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ABSTRACT Recently, the diverse functions of microRNAs (miRNAs) in brain diseases
have been demonstrated. We intended to uncover the functional role of microRNA-
130b (miR-130b) in cerebral vasospasm (CVS) following subarachnoid hemorrhage
(SAH). SAH was induced by injecting the autologous blood into the cisterna magna
of Sprague Dawley rats. The cerebral vascular smooth muscle cells (cVSMCs) were
extracted for in vitro experimentation. In vitro and in vivo assays were implemented
with transfection of miR-130b mimic/inhibitor, sh-Kruppel-like factor 4 (KLF4),
oe-KLF4 plasmids or p38/MAPK signaling pathway agonist (anisomycin), respectively,
to elaborate the role of miR-130b in CVS following SAH. Elevated miR-130b and
reduced KLF4 were found in SAH patients and rat models of SAH. KLF4 was the tar-
get gene of miR-130b. miR-130b promoted the proliferation and migration of
cVSMCs through the Inhibition of KLF4. Besides, KLF4 inhibited the proliferation and
migration of cVSMCs through blockage of the p38/MAPK pathway. Furthermore,
in vivo assay confirmed the inhibitory effect of decreased miR-130b in CVS following
SAH. In conclusion, miR-130b may activate the p38/MAPK signaling pathway through
targeted inhibition of KLF4, thereby contributing to some extent to the development
of cerebral vasospasm after SAH.

KEYWORDS microRNA-130b, cerebral vasospasm, subarachnoid hemorrhage, KLF4,
p38/MAPK signaling pathway

INTRODUCTION

Subarachnoid hemorrhage (SAH), a well-known neurologic emergency, is bleeding
in the subarachnoid space between the arachnoid and pia mater.1 Empirical evi-

dence has shown that the overall incidence rate of SAH is 9 per 100,000, and up to
40% of patients are likely to die of SAH, whereas 50–66% will suffer permanent disabil-
ity.2 The main symptom of SAH is characterized as a sudden and severe headache clas-
sically described as the “worst headache of life” combined with a brief loss of
consciousness, nausea or vomiting, meningism, and seizures.3 Patients suffering from
SAH may also exhibit various complications, including rebleeding, cerebral edema,
cerebral vasospasm (CVS), and cerebral ischemia.4 Although the risk factors for SAH are
highly uncertain due to its low incidence, the most common risk factors include female
gender, hypertension, smoking, and the prevalence and growth of intracranial aneur-
ysms.5 Although the morbidity and mortality rate of SAH has declined over the past
few decades, the further progress of SAH clinical treatment is slow, and many random-
ized clinical trials have failed to improve the prognosis of patients.6microRNAs
(miRNAs) are highly tissue-specific elements that not only play an intracellular role but
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also remain functional while delivered outside the cells in exosomes and exist stably in
body fluids.7 Dysregulated expression of miRNAs has been found to correlate with can-
cer-related diseases, cardiovascular diseases, and some neurological conditions.8–10

Interestingly, SAH has also been attributed to the significant changes in the
miRNA profile.11,12 miR-130b plays a key regulatory role in glioma, diabetic encephal-
opathy, and acute spinal cord injury via cell proliferation, apoptosis, invasion, and
migration.13–15 Furthermore, highly expressed miR-130b has been found in multiple
cancers, and overexpression of miR-130b could enhance cancer cells’ proliferation and
invasion ability.16,17 Specifically, miR-130b is oncogenic in lung cancer by targeting
PTEN.18 Furthermore, another study has demonstrated that miR-130b-5p may be an
appealing target for coronary artery disease.19 Interestingly, the roles of miR-130b in
cerebral ischemia/reperfusion injury have been reported,20,21 while the effects of miR-
130b on CVS after SAH remain to be further elucidated.

In the present study, we predicted that miR-130b could target Kruppel-like factor 4
(KLF4). KLF4 is a zinc-finger transcription factor of the Kruppel-like factor family with
the ability to regulate different vascular functions, such as vascular tone and perme-
ability, as well as angiogenesis.22–24 Previous evidence has reported the decreased
expression of KLF4 mRNA in the cerebrospinal fluid (CSF) and plasma of patients with
SAH.25 Considering these findings, we predicted that miR-130b and KLF4 might play
important roles in CVS after SAH. Here we aimed to decipher the underlying mecha-
nisms concerning miR-130b in CVS after SAH by targeting KLF4.

RESULTS
Highly expressed miR-130b and lowly expressed KLF4 in SAH patients.

Following the collection of CSF, expression of miR-130b and KLF4 was detected by RT-
qPCR. Our results depicted that the expression of miR-130b in SAH patients was signifi-
cantly increased, reaching the highest level on day 1. Still, it gradually decreased over
time and remained higher than the controls. In contrast, KLF4 expression in the CSF of
SAH patients was significantly decreased, which was the lowest on day 1, but gradually
increased over time and remained lower than the controls (Fig. 1A). Consistently, ELISA
results also confirmed the reduced KLF4 expression in the CSF of SAH patients (Fig. 1B).

These results indicated that miR-130b was highly expressed, and KLF4 was lowly
expressed in patients with CVS after SAH relative to the controls.

