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Commentary

Introduction

While regular physical activity promotes health in people 
living with type 1 diabetes (T1D), exercise may provoke 
hypoglycemia.1 In the 100 years following the initial thera-
peutic use of insulin, several technological and pharmaco-
logical advances have made exercise safer. These advances 
include new insulin analogues, continuous glucose monitor-
ing (CGM), and, most recently, closed-loop (CL) insulin 
delivery systems. This commentary reviews the benefits, and 
challenges, associated with CL insulin dosing for people 
with T1D who exercise and discusses potential technical 
advances which may address the limitations of current com-
mercially available systems.

Benefits of Exercise

There have been a multitude of publications demonstrating 
an association between exercise and good health mediated by 
improvements to dyslipidemia, hypertension, visceral obe-
sity, chronic inflammation, insulin resistance, and well-
being.2 This is of particular relevance to those with T1D with 
evidence confirming that exercise improves physical and 
psychological well-being in this group.3-5

In recognition of these benefits the American Diabetes 
Association advises that, in the absence of contraindications, 

adults with T1D should aim to perform at least 150 minutes of 
moderate- to vigorous-intensity aerobic exercise per week 
including two to three resistance sessions.4 However, despite 
these benefits, people with T1D are often less active due to 
glycemic management challenges associated with exercise.6,7

Physiology of Exercise and T1D

Carbohydrate utilization as an energy substrate increases 
with exercise intensity. To maintain blood glucose homeosta-
sis during prolonged exercise, counterregulatory hormone 
release (ie, glucagon, catecholamines, cortisol, and growth 
hormone) and sympathetic neural activity respond to 
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progressively increase hepatic glucose production. During 
moderate-intensity exercise (MIE), where the counterregula-
tory response is modest, insulin requirements fall rapidly 
with physical activity as muscle contraction-mediated glu-
cose uptake increases.8-10 In contrast, during predominately 
anaerobic or high-intensity exercise (HIE) and resistance 
exercise (RE), there is an augmented rise in counterregula-
tory hormones to increase endogenous glucose release and 
attenuate the exercise-associated rise in muscle insulin sensi-
tivity. Consequentially, in individuals without diabetes, insu-
lin secretion does not decrease as markedly during HIE and, 
in some instances, may increase to address a robust counter-
regulatory response.11

The pharmacokinetics of exogenous subcutaneous insulin 
delivery brings significant limitations, namely the lack of 
direct secretion of insulin into the portal vein. Once infused 
into the subcutaneous tissue, circulating insulin levels cannot 
rapidly decrease, and may in fact rise because of increased 
subcutaneous blood flow with exercise. Consequently, for 
those with T1D undertaking MIE, glucose levels typically 
decrease, whereas during HIE or RE glucose levels can 
increase.9,12 Mixed (aerobic and anerobic) exercise may 
result in increased or decreased glucose levels depending 
upon the sequence and magnitude of MIE and HIE compo-
nents.7,9,13 In addition, delayed increases in insulin sensitivity 
may vary with exercise intensity impacting glucose levels 
post-exercise. Other variables impacting glycemia in people 
with T1D undertaking exercise include the time of day, exer-
cise duration, residual insulin activity, timing and composi-
tion of the last meal, antecedent hypoglycemia, competition 
stress, altitude, temperature, and site of insulin delivery.9,14

Published consensus statements and guidelines inform 
management decisions by health care providers and individ-
uals with T1D using manual insulin dosing to maintain gly-
cemia during and after exercise.9,15-17 While helpful, these 
strategies are complex, require preplanning, and responses 
can vary both within and between individuals making exer-
cise a significant challenge.9 To date, relatively few publica-
tions provide recommendations on how to best use CL 
systems with different forms of exercise.17

Current CL Systems: Principles

CL systems have transformed the management of T1D 
improving glucose time-in-range and HbA1c, while mini-
mizing hypoglycemia and improving quality of life.18,19 CL 
systems consist of a continuous glucose sensor, a control 
algorithm which estimates an individual’s insulin require-
ments using glucose sensor information and historical insu-
lin delivery data, and a pump delivering rapid-acting insulin 
subcutaneously aiming to maintain glucose levels in a target 
range. Hybrid closed loop (HCL) refers to CL systems where 
users are still required to manually administer food boluses 
and corrections. At the time of publication, globally, there 
are three insulin-only HCL systems commercially available: 

the Medtronic MiniMed 670G/770G/780G Systems,18,20,21 
the Tandem t:slim X2 with Control-IQ22 and CamAPS fx23,24 
with various other systems undergoing clinical trials.25-27

