based on synergy only. We 
assessed synergy through 2 dose-equivalence methods 
(Loewe additivity and HSA) and 2 multiplicative survival 
methods (the Bliss Independence model, Chou and Talalay 
mutual non-exclusive method) as well as the effect on vi-
ability and performed K-mean clustering (Supplementary 
Figure 1). This confirmed the previous interpretation, 
where 15 drug combinations show consistent clustering 
linked to synergy and tumoricidal efficacy in both ana-
lyses. These were followed up for further study. The effects 
of the 15 drug combinations were reproduced independ-
ently onto the 25 GBM cultures and this led to a signifi-
cantly reproducible synergy via Loewe additivity, HSA, 
Bliss independence, Chou and Talalay, and minimum via-
bility (Supplementary Figure 2).

Multiple Drug Combinations Have a Long-term 
Synergistic Effect on GBM Cultures

To be able to translate these combinations to the clinic, 
we investigated whether synergy remains stable over a 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
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Table 1. List of 43 Drug Combinations, Including Target and Prediction Synergy Score, Selected for High-throughput Screening

Number in screen Drug 1 Drug 2 Prediction synergy score1 

(0–520)

1 CGP-082996 (CDK4) Gemcitabine (Base analogue) 503

2 CGP-082996 (CDK4) Vinorelbine (Alkylating) 426

3 CGP-082996 (CDK4) Obatoclax Mesylate (BCL2 and MCL1) 400

4 Lapatinib (EGFR and ERBB2) Gemcitabine (Base analogue) 424

5 Lapatinib (EGFR and ERBB2) Vinorelbine (Alkylating) 403

6 Lapatinib (EGFR and ERBB2) Obatoclax Mesylate (BCL2 and MCL1) 398

7 Erlotinib (EGFR and ERBB2) Gemcitabine (Base analogue) 420

8 Erlotinib (EGFR and ERBB2) Vinorelbine (Alkylating) 392

9 Erlotinib (EGFR and ERBB2) Obatoclax Mesylate (BCL2 and MCL1) 394

10 CGP-082996 (CDK4) Thapsigargin (Ca2+ ATPase) 438

11 Lapatinib (EGFR and ERBB2) Thapsigargin (Ca2+ ATPase) 394

12 Erlotinib (EGFR and ERBB2) Thapsigargin (Ca2+ ATPase) 390

13 CGP-082996 (CDK4) Tipifarnib (Farnesyl transferase) 395

14 CGP-082996 (CDK4) Bleomycin (Antitumor antibiotic) 426

15 CGP-082996 (CDK4) Etoposide (TOPO2) 433

16 CGP-082996 (CDK4) Mitomycin C (DNA crosslinking) 432

17 CGP-082996 (CDK4) Doxorubicin (Anthracyclines) 403

18 CGP-082996 (CDK4) Shikonin (RSK) 404

19 Lapatinib (EGFR and ERBB2) Tipifarnib (Farnesyl transferase) 435

20 Lapatinib (EGFR and ERBB2) Bleomycin (Antitumor antibiotic) 395

21 Lapatinib (EGFR and ERBB2) Shikonin (RSK) 388

22 Tipifarnib (Farnesyl transferase) NVP-TAE684 (ALK) 514

23 Tipifarnib (Farnesyl transferase) A-770041 (SRC) 441

24 Tipifarnib (Farnesyl transferase) Sunitinib (PDGFR) 405

25 Tipifarnib (Farnesyl transferase) Pazopanib (PDGFR) 424

26 Sunitinib (PDGFR) Gemcitabine (Base analogue) 503

27 Pazopanib (PDGFR) Gemcitabine (Base analogue) 437

28 Pazopanib (PDGFR) BMS-536924 (HGFR) 307

29 Etoposide (TOPO2) NVP-TAE684 (ALK) 404

30 Etoposide (TOPO2) A-443654 (AKT 1/2/3) 404

31 RG7112 (MDM2) Sunitinib (PDGFR) Not calculated2

32 RG7112 (MDM2) Pazopanib (PDGFR) Not calculated2

33 RG7112 (MDM2) CGP-082996 (CDK4) Not calculated2

34 MG-132 (Proteaome) Vinorelbine (Alkylating) 124

35 PHA-665752 (MET) NVP-LAQ824 (HDAC) 147

36 Thapsigargin (Ca2+ ATPase) AP-24534 (MTOR) 138

37 Thapsigargin (Ca2+ ATPase) Midostaurin (KIT) 128

38 WH-4-023 (SRC) Vinorelbine (Alkylating) 148

39 WH-4-023 (SRC) AUY922 (HSP90) 140

40 Bleomycin (Antitumor antibiotic) OSI-906 (IGFR) 219

41 Bleomycin (Antitumor antibiotic) GSK269962A (ROCK) 216

42 Bleomycin (Antitumor antibiotic) A-770041 (SRC) 135

43 Bleomycin (Antitumor antibiotic) WH-4-023 (SRC) 131

1Prediciton synergy score is based on a logistic regression model, according to the model available at https://github.com/bartwesterman/drug-atlas; 