Highly expressed miR-130b and lowly expressed KLF4 in rat models of CVS
after SAH. Neurobehavioral scores were obtained at 12, 24, 48, and 72 h after model-
ing. The result demonstrated that SAH rats showed increased neurobehavioral scores
and behavioral disorders, while neurobehavioral scores were highest and the behav-
ioral disorders were the most serious at 24 h after model establishment (Fig. 2A). The
CSF and basilar arteries of the two groups of rats were collected at 12, 24, 48, and 72 h
after modeling. The basilar arteries were embedded, and the vasospasm was observed
by H&E staining. We found that SAH rats showed serious vasospasm while the most
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FIG 1 miR-130b was highly expressed, and KLF4 was lowly expressed in patients with CVS after SAH. (A) Expression of miR-130b and KLF4 in CSF of healthy
patients (n¼ 30) and SAH patients (n¼ 30) detected by RT-qPCR. (B) KLF4 expression in CSF of healthy patients (n¼ 30) and SAH patients (n¼ 30)
measured by ELISA. �P< 0.05. Comparison of data between groups at different time points was conducted by repeated measures analysis of variance,
followed by Bonferroni correction.
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serious vasospasm was observed at 24 h (Fig. 2B). In addition, the perimeter of blood
vessels and lumen area of blood vessels were significantly reduced, and the vascular
walls were significantly thickened in SAH rats. At 24 h, the perimeter and lumen area of
blood vessels was the lowest, and the vascular wall was the thickest (Fig. 2C to E).

Our results from RT-qPCR revealed that the expression of miR-130b in CSF and basi-
lar artery in SAH rats was significantly increased with the highest expression on day 1
but then gradually decreased over time and remained higher than the sham-operated
rats, while the mRNA level of KLF4 in CSF and basilar artery in SAH rats was significantly
decreased with the lowest on day 1, but then gradually increased over time, and
remained lower than the sham-operated rats (Fig. 2F and H). The ELISA results also
confirmed the low mRNA level of KLF4 in the CSF of SAH rats (Fig. 2G).
Immunofluorescence results also verified the changes in protein expression of KLF4 in
the basilar artery in SAH rats at 12, 24, 48, and 72 h after modeling. In addition, KLF4
protein was expressed in the nucleus and cytoplasm (Fig. 2I).

Thus, miR-130b was highly expressed, and KLF4 was lowly expressed in the rat
model of CVS following SAH relative to the sham-operated rats.

KLF4 is the target gene of miR-130b. Venn diagram analysis of the target genes of
miR-130b predicted by the StarBase, RNAInter, RNA22, miRanda, and mirDIP databases
revealed nine candidate genes, i.e., KLF4, STX6, IRF1, IGF1, UXS1, BTG1, RPA2, SYT1, and
TP63 (Fig. 3A). The potential negative correlation of miR-130b expression with KLF4
expression was verified in clinical samples and animal experiments. To further detect
their correlation, the TargetScan website was used, which predicted miR-130b binding
sites in KLF4 3’UTR in humans (Fig. 3B). The luciferase reporter assay was used to verify
that KLF4 was the target of miR-130b in cVSMCs. Our experimental results showed that
miR-130b mimic exhibited no significant effects on the luciferase activity of the KLF4-
MUT while reducing that of KLF4-WT. In addition, the miR-130b inhibitor increased the
luciferase activity of the KLF4-WT while failing to affect that of KLF4-MUT (Fig. 3C), sug-
gesting that miR-130b could specifically bind to KLF4.

RT-qPCR and Western blot analysis verified that miR-130b expression was increased
and KLF4 expression was decreased in cVSMCs transduced with miR-130b mimic,
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FIG 2 Highly expressed miR-130b and lowly expressed KLF4 in rat models of SAH. (A) Neurologic deficit scores at 12, 24, 48 and 72 h after modeling. (B) HE
staining for the cross section of the basilar artery of SAH rats (scale bar: 50lm). (C to E) The semi-quantitative analysis of perimeters of the vascular ring
(C), vascular lumen area (D), vascular wall thickness (E) of the cerebral basilar artery in SAH rats by H&E staining. (F) Expression of miR-130b and KLF4 in
CSF in SAH rats detected by RT-qPCR. (G) KLF4 expression in CSF in SAH rats measured by ELISA; (H) Expression of miR-130b and KLF4 in the basilar artery
in SAH rats detected by RT-qPCR; I, KLF4 expression in the basilar artery in SAH rats detected by immunofluorescence staining (scale bar: 25 lm). �P< 0.05.
Data between the two groups were compared by paired t test. In comparisons among more than two groups, a one-way analysis of variance was used,
followed by Tukey’s post hoc test. Comparison of data between groups at different time points was conducted by repeated measures analysis of variance
followed by Bonferroni correction.
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while the results were opposite in cVSMCs transduced with miR-130b inhibitor
(Fig. 3D and E).

Our results elaborated that miR-130b could target KLF4.
miR-130b may promote the proliferation and migration of cVSMCs through the

inhibition of KLF4. Previous studies have reported that VSMC phenotypic switching was
engaged in vascular remodeling and was correlated with neurological deficits after
SAH.26 Thus, here we further investigated these findings at the cellular level. cVSMCs
were isolated from SD rats. The VSMC marker protein a-SMA was labeled with immuno-
fluorescence staining to identify the extracted primary cells as cVSMCs (Fig. 4A).