Current CL Systems and Exercise: 
Strengths

Unlike manually determined insulin dosing, HCL systems 
continuously adjust insulin delivery to address changing glu-
cose levels. The devices are portable and robust, and experi-
ence to date indicates no significant degradation in 
performance with physical activity.28-30 Studies performed 
by our research group evaluating iterations of the Medtronic 
algorithm have shown excellent time-in-range during and up 
to four hours post-exercise.28-31 These findings are consistent 
across a range of CL systems that have shown improved 
time-in-range with CL insulin dosing compared with stan-
dard therapy.17,32-39

Current CL Systems and Exercise: 
Limitations

While CL insulin delivery is more responsive compared with 
manual insulin dosing, exercise still requires forward-plan-
ning. Most exercise interventions described in published 
studies have been performed in controlled clinic settings or 
have been preplanned with strict protocols requiring the indi-
vidual to take pre-emptive action against hypoglycemia.9,17 
These interventions include optimizing glucose levels to the 
upper half of the target range at exercise commencement 
(with an elevated glucose target implemented one to two 
hours prior to, and supplemental carbohydrate within ten 
minutes of exercise), minimizing insulin on board and, for 
exercise greater than one hour duration, supplemental carbo-
hydrate.9,16,40 Examples of where these conditions have not 
been met and subsequent interventions are shown in Figure 1.

These constraints result from three broad limitations asso-
ciated with currently commercially available HCL systems:

(a)	 The slower pharmacokinetics of subcutaneous insu-
lin delivery: In individuals without diabetes, insulin 
is secreted directly into the portal circulation where it 
has an onset and offset in action of the order of min-
utes.41 Current rapid-acting insulin formulations, 
such as insulin aspart and lispro, have significantly 
longer action offset mandating a reduction of insulin 
delivery approximately 90 minutes prior to exercise 
to minimize hypoglycemia risk.42 The pharmacoki-
netics of “ultra-rapid”-acting insulin analogues, such 
as faster insulin aspart, while more favorable, are 
insufficient to meaningfully impact limitations asso-
ciated with residual insulin action during exercise.43

(b)	 An absent glucagon response during exercise to 
address falling glucose levels: While, even in those 
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Figure 1.  Examples of Medtronic 670G/770G HCL insulin delivery without use of exercise interventions (A.1 and B.1) and effect of 
forward-planning interventions (A.2 and B.2). A.1: Moderate-intensity exercise (MIE) with no temporary target set and pre-exercise 
carbohydrates given prematurely, resulting in hypoglycemia. A.2: MIE with a temporary target set 90 minutes prior to exercise, no 
pre-exercise carbohydrates were required, reduced boluses were used for meals during prolonged exercise. B.1: MIE with a temporary 
target prior to exercise, however, a full meal bolus was given with no reduction resulting in hypoglycemia. B.2: MIE with a temporary 
target and reduction in pre-exercise meal bolus with avoidance of hypoglycemia.
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with severely impaired hypoglycemia awareness, a 
significant counterregulatory response to exercise is 
observed with catecholamines, cortisol, and growth 
hormones, the response of glucagon to exercise and 
hypoglycemia remains severely impaired in the 
majority people with T1D.28,31 Current commercially 
available devices are single-hormone (insulin-only) 
systems lacking the facility to estimate the dose 
required for glucagon to avoid hypoglycemia and to 
deliver this hormone.

(c)	 Current-generation commercially available HCL sys-
tems measure a single parameter, glucose, to deter-
mine insulin delivery. These systems lack the ability 
to automatically detect the onset, intensity, and dura-
tion of exercise, with rules governing insulin delivery 
fixed regardless of whether the individual is at rest or 
exercising. We recognize that additional inputs sig-
naling exercise remain limited by the pharmacokinet-
ics of subcutaneous insulin delivery. Even with 
complete suspension of insulin at the start of exer-
cise, hypoglycemia may still occur.44 Nevertheless, 
these potential additional signals may provide useful 
adjuncts reducing the risk for hypoglycemia.

These strengths and limitations of CL systems are summa-
rized in Table 1.