2Predicted synergy score was not calculated due to the lack of MDM2 targeting drugs in the Cancer Drug Atlas. 

 

https://github.com/bartwesterman/drug-atlas
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longer time frame. This had to be restricted to 3 GBM cul-
tures for practical reasons. We choose 3 GBM cultures rep-
resentative of the major genetic profiles as they occur in 
patients, GBM8 (PDGFRA/MYCN amplified), GSC11 (EGFR 
amplified), and GSC7-10 (EGFR gain). These 3 cultures 
were plated in a 96-well plate to form a single spheroid 
and were exposed in a time frame of 18 days twice for 5 
consecutive days to the same drug combinations. We fol-
lowed the spheroid growth via imaging each well and the 
cell viability was assessed using CellTiter-Glo 3D on day 
18 to calculate synergy with antagonism included (Figure 
4A, B). The longitudinal synergy effect of the 15 drug com-
binations is ranked based on Loew additivity (Figure 4C). 
The highest-ranked Loewe additivity was observed with 
Lapatinib and Thapsigargin in GSC11, an EGFR-amplified 
cell line. Lapatinib in combination with Obatoclax 
Mesylate showed a consistently high synergy in all 3 GBM 
cultures, only linked to EGFR amplification in synergy-only 
conditions (Figure 4C, Supplementary Figure 3). Overall, 
11 out of 15 drug combinations lead to a longitudinal syn-
ergistic effect.

Furthermore, we compared the reproducibility of the 
technical and biological synergy determined via the Loewe 
additivity model. The technical replicates were significantly 
similar (Supplementary Figure 4A). Biological reproduci-
bility was difficult to establish (Supplementary Figure 4B).

Targeting EGFR and Apoptosis is a Generalized 
Mechanism of Action Leading to Synergy

Through the longitudinal synergy assessment in GBM cul-
tures, we observed that targeting EGFR and apoptosis is a 
generalized mechanism that gives a prolonged response. 
Lapatinib in combination with Obatoclax mesylate and in 
combination with Thapsigargin gave a high synergistic ef-
fect. Obatoclax Mesylate is a broad BCL-targeting drug and 
Thapsigargin is an inhibitor of calcium ATPase. As follow up 
we investigated the relevance of apoptosis signaling in GBM 
with a focus on drugs that would be applicable in the clinic.

To improve the translatability to the clinic, we searched 
for a replacement for Obatoclax Mesylate that targets the 
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Figure 2. Human molecular GBM characteristics are represented in cell culture models. (A) Copy number variant (CNV) profiles of the 25 GBM 
cultures based on global methylation markings (EPIC array) show patterns that are representative of GBM where chromosome 7 gain and chro-
mosome 10 loss are commonly observed. (B) Summary overview of gain/loss (light red) or amplification/deep loss (dark red) or wildtype (light 
blue) in interesting oncogenes (red) and tumor suppressor genes (blue) in the different GBM cultures. (C) Four dose-response curves show tumor 
driver as well as generalized dependencies. The dose (on the x-axis) and the cell viability (on the y-axis) of Lapatinib (EGFR targeting), Sunitinib 
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http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
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same proteins. Obatoclax Mesylate is defined as a broad 
BCL-targeting drug, including BCL2 and MCL1, but with 
a low specificity in a micromolar range. From the avail-
able MCL1 and BCL2 targeting drugs, Venetoclax and 
AZD5991 have high potency for their respective targets 
compared to Obatoclax Mesylate (Figure 5B, C). Based 
on these characteristics, we tested Lapatinib in combi-
nation with Venetoclax (BCL2); Lapatinib in combination 

with AZD5991 (MCL1); Venetoclax in combination with 
AZD5991 (Figure 5A).