To verify the effects of miR-130b targeting KLF4 on the proliferation and migration
of cVSMCs, KLF4 was downregulated in cVSMCs. RT-qPCR and Western blot analysis
showed that mRNA and protein levels of KLF4 were reduced in cVSMCs transduced
with sh-KLF4-1 or sh-KLF4-2, with sh-KLF4-1 showing the superior silencing efficiency.
Thus, sh-KLF4-1 was used for the subsequent experiments (Fig. 4B). Proliferation and
migration of cVSMCs were induced by PDGF-BB (20 ng/mL). After PDGF-BB intervention
for 24 h, cVSMCs were transduced with miR-130b inhibitor or sh-KLF4. As described by
RT-qPCR and Western blot analysis, PDGF-BB intervention increased miR-130b expres-
sion and decreased the mRNA and protein levels of KLF4 in cVSMCs. Moreover,
miR-130b expression was reduced, and the mRNA and protein levels of KLF4 were ele-
vated in cVSMCs treated with PDGF-BBþmiR-130b inhibitor, while miR-130b expres-
sion showed no obvious difference, and the mRNA and protein levels of KLF4 were
reduced in cVSMCs treated with PDGF-BBþ sh-KLF4. Besides, compared with cVSMCs
treated with PDGF-BBþmiR-130b inhibitorþ sh-NC, miR-130b expression exhibited no
significant difference, and the mRNA and protein levels of KLF4 were decreased in
cVSMCs treated with PDGF-BBþmiR-130b inhibitorþ sh-KLF4 (Fig. 4C and D).

EdU and transwell assay illustrated that PDGF-BB intervention promoted prolifer-
ation and migration, while KLF4 knockdown promoted the proliferation and migration
of PDGF-BB-treated cVSMCs. Besides, the inhibitor of miR-130b suppressed the prolifer-
ation and migration of PDGF-BB-treated cVSMCs, while downregulation of both miR-
130b and KLF4 induced the proliferation and migration of PDGF-BB-treated cVSMCs
(Fig. 4E and F and Fig. 5). Furthermore, proliferation-related (PCNA) and migration-
related proteins (MMP2, MMP3, and MMP9) were determined, and the results
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FIG 3 miR-130b targets KLF4. (A) Venn diagram analysis of the target genes of miR-130b predicted by the StarBase, RNAInter, RNA22, miRanda, and mirDIP
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more than two groups, a one-way analysis of variance was used, followed by Tukey’s post-hoc test.

miR-130b Induces CVS after SAH Molecular and Cellular Biology

Volume 43 Issue 7 304



demonstrated that PDGF-BB intervention elevated the expression of PCNA, MMP2,
MMP3, and MMP9 in cVSMCs, and further KLF4 knockdown also increased the expres-
sion of PCNA, MMP2, MMP3, and MMP9 in PDGF-BB-treated cells. Moreover, downregu-
lation of miR-130b reduced PCNA, MMP2, MMP3, and MMP9 in PDGF-BB-treated
cVSMCs, while both silenced of miR-130b and KLF4 elevated expression of PCNA,
MMP2, MMP3, and MMP9 (Fig. 4G).

These results suggested that miR-130b may promote the proliferation and migra-
tion of cVSMCs by inhibiting KLF4.

KLF4 could repress proliferation and migration of cVSMCs through blockage of
the p38/MAPK signaling pathway. hTFtarget was used to predict the target gene of
KLF4, while protein-protein interaction (PPI) analysis of the target genes was performed
by STRING. The minimum required interaction score >0.9 was set, and the visualization
results of PPI analysis were obtained through the Cytoscape software (Fig. 6A). We
found that the three genes, CDC42, RHOA, and MAPK1, were in the core position of the
network map and exhibited degree >30 (Fig. 6B). Moreover, it has been reported that
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KLF4 can negatively regulate the p38/MAPK signaling pathway.27 While activation of
the p38/MAPK signaling pathway induces the occurrence of SAH28 along with the pro-
liferation and migration of VSMCs.29 Intriguingly, our results indicated a targeting rela-
tionship between KLF4 and p38 (MAPK1) through hTFtarget search (Fig. 6C). To further
assay the relationship between KLF4 and p38, we predicted the binding of KLF4 and
p38 through the JASPAR (Fig. 6D and Fig. 7).