Potential Strategies to Address HCL 
Limitations When Challenged by 
Exercise

The overarching goal for the future of CL technology is full 
automation that does not require user input for corrections, 
meals, or exercise. Potential strategies are summarized in 
Figure 2 and may include the following:

(a)	 The development of insulin formulations and routes 
of delivery with more favorable pharmacokinetic 
characteristics: Insulins with significantly faster 
onset and offset in action are needed to overcome the 
limitations of subcutaneous insulin absorption. 
Intranasal insulin has a faster onset and offset of 
action45 with the potential to reduce residual insulin 

activity associated with the pre-exercise meal bolus. 
However, inhaled insulin is not widely available, its 
long-term safety is unclear, and limitations associ-
ated with administration erode the benefits of CL. 
Continuous intraperitoneal insulin infusion (CIPII) 
also has a faster onset and offset of action compared 
with subcutaneous insulin.46 CIPII improves HbA1c 
with less hypoglycemia compared with subcutaneous 
insulin delivery.47 However, they are invasive, have 
technical limitations, carry risks of infection and 
increased immunogenicity.48 Intravenous (IV)-
delivered insulin permits rapid modulation of delivery 
with no absorption delay. IV CL insulin delivery mod-
els have been used for decades and would bypass the 
limitations of the subcutaneous route. However, they 
are invasive, prone to complications such as infec-
tions and thromboses, and are less feasible for ambu-
latory use.49

(b)	 Bi-hormonal CL systems: CL systems delivering 
both insulin and glucagon may help offset the limita-
tions of subcutaneous insulin delivery. Glucagon can 

Table 1.  Strengths and Limitations of Current Commercially Available CL Systems During Exercise.

Strengths Limitations

•  Responsive to changes in glucose
•  Devices are portable
•  Improved time-in-range during exercise
•  Most systems are waterproof or water-resistant
•  Device performance is not significantly impacted by exercise

•  �Preplanning required due to slow onset and offset of 
subcutaneously delivered insulin

•  CGM and cannula site adhesive may be affected by sweat
•  Inability to automatically recognize exercise versus rest
•  �CGM accuracy can be impacted with rapid changes in glucose 

during exercise

Abbreviations: CL, closed loop; CGM, continuous glucose monitoring.

Figure 2.  Potential strategies to address hybrid closed-loop 
(HCL) limitations when challenged by exercise.



Paldus et al	 1081

minimize the impact of the delayed offset in insulin 
action by counteracting the persisting glucose-lower-
ing effects of insulin. Several studies have shown that 
bi-hormonal CL systems result in improved time-in-
range and less hypoglycemia during exercise when 
compared with insulin-only pumps.50-53 However, the 
stability and long-term safety of glucagon, cost, as 
well as the increased complexity of a bi-hormonal 
system also need to be considered.

(c)	 Additional signals: Pending the development of faster-
acting insulins, a potential adjunct would be the use of 
physiological signals as additional inputs informing 
algorithms about the onset, offset, and intensity of 
physical activity.53-57 These include lactate, ketones, 
counterregulatory hormones, accelerometry, heart 
rate, galvanic skin response, skin temperature, and 
blood volume pulse. Counterregulatory hormones can 
differentiate exercise intensity12,28,31,30 but technical 
challenges associated with their measurement in real 
time preclude their use as additional signals in CL sys-
tems. Continuous ketone and lactate sensors are under 
development.58-61 Lactate profiles during exercise, like 
catecholamines, increase proportionally with exercise 
intensity and can differentiate MIE and HIE.12,28,30 
Ketone responses to different types of exercise while 
mixed generally show a slow increase.12,28,30 Their use 
is unlikely to meaningfully inform insulin dosing with 
exercise due to their limited ability to distinguish exer-
cise type though may play a role in ensuring safety 
during exercise.59 Accelerometers and heart-rate sen-
sors are already widely in use in the general population 
and coupled with lactate sensing would have the 
potential to inform CL on both exercise type (eg, run-
ning, swimming, or weights) and intensity (low, mod-
erate, high, or interval).31,53 As with lactate and 
counterregulatory responses during exercise, the 
increase in heart rate is proportional to the exercise 
intensity; however, limitations include nonspecificity 
to exercise, with stress, illness, medications, and dehy-
dration, all potential modulators.