Lapatinib in combination with either Venetoclax 
or AZD5991 led to similar synergies as observed 
with Lapatinib in combination with Thapsigargin or 
Obatoclax Mesylate (Figure 5D, Supplementary Figure 5). 
Interestingly, Venetoclax with AZD5991 showed to have a 
compelling high dose-equivalence score compared to the 
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Figure 3. Model-based clustering of z-scale-normalized synergy and viability shows that 18 out of 43 drug combinations show a consistent drug 
interaction over 25 GBM cultures. (A) Schematic overview of assay set-up showing that on day 0, cells were seeded in a 384-well plate, and after 
24 h, each drug combination was added via consecutive titration into a 6 × 6 matrix. On day 4, a CellTiter-Glo 3D readout was performed and cell 
viability results were analyzed via Combenefit. (B) Dimension reduction plot of synergy and viability results (z-scores) showing 3 clusters present 
in 43 drug combinations based on model-based clustering, that is, cluster 1 (blue, n = 11, additive with limited viability loss), cluster 2 (red, n = 
18, synergy with viability loss), and cluster 3 (yellow, n = 14, additive with viability loss). (C) Mixed Scatter and Box and Whisker plot showing 
the raw median Loewe additivity (on the y-axis) for each cluster, showing a higher Loewe additivity in Cluster 2 compared to Cluster 3 and 1. (D) 
Scatterplot combined with a Box and Whisker plot showing a strong effect on minimum viability (on the y-axis) in clusters 2 and 3 compared to 
cluster 1. (E) Heatmap including raw synergy scores via Loewe additivity model, Highest single agent model, Bliss independence model, and the 
effect on minimum viability of 43 drug combinations on 25 GBM cultures ordered via the clusters retrieved via Z-score Model-based clustering. 
The heatmap shows a high synergy score for the 18 drug combinations included in cluster 2 (red). A high raw sum synergy score or strong effect 
on viability is shown in red, and antagonism or no effect on viability is shown in blue (see legend for numerical range for each synergy model). 
Data are average raw synergy scores (sum of synergy and antagonism) or Z-scores of 2 technical replicates. See Supplementary Table 8 for raw 
synergy values, see data availability for source data. Data in scatterplot/Box and Whisker plot are raw median synergy scores (n = 2) per drug 
combination (n = 43) of 25 GBM cultures ± Whiskers Tukey.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data
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other dual drug combinations. Hence highlighting the re-
dundancy of the BCL2 and MCL1 targets.

Together, these results show that from a prioritized set 
of 43 drug combinations, 11 drug combinations have a 
long-term synergistic effect on GBM. Furthermore, the ap-
optosis pathway showed to be one of the mechanisms in-
volved in this long-term effect in GBM cells.

Discussion

In recent years, targeted therapy has been explored un-
successfully in clinical trials for GBM.6 Moreover, high-
throughput tailored drug combination screens have yet to 
be performed in GBM. This is an important omission, since 
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tures. For spheroid phase-contrast images and cell viability see data availability. See Supplementary Table 11 for synergy values.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad073#supplementary-data


 10 Houweling et al.: Multi-target therapies in glioblastoma

synergistic combination therapy may allow lower dosing, 
favoring an optimal efficacy versus adverse events toxicity 
ratio in these patients and overcome therapy resistance.

The prediction of synergistic drug combinations is very 
challenging due to the enormous complexity of possible 
interactions that might each be dose dependent. Here, 
we have performed the largest tailored drug combination 
screen to date in GBM, using a high-throughput effort 
where we selected 90 drug combinations for their ac-
tivity in 25 patient-derived GBM cultures. We prioritized 
drug combinations based on our previously established 
in silico model called the Cancer Drug Atlas,29 matched 
them to the frequency of genetic driver events in GBM 
patients and then selected 43 drug combinations for fur-
ther evaluation based on the in vitro monotherapy ef-
fect. From these, 15 combinations showed a consistent 
synergistic as well as a tumoricidal effect over 25 GBM 
cultures. This consistent pattern was identified through 
a novel synergy evaluation method where z-scale 
normalized synergy and viability values were clustered, 

consolidating dose equivalence, multiplicative survival 
as well as total survival. We subsequently tested the 
synergistic effect of the selected 15 drug combinations 
in a long-term assay (ie, 18 days of drug exposure), to 
identify which combinations provide a prolonged effect 
without being overtaken by therapy resistance. In total 11 
out of 15 drug combinations showed a longitudinal syn-
ergistic effect. Together, these data form a novel and ex-
tensive resource for drug combination therapy in GBM, 
which includes several synergistic combinations that 
could be interesting for further study.