To investigate whether KLF4 could inhibit the proliferation and migration of VSMCs
by inhibiting the activation of the p38/MAPK signaling pathway, oe-NC, and oe-KLF4 plas-
mids were transfected into cVSMCs, respectively. The results of RT-qPCR and Western
blot analysis showed that compared with the oe-NC group, the expression of KLF4mRNA
and protein was significantly increased in the oe-KLF4 group (Fig. 6E). In addition, no sig-
nificant change was found in p38 expression in cVSMCs following each treatment. PDGF-
BB intervention increased the expression of PCNA, MMP2, MMP3, and MMP9 and the
expression level of phosphorylated p38 while decreasing KLF4 expression. Upregulation
of KLF4 reversed these effects of PDGF-BB. Further treatment with anisomycin could also
increase the expression of PCNA, MMP2, MMP3, and MMP9, as well as the expression
level of phosphorylated p38 in cVSMCs, while KLF4 displayed no evident difference (Fig.
6F). EdU and transwell assays manifested that PDGF-BB intervention promoted prolifer-
ation and migration of cVSMCs, whereas further upregulation of KLF4 reversed the pro-
motion in proliferation and migration caused by PDGF-BB intervention. Moreover,
treatment with anisomycin and upregulation of KLF4 could also promote the prolifer-
ation and migration of PDGF-BB-treated cVSMCs (Fig. 6G and H).

These results verified that KLF4 repressed the proliferation and migration of cVSMCs
through blockage of the p38/MAPK signaling pathway.

miR-130b could promote the proliferation and migration of cVSMCs by
targeting KLF4 via activation of the p38/MAPK signaling pathway. To further inves-
tigate the regulation of KLF4 expression by miR-130b and its effects on the activation
of the p38/MAPK signaling pathway, cVSMCs were pretreated with PDGF-BB for 24 h
and then transduced with NC mimic, miR-130b mimic, oe-NC and oe-KLF4, and treated
with anisomycin. RT-qPCR revealed that miR-130b expression was upregulated and
KLF4 expression was downregulated in cVSMCs transduced with miR-130b mimic. In
contrast, miR-130b expression exhibited no obvious difference, and KLF4 expression
was elevated in cVSMCs transduced with miR-130b mimic and oe-KLF4. Further, aniso-
mycin treatment did not affect the expression of miR-130b and KLF4 (Fig. 8A).
Western blot analysis indicated no significant change was found in p38 expression.
Furthermore, upregulation of miR-130b increased the expression of PCNA, MMP2,
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MMP3, and MMP9, as well as the expression level of phosphorylated p38, while
decreasing the expression of KLF4. At the same time, these changes were reversed by
further overexpression of KLF4. Besides, anisomycin treatment in cells over-expressing
miR-130b and KLF4 showed increased expression of PCNA, MMP2, MMP3, and MMP9,
as well as the expression level of phosphorylated p38. Still, no significant change was
observed in KLF4 expression (Fig. 8B). EdU and transwell assay demonstrated that
overexpression of miR-130b promoted proliferation and migration, which were abol-
ished by further upregulated KLF4. Moreover, anisomycin treatment in cells over-
expressing miR-130b and KLF4 enhanced proliferation and migration (Fig. 8C and D).
These findings elicited that miR-130b could promote the proliferation and migration
of cVSMCs by targeting KLF4 to activate the p38/MAPK signaling pathway.

miR-130b could promote CVS following SAH by targeting KLF4 via activation of
the p38/MAPK signaling pathway in vivo. To further verify these above-reported find-
ings, SAH rat models were then established. Inhibitor NC, miR-130b inhibitor, and aniso-
mycin were injected into the brain of SD rats 24h before modeling. Neurobehavioral
scores were obtained at 24h after modeling. Our result displayed that SAH rats showed
increased neurobehavioral scores and behavioral disorders; rats with miR-130b inhibitor
injection exhibited decreased neurobehavioral scores. However, these changes were
reversed by the anisomycin injection (Fig. 9A). The CSF and basilar arteries of the two
groups of rats were collected after 24 h of modeling. The basilar arteries were embedded,
and the vasospasm was observed by HE staining. We found that SAH rats showed serious
vasospasm, the reduced perimeter of the blood vessel and lumen area of blood vessels,
as well as thickened vascular wall, whereas rats with miR-130b inhibitor injection mani-
fested relieved vasospasm, the increased perimeter of blood vessels and lumen area of

FIG 7 KLF4 and MAPK1 binding potential in rats. (A) Rat MAPK1 promoter region (positions �2000� 0) was imported into JASPAR for prediction of its
transcription factor binding. (B) Comparison of human and rat KLF4 conservatism.
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blood vessels, as well as the thinned vascular wall. However, these changes were
reversed by the anisomycin injection (Fig. 9B to E).

At 24 h after model establishment, CSF and basilar artery were isolated from SAH
rats. Our results from RT-qPCR revealed that the expression of miR-130b in CSF and
basilar artery in SAH rats was significantly increased, whereas the mRNA expression of
KLF4 in CSF and basilar artery in SAH rats was significantly decreased compared to
sham-operated rats. Besides, miR-130b expression was decreased, and KLF4 expression
was increased in CSF of rats injected with miR-130b inhibitor, and further injection
with anisomycin exerted no effects on expression of miR-130b and KLF4 in CSF of rats
injected with miR-130b inhibitorþ anisomycin (Fig. 9F and H), which was confirmed by
the ELISA results (Fig. 9G). Western blot analysis demonstrated that no significant
change was found in p38 expression. SAH rats showed increased expression of PCNA,
MMP2, MMP3, and MMP9, as well as the expression level of phosphorylated p38, while
decreased KLF4 expression was observed when compared with sham-operated rats.
Downregulation of miR-130b significantly decreased the expression of PCNA, MMP2,
MMP3, and MMP9, as well as the expression level of phosphorylated p38, while further
anisomycin treatment increased the expression of PCNA, MMP2, MMP3, MMP9, as well
as the expression level of phosphorylated p38, and no significant change was found in
KLF4 expression (Fig. 9I).