	 Other wearable sensors combining galvanic skin 
response, accelerometry, blood volume pulse, heart, 
and skin temperature have been shown to classify 
physical states and exercise type.56 These could 
potentially discriminate exercise and physiological 
stress (which can have polarizing effects on glucose 
metabolism) to enhance glucose estimation.57,62

	 To reduce the burden of additional sensor technology, 
these additional signals should be incorporated into a 
single sensing platform. Research is in progress for 
the development of wearable sensors that measure 
analytes such as glucose, lactate, accelerometry, and 
ketones.58-61,63-65

	 Subsequent in silico mathematical modeling and 
evaluation of the performance of CL algorithms 
incorporating these signals is then required to inform 

advances in next-generation CL systems. However, 
the impact of any additional signals influencing HCL 
insulin delivery would remain subject to the down-
stream influence of the pharmacokinetics of subcuta-
neous insulin. Nevertheless, additional signals may 
still have a role in post-exercise or prolonged exer-
cise insulin dosing by predicting changes in insulin 
sensitivity depending on exercise performed.

(d)	 Enhanced algorithms: Some investigational HCL sys-
tems have incorporated heart rate and accelerome-
try,53,66 as well as energy expenditure and galvanic skin 
response55 for physical activity detection with 
improvements in glycemic outcomes. However, these 
algorithms are reactive and remain subject to the 
slower pharmacokinetics of subcutaneous insulin 
absorption. Machine learning has also been considered 
for personalized tuning of CL systems 66-68 and the use 
of algorithms that can decipher habitual pattern recog-
nition to trigger CL systems of an imminent exercise 
event is also possible.69 While this approach may 
anticipate the likelihood of a metabolic challenge, and 
CL systems may be primed to respond to a likely event 
such as future exercise, there would be potential risks 
associated with insulin dosing determined upon the 
basis of the probability of an event occurring. This risk 
could, however, be mitigated by a system request of 
confirmation of a high likelihood of future exercise 
with clarification of exercise type.

(e)	 Improved usability of existing strategies: At present, 
existing strategies such as setting a temporary target 
one to two hours prior to aerobic exercise while mini-
mizing the amount of “insulin on board” are the main-
stay of exercise management in closed loop. These 
strategies rely upon pre-emptive action on the part of 
the person with T1D. The user-device interface could 
be further refined. An exercise button could be inte-
grated into CL device activation which triggers a num-
ber of adaptive changes. These could include an 
automatic increase in the glucose target for a preset 
time. It could also modulate the algorithm so that it 
becomes less aggressive in minimizing rises in glucose 
levels and more aggressive in minimizing falls in glu-
cose, eg, for a PID algorithm via detuning the Derivative 
component’s time constant (DT) to make the controller 
less aggressive in mitigating potential hyperglycemia 
when sensor glucose levels are rising (dSGdt > 0), but 
maintaining the same level of aggressiveness in miti-
gating potential hypoglycemia (dSGdt ≤ 0). Finally, a 
function to preprogram future recurrent scheduling for 
exercise (date and time) which could automatically set 
temporary targets 90 minutes prior.

Conclusions

Current commercially available CL systems improve glu-
cose control and quality of life of people living with T1D, 
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enabling them to exercise with greater safety and confidence. 
Nevertheless, there remains a need for forward-planning for 
those who exercise. The pharmacokinetics of subcutaneous 
insulin delivery remain the most significant limitation of CL 
systems when challenged by exercise. This limitation may in 
part be addressed by the co-infusion of glucagon though this 
incurs increased complexity and expense. Any additional 
signals informing a CL system about the onset and intensity 
of exercise cannot predict exercise and would remain subject 
to the limitations of subcutaneous insulin delivery. Machine 
learning algorithms may anticipate the likelihood and nature 
of an exercise event but the ability to respond in real time to 
rapid changes in insulin requirements would remain limited. 
Should subcutaneous insulin pharmacokinetics approach 
that of intravenous insulin delivery this may negate the need 
for the complexities detailed above. Ultimately, functionality 
mimicking the healthy beta cell is required.

Abbreviations

CL, closed loop; T1D, type 1 diabetes; CGM, continuous glucose 
monitoring; MIE, moderate-intensity exercise; HIE, high-intensity 
exercise; RE, resistance exercise; HCL, hybrid closed loop; CIPII, 
continuous intraperitoneal insulin infusion; IV, intravenous.
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