Lapatinib with Thapsigargin and Lapatinib with 
Obatoclax Mesylate showed to be the top-ranked syner-
gistic combinations in GBM cultures in the long-term assay. 
Both combinations target the kinase EGFR and the apop-
tosis pathway. The discovery of targeting the oncogenic 
driver EGFR and its redundant partner ERBB2, in combina-
tion with dual BCL-family targeting, forms a new strategy 
against GBM. It is not only a targeted therapy but tailored 
as well for tumors with an EGFR amplification since the 
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most significant synergistic effect was seen in GSC11 cells 
in which EGFR is amplified. A similar synergistic effect can 
be expected in other tumors with an EGFR gain or ampli-
fication. In contrast, a tumor culture that relies more on 
PDGFRA for cell survival and growth, such as GBM8, may 
be less responsive to this combination therapy.

The potency of the drugs is very important for the trans-
latability of this new treatment strategy. We, therefore, 
interrogated the apoptosis pathway further by replacing 
Obatoclax Mesylate with Venetoclax (BCL2 inhibitor) or 
AZD5991 (MCL1 inhibitor) which targets the apoptosis 
pathway as well but with higher sensitivity compared to 
Obatoclax Mesylate. Venetoclax and AZD5991 both act 
in a nanomolar range. Interestingly, the combination of 
Venetoclax and AZD5991 on its own led to a high syn-
ergy score in GBM. This highlights that targeting multiple 
apoptosis-related proteins on itself already leads to strong 
synergistic effects.

Furthermore, the pharmacokinetics and toxicity of the 
drugs and their combination play an important role as 
well. In order to test the identified combinations in mice 
to assess their translatability to the clinic, several con-
siderations should be taken into account. First, the phar-
macokinetics of drugs and their combination should be 
aligned such that cells are affected simultaneously at 
sufficient doses. Therefore, a pharmacokinetic study to 
measure free drug concentrations in the brain will indi-
cate the feasibility of the approach. Lapatinib has shown 
to be well tolerated in phase I/II studies, but due to in-
adequate delivery into the brain, might not be the best-
suited inhibitor.33 Other dual kinase inhibitors, such as 
AZD3759, might be better suitable for future studies.34 
Regarding toxicity, Venetoclax treatment can be associ-
ated with tumor lysis syndrome, although several clin-
ical studies do show a safe long-term continuous use of 
Venetoclax in chronic Lymphocytic Leukemia and non-
Hodgkin Lymphoma.35–37 Furthermore, MCL-1 inhibitors 
are associated with cardiovascular toxicities, which might 
be enhanced in combination with Venetoclax.38 Therefore, 
close health monitoring is needed when combining these 
drugs. For Venetoclax and AZD5991 the blood-brain bar-
rier penetration is unknown.

In order to test interactions of drugs in mice, an assess-
ment of the contribution of each drug to the sum of effects 
is required to validate the composite effect between all 
drugs. The interaction can be shown through effect based 
(ie, multiplicative survival) or potency based (ie, dose 
equivalence) methods, although the latter require many 
more mice because multiple doses will have to be evalu-
ated. The multiplicate method using doses close to the 
maximal tolerable dose followed by a statistical assess-
ment based on Bliss independence would be the most 
straightforward method.

In conclusion, by using an unbiased computational pri-
oritization coupled with high-throughput screening, we 
have identified a striking new treatment regime for GBM. 
Long-term synergy was found when co-inhibiting kinases 
and apoptosis signaling which highlights that inhibition of 
compensatory survival pathways form a deep vulnerability 
in this tumor type. Research into the pharmacokinetics, in-
cluding blood-brain barrier penetration and target engage-
ment of the identified drugs, as well as their combinations, 

or possible new candidate drugs for the identified targets 
are now needed to pave the way for translation towards 
the clinic.
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