These results suggested that miR-130b could promote the CVS following SAH by
targeting KLF4 and activating the p38/MAPK signaling pathway.

DISCUSSION

Emerging evidence has highlighted a worldwide socioeconomic burden due to
SAH; more than two-thirds of SAH patients suffer from cognitive impairment and poor
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quality of life.30 Moreover, dysregulated miRNAs with continuous variation of miRNA
level in cerebrospinal fluid of SAH patients have been implied in the development of
delayed cerebral ischemia, which was perceived as a major contributor to the damag-
ing outcome SAH.11 In the current research, we investigated the functional role of miR-
130b in CVS after SAH through its interaction with its downstream targets. The experi-
mental findings uncovered the tumor-promoting role of miR-130b in CVS following
SAH via inhibition of KLF4 through activation of the p38/MAPK signaling pathway.

First, our results indicated that miR-130b was highly expressed in CVS after SAH and
also in SAH rats. Similarly, miRNAs are dysregulated in plasma and CSF in CVS following
SAH.31,32 miR-24 expression has been reported to be increased in SAH patients with
vasospasm.33 In addition, a study has reported that miR-130b-5p expression in peripheral
blood is related to the severity of coronary artery disease.19 Another study has also dem-
onstrated that miR-130b is highly expressed in SAH patients,11 while the specific mecha-
nisms of miR-130b in CVS after SAH remain unknown. In our study, we first verified that
miR-130b was highly expressed in patients with CVS after SAH and in SAH rats.

Meanwhile, the obtained data verified that KLF4 was a potential target gene of miR-
130b in CVS after SAH, and KLF4 was lowly expressed in CVS following SAH. The func-
tional roles of KLF4 have been reported in several cardiovascular diseases, including
atherosclerosis and thrombosis, as well as in the aortic aneurysm.34,35 In line with our
study, decreased KLF4 is found in cerebrospinal fluid and plasma of patients with
SAH.25 Furthermore, previous evidence has prompted that KLF4 regulates the pheno-
typic modulation of VSMCs in many diseases, including atherosclerosis and cerebral
aneurysm.36

Besides, we also demonstrated that KLF4 could inhibit activation of the p38/MAPK
signaling pathway, thereby repressing the proliferation and migration of VSMCs.
Previous evidence has prompted that KLF4 regulates the phenotypic modulation of
VSMCs in many diseases, including atherosclerosis and cerebral aneurysm.36 Similarly,
a recent study has revealed that inhibited KLF4 transcription aids in the activation of
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FIG 9 miR-130b promotes CVS following SAH through activation of the p38/MAPK signaling pathway by downregulating KLF4. SAH rats were injected with
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the p38/MAPK signaling pathway in the event of traumatic brain injury.37 Nevertheless,
another study has indicated that VSMC phenotypic switching is engaged in vascular
remodeling and correlated with neurological deficits in SAH.26 Moreover, mitogen-acti-
vated protein kinases are well-known key regulators responsible for transferring the
signaling of stress-induced stimuli or extracellular growth factors, exhibiting a critical
role in cell regulation processes, such as cell proliferation, migration, and survival.38,39

Importantly, in the perfusion model experiment, the suppression of the p38 signaling
pathway (a member of the MAPK pathway) has been reported to protect neurons.40

Further studies concerning CVS in SAH have also manifested that rats with SAH
exhibit upregulated p-p38 and p-MAPK expression, whereas activation of p38 and
MAPK is closely associated with apoptosis in the cortex.41 Importantly, the crucial roles
of the MAPK signaling pathway in the migration and proliferation of VSMCs have been
elaborated in atherosclerosis.42 Furthermore, a previous study has also demonstrated
that the p38/MAPK signaling pathway is activated in CVS, and inhibition of the
p38/MAPK signaling pathway suppresses CVS following SAH in rabbits.43 Therefore, it
can be concluded that miR-130b promoted the proliferation and migration of cVSMCs
by inhibiting KLF4 via activation of the p38/MAPK signaling pathway.

In summary, the data presented here demonstrated miR-130b as a major regulator
of CVS and its therapeutic significance in SAH. Briefly, in SAH, downregulation of miR-
130b expression suppresses the CVS via upregulating KLF4, which in turn negatively
regulates the p38/MAPK signaling pathway (Fig. 10). In the present study, we identified
miRNA as a potential target for the developing therapeutics for SAH; however, further
study concerning whether miR-130b/KLF4 is involved in regulating other SAH symp-
toms, such as early brain injury, is needed. In addition, whether there are live cells,
such as white blood cells, endothelial cells, lymphocytes, and monocyte/macrophages,
in the CSF may be the focus of our future work for further validation of the present
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FIG 10 Schematic map of the role of miR-130b-mediated KLF4 in CVS following SAH. Upregulation of miR-130b induces CVS following SAH by
downregulating KLF4 by activating the p38/MAPK signaling pathway.
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findings. Whether KLF4 might transcriptionally regulate PCNA, MMP2, MMP3, and
MMP9 should also be validated.

MATERIALS ANDMETHODS
Ethical statement. All samples were collected with the informed consent of the patients provided.

All research procedures were approved by the ethics committee of Shenzhen People’s Hospital by fol-
lowing the Declaration of Helsinki. Animal experiments were implemented according to the principles
outlined in the NIH Guide for the Care and Use of Laboratory Animals.

Clinical samples. Our study enrolled 30 patients at our hospital suffering from CVS following SAH
and 30 neurologically healthy patients undergoing lower limb surgery (along with spinal anesthesia).
Their CSF was collected simultaneously at points 1, 2, 3, 5, and 7 days after surgery. On the first day, a
lumbar drainage catheter was placed through the lumbar vertebral interspace into the subarachnoid
space of all patients (after intracranial aneurysm rupture), and patients in the control group (after sur-
gery) and external lumbar drainage of CSF was continued for 7 days. The CSF (4mL) was collected from
the lumbar drainage catheter into a 10-mL sterile tube at the same time points on days 1, 2, 3, 5, and 7.
After centrifugation (at 12,000 rpm, 4 �C) for 15min, the supernatant of CSF containing no blood cells
was placed into a 1.5mL centrifuge tube and stored at –80 �C for subsequent experimental detection.

SAH model establishment. Sprague Dawley (SD) adult male rats (weighing 250–300 g) were raised
in the standard cage at 23 ± 1 �C under a 12 h light/12 h dark cycle, with free access to food and water.
The experiment was conducted after acclimatization for one week.

The SAH was induced by injecting autologous blood into the cisterna magna of adult male SD rats.41

Briefly, rats were anesthetized via intraperitoneal injection of 3% pentobarbital sodium (30mg/kg). After
that, the middle line of the neck skin was cut longitudinally along the occipital bulge, and the subcuta-
neous soft tissue was bluntly separated to expose the occipito-occipital membrane fully. Afterward, the
cisterna magna was punctured with a syringe, and 0.1mL of CSF was discarded, followed by the injec-
tion of 0.2mL of autologous blood from arteria femoralis into cisterna magna to induce SAH. In sham-
operated rats, normal saline instead of autologous blood was adopted, and the wound was sutured with
a medical suture under the aseptic situation to avoid surgical infection.

Subsequently, at 12, 24, 48, and 72h, respectively, after surgery, eight rats in the sham and SAH
groups were taken and anesthetized with 3% pentobarbital by intraperitoneal injection. First, the skin was
cut open at the foramen magnum. Next, the muscles were bluntly separated to expose the foramen mag-
num. Then the meninges were gently pierced with the tip of a 1mL syringe to extract about 0.1–0.15mL
of colorless to pale yellow CSF into a 1.5mL centrifuge tube followed by PCR detection of miR-130b and
KLF4 expression and ELISA detection of KLF4 expression. Rats after CSF collection were euthanized by
intraperitoneal injection with three times the amount of anesthetic. Next, the cerebral basilar artery was
taken in a 1.5mL centrifuge tube, stored at –80 �C, and used for RT-qPCR detection of miR-130b and KLF4
expression. After that, at 12, 24, 48, and 72h after surgery, eight rats in the sham group and the SAH
group, respectively, were taken and anesthetized with 3% pentobarbital by intraperitoneal injection. Next,
60mL of pre-chilled PBS was perfused with the apex, followed by 60mL of 4% paraformaldehyde perfu-
sion. Subsequently, the rat cerebral basilar artery was collected for hematoxylin and eosin (H&E) staining
of cerebral basilar artery spasm and Western blot analysis for KLF4, PCNA, and MMP2, respectively MMP3,
MMP9, and p38 protein expression, as well as the expression level of phosphorylated p38.

Animal treatment and grouping. According to the lentivirus transduction instructions, 5 lL nega-
tive control (NC) inhibitor lentivirus or miR-130b inhibitor lentivirus (0.1 lM) (Shanghai GenePharma Co.
Ltd, Shanghai, China) were mixed with 10 lL co-infective reagent, which was allowed to stand at ambi-
ent temperature for 15min. Anisomycin (HY-18982, MedChemExpress, NJ), a p38/MAPK signaling path-
way agonist, was dissolved in dimethylsulfoxide (DMSO) at a concentration of 15mg/mL. At 24 h before
SAH model establishment, 15 lL mixed NC inhibitor solution, 15 lL mixed miR-130b inhibitor solution,
and 20 lL Anisomycin solution were injected into the ventricles of SD rats, respectively. Rats were
randomized into sham (intraventricular injection of 15 lL normal saline and 20lL DMSO), SAH (intraven-
tricular injection of 15lL normal saline and 20 lL DMSO), SAHþNC inhibitor (intraventricular injection
of 15lL mixed NC inhibitor solution and 20 lL DMSO), SAHþmiR-130b inhibitor (intraventricular injec-
tion of 15 lL mixed miR-130b inhibitor solution and 20 lL DMSO), and SAHþmiR-130b inhibi-
torþ anisomycin group (intraventricular injection of 15 lL mixed miR-130b inhibitor solution and 20 lL
anisomycin solution).44

Behavioral tests for neurological impairment. After SAH modeling, the appetite and activity of
the rats in each group were observed before sampling, and the neurobehavioral scores were obtained
(details are displayed in Table 1). Then, the three scores were added together to form the neurobehavio-
ral scores of rats, and the mean value and standard deviation of each group of rats were calculated. To
ensure the accuracy of the scores, the observer should choose an experimenter who did not know the
experimental group.44

Reverse transcription quantitative polymerase chain reaction (RT-qPCR). mRNA or miRNA from
the patients’ CSF or rats’ CSF was extracted using a total blood RNA extraction kit (DP433, Tiangen) or a
serum miRNA extraction and isolation kit (DP503, Tiangen) based on the instructions. To extract mRNA
and miRNA from the cerebral basilar arteries of rats, the TRIzol method was applied according to the
reagent specification of the TRIzol kit (16096020 or AM1561, Thermo Fisher Scientific, New York). mRNA
was reversely transcribed into cDNA following the instructions of the RT-qPCR kit (ABI). miRNA was
reversely transcribed into cDNA in the light of a polyA tailing kit (B53245-0020, Shanghai Bioengineering
Co., Ltd, Shanghai, China). The U6 was selected as the internal reference of miR-130b, whereas
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Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was the internal reference of other genes. The
relative fold enrichment of target regions was calculated based on the 2���Ct.45 The used primers are
shown in Table 2.

Western blot analysis. Protein extracts were separated and transferred to a polyvinylidene fluoride
membrane. First, the primary antibody was added to the membrane for overnight incubation at 37 �C.
Then, horseradish peroxidase-labeled secondary antibody (ab205718, goat anti-rabbit or goat anti-
mouse, 1:10,000, Abcam) was added for further incubation followed by visualization using enhanced
chemiluminescence (Shanghai Baoman Biotechnology, Shanghai, China). The primary antibodies pro-
cured from Abcam (CA, UK) included KLF4 (ab215036, 1:1000, rabbit; ab214666, 1:1000, rabbit), a-SMA
(ab32575, 1:1000–1:5000, rabbit), PCNA (ab92552, 1:1000–1:10000, rabbit), MMP2 (ab92536, 1:1000–
1:5000, rabbit), MMP3 (ab52915, 1:1000–1:20000, rabbit), MMP9 (ab76003, 1:1000–1:20000, rabbit),
p-p38 (ab4822, 1:1000, rabbit), p38 (ab170099, 1:1000–1:5000, rabbit). In addition, GAPDH (ab181602,
1:10,000, rabbit, Abcam) was used as an internal reference, and the gel image analysis software was
used for quantitative analysis.46

Enzyme-linked immunosorbent assay (ELISA). The patient’s CSF or rat’s CSF was diluted 10 times,
and then 0.1mL from each of them was added into a 96-well plate reaction well in the KLF4 ELISA kit
(Bio-Swamp, Hubei, China) for incubation at 37 �C for 1 h. The optical density value of each well was
measured at 450 nm using an ELISA detector to calculate the KLF4 concentration.47

Isolation of cerebral vascular smooth muscle cells (cVSMCs). SD rats (250–300 g) were anesthe-
tized via intraperitoneal injection of 3% pentobarbital sodium. Under aseptic conditions, the entire brain
tissue of the rat was removed and placed in a petri dish containing DMEM/F-12 blank medium (Gibco)
supplemented with penicillin-streptomycin. The rat basilar artery was isolated, and the connective tissue
and fat around the arterial blood vessels were removed. The blood vessel was cut open, and the inner
surface was gently scraped with tweezers to remove the inner membrane of the blood vessel. The blood
vessel was then cut into small segments of about 0.2mm long and treated with 1mL of a 0.1% collage-
nase-I solution (Sigma Aldrich) for 30min under 5% CO2 until the blood vessels swelled. To further
detach the blood vessels, 1mL of 0.125% trypsin (Gibco) was added for 10min until the blood vessels
became transparent, and then the blood vessels were centrifuged at 1000 rpm for 5min. Afterward, the
precipitated cells were cultured in DMEM/F-12 medium containing 20% FBS. The medium was renewed
every three days. After the cell confluence reached 80–90%, trypsinization was performed, followed by
cell passage. Cells in passage three were used for experiments. The smooth muscle cell marker protein

TABLE 1 Neurobehavioral scoring scale

Behavior Score

Appetite Finished meal 0
Left meal unfinished 1
Scarcely ate 2

Activity Walk and reach at least three corners of the cage 0
Walk with some stimulation 1
Almost always lying down 2

Deficits No deficits 0
Unstable walk 1
Impossible to walk 2

TABLE 2 Primer sequences

Primer sequences

miR-130b (human) Forward: 50-CAGTGCAATGATGAAAGGGCAT-30

Reverse: Universal primer
miR-130b (rat) Forward: 50-CAGTGCAATGATGAAAGGGCAT-30

Reverse: Universal primer
KLF4 (human) Forward: 50-CTGCGAACCCACACAGGTG-30

Reverse: 50-GGTAGTGCCTGGTCAGTTCATC-30

KLF4 (rat) Forward: 50-CTTTCCTGCCAGACCAGATG-30

Reverse: 50-GGTTTCTCGCCTGTGTGAGT-30

U6 (human, rat) Forward: 50-CTCGCTTCGGCAGCACA-30

Reverse: Universal primer
GAPDH (human) Forward: 50-CAACAGCCTCAAGATCATCAGCA-30

Reverse: 50-TGGCATGGTCTGTGGTCATGAGT-30

GAPDH (rat) Forward: 50-GCAAGTTCAACGGCACAG-30

Reverse: 50-GCCAGTAGACTCCACGACAT-30
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a-SMA was labeled with immunofluorescence for cell identification, and cells were cultured in DMEM/F-
12 medium containing 10% FBS for the formal experiment.48

Cell treatment. cVSMCs were cultured in DMEM/F-12 containing 100 lg/mL streptomycin and
100U/mL penicillin (Gibco BRL, Grand Island, NY) (37 �C, 5% CO2, and 95% O2). Logarithmically growing
cells were seeded into six-well plates (3� 105 cells/well) while platelet-derived growth factor BB (PDGF-
BB, 20 ng/mL) was added after 24 h for intervention. After 24 h, cells were further transduced with miR-
130b inhibitor or sh-KLF4 plasmids. After 48 h of transduction, cells were collected for the subsequent
experimental procedure.

After PDGF-BB (20 ng/mL) intervention for 24 h, cVSMCs were treated with PDGF-BB and p38/MAPK
signaling agonist, i.e., anisomycin, for 24 h and then transfected with NC mimic, miR-130b mimic, overex-
pression (oe)-NC or oe-KLF4 plasmids. Following 48 h of transduction, cells were collected for the subse-
quent experimental procedure.

miRNA targeted luciferase reporter assay. The StarBase, RNAInter, RNA22, miRanda, and mirDIP
databases were used to predict the target genes of miR-130b. The five databases use different binding
site matching algorithms, and we thus used the Venn tool to perform an intersection analysis of the pre-
diction results from the five databases. The biological prediction website TargetScan algorithm was then
applied to verify whether KLF4 is the direct target gene of miR-130b.

A dual luciferase reporter assay was subsequently used to verify whether KLF4 was the direct target
gene of miR-130b. The cVSMCs at the exponential phase were seeded into six-well plates at a density of
3� 105 cells/well. Upon reaching 70–80% confluence, cells were cotransfected with correctly synthetic
luciferase reporter plasmids KLF4 WT and MUT with miR-130b mimic, NC mimic, miR-130b inhibitor, and
NC inhibitor using the Lipofectamine 3000 reagent (L3000008, Invitrogen). After 48 h, cells were col-
lected, and the luciferase activity was detected by a luciferase detection kit (K801-200, Biovision)
through the Lomax20/20 luminometer fluorescence detector (Promega).49

H&E staining. The rat brain basilar artery fixed with 4% paraformaldehyde for more than 24 h in dif-
ferent groups was selected, embedded by paraffin, and made into paraffin sections. Then, the sections
were stained with hematoxylin for 7min and then stained with eosin for 1min.50 The morphological
changes of the vascular ring were observed under an optical microscope, and the perimeter of the vas-
cular ring, the lumen area, and the thickness of the vascular wall was calculated.

Immunofluorescence. After dewaxing and dehydrating, the paraffin sections of the basilar cerebral
arteries of rats were subjected to antigen retrieval, blocked with normal goat serum (C-0005, Shanghai
Haoran Biotechnology Co., Ltd, Shanghai, China), and immunostained with primary antibodies against
KLF4 (ab214666, 1:1000, rabbit, Abcam) and a-SMA (ab32575, 1:500, rabbit, Abcam) at 4 �C overnight. In
addition, the sections were incubated with fluorescent secondary antibody (ab150075, 1:200–1:1000,
Abcam) for 60min in the dark and added a fluorescence decay-resistant medium.50 The fluorescence
intensity was observed under a fluorescence microscope.

5-Ethynyl-2’-deoxyuridine (EdU) assay. Cell proliferation was detected by an EdU assay kit
(Ribobio, Guangzhou, China) based on the instructions.51 Images were taken under a fluorescence
microscope, and statistical data were collected to record the number of EdU-labeled cells. For example,
those whose nuclei were dyed red were labeled positive cells, and the number of positive and negative
cells in any three fields was counted under the microscope.

Transwell assay. Transwell chamber (8mm aperture; Corning) in-vitro cell migration was detected
in a 24-well plate.51 The observation was performed under an inverted fluorescence microscope
(TE2000, Nikon, Japan) with five randomly selected fields. The number of cells passing through the
chamber was counted, and the average value was taken to be the number of cells passing through the
chamber of each group.

Statistics. The results were interpreted using the SPSS 21.0 software (IBM, Armonk, NY). Data
between the two groups were compared by paired t test. For the comparisons among more than two
groups, a one-way analysis of variance was used, followed by Tukey’s post hoc test. A comparison of
data between groups at different time points by repeated measures analysis of variance followed by
Bonferroni correction. Significance criteria were defined as P< 0.05.
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