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ABSTRACT The highly conserved retromer complex controls the fate of hun-
dreds of receptors that pass through the endolysosomal system and is a cen-
tral regulatory node for diverse metabolic programs. More than 20 years ago,
retromer was discovered as an essential regulator of endosome-to-Golgi trans-
port in yeast; since then, significant progress has been made to characterize
how metazoan retromer components assemble to enable its engagement with
endosomal membranes, where it sorts cargo receptors from endosomes to the
trans-Golgi network or plasma membrane through recognition of sorting motifs
in their cytoplasmic tails. In this review, we examine retromer regulation by
exploring its assembled structure with an emphasis on how a range of adaptor
proteins shape the process of receptor trafficking. Specifically, we focus on
how retromer is recruited to endosomes, selects cargoes, and generates tubulo-
vesicular carriers that deliver cargoes to target membranes. We also examine
how cells adapt to distinct metabolic states by coordinating retromer expres-
sion and function. We contrast similarities and differences between retromer
and its related complexes: retriever and commander/CCC, as well as their inter-
play in receptor trafficking. We elucidate how loss of retromer regulation is
central to the pathology of various neurogenerative and metabolic diseases, as
well as microbial infections, and highlight both opportunities and cautions for
therapeutics that target retromer. Finally, with a focus on understanding the
mechanisms that govern retromer regulation, we outline new directions for the
field moving forward.

KEYWORDS retromer, VPS35, endosome, neurodegeneration, cell trafficking

ENDOSOMAL CARGOES – SHOULD I STAY, OR SHOULD I GO?

Three major fates await receptors following internalization by endocytosis: (1)
degradation within lysosomes; (2) secretion; or (3) recycling/retrieval back to

the plasma or trans-Golgi network (TGN) (Fig. 1A).1,2 The degradative route
involves K63-linked ubiquitylation of endosomal membrane proteins for detection
by the endosomal sorting complexes required for transport (ESCRT) machinery.3

ESCRT-0 recognizes ubiquitin earmarks on target proteins and concentrates them
to form a “degradative” domain on the endosomal surface.4–7 Following this,
ESCRT-I, -II and -III are recruited to the degradative domain via ubiquitin chain
recognition.4–8 This process can also occur in a ubiquitin-independent fashion that
requires the endosomal protein ALIX.9,10 These receptors are then deubiquitylated,
and ESCRT-III polymerizes around the target proteins to generate localized mem-
brane tension which causes budding of the endosomal membrane in the luminal
direction.8 Finally, these buds undergo scission in a VPS4-dependent manner to
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deposit intraluminal vesicles enriched with target proteins within the endosomal
lumen.8 By this point, the endosome has matured and is referred to as a late
endosome/multivesicular body. Further maturation into—or fusion with—lysosomes
ensures that the target proteins are broken down by hydrolase enzymes.11

Intraluminal vesicles may bypass lysosomal destruction if late endosomes fuse
with the plasma membrane where they are secreted as exosomes which serve a
variety of cell autonomous and noncell autonomous signaling functions.12

Recycling is an alternative fate for endocytosed plasma membrane receptors that
bypass degradation or secretion. Following endocytosis, early endosomes may rap-
idly—and nonselectively—deliver their content back to the plasma membrane in a
process termed “bulk membrane flow.”13,14 Similarly, yet selectively, transmembrane
proteins on endosomes may undergo cargo sorting and clustering on tubulovesicular
profiles that undergo scission to generate carriers that are targeted to the plasma
membrane or TGN15–17 (Fig. 1A). Importantly, even on the same endosomes, the
opposing degradative and recycling pathways may occur in parallel via spatial separ-
ation of distinct “degradative” and “recycling” domains18,19 (Fig. 1A). These receptor
rerouting processes are orchestrated by various endosomal coat complexes which par-
ticipate in cargo selection based on specific sorting motifs present in the cytoplasmic
tails of cargo proteins.15–17,20,21

FIG 1 Receptor recycling by retromer. (A) Illustration contrasting the potential fates of cargo receptors that reside on endosomes following endocytosis.
Cargo receptors may be recycled to the Golgi by distinct SNX-BAR- or SNX3-retromer pathways or to the plasma membrane by the SNX27-retromer
pathway. Alternatively, receptors may bypass sorting and undergo internalization where the resulting intraluminal vesicle is destroyed; alternatively, the
endosome may fuse with the plasma membrane leading to release of the intraluminal vesicle as an exosome. (B) Illustration of how many regulatory
components assemble with retromer to shape the processes of endosomal recruitment, cargo sorting, tubulation, and trafficking. The SNX-BAR-retromer
models is used in this example.
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RETROMER—THE IMMEDIATE FAMILY

Retromer is a highly conserved assembly of VPS35, VPS26, and VPS29 that was
discovered as a regulator of endosome-to-Golgi receptor trafficking in Saccharomyces
cerevisiae (Fig. 1A).2,22 Apart from this, in metazoan species retromer also regulates
endosome-to-plasma membrane trafficking (Fig. 1A).16,17 These receptor recycling itin-
eraries depart from endosomes and prevent the lysosomal destruction of retromer car-
goes including IGF2R/CI-MPR, sortillin, DMT1-II, GLUT1, and the b2 adrenergic
receptor.17,23

Structurally, VPS26 contains an arrestin fold and has a mobile loop within its C-
terminus (amino acids 235–246) that binds to the N-terminus of VPS35.24,25 VPS26
exists as two paralogues (VPS26A and B) that compete for binding to VPS35, forming
mutually exclusive retromer complexes.26,27 Indeed, VPS26 paralogues display unique
preferences for decorating endosomes at different stages of maturation: for example,
VPS26B shows a greater preference for associating with late endosomes than
VPS26A.26 VPS26A- and B-containing retromer also have different cargo specificities:
for example, VPS26A binds to and traffics the CI-MPR, whereas VPS26B does not.26

These spatiotemporal differences in endosomal localization and cargo specificity are
encoded by the divergent C-terminal tail of VPS26B.26 In mice testis, an alternatively
spliced VPS26A isoform interacts with VPS35, suggesting that retromer may form dis-
tinct tissue-specific complexes which may enable retromer to traffic cargoes that are
expressed in a tissue-specific fashion.28 VPS35 forms a right-handed a-solenoid struc-
ture and engages with VPS26 and VPS29.24,29,30 The conserved PYLRL motif on VPS35
is necessary for its interaction with VPS26.31–34 VPS26 and VPS29 bind independently
to the N- and C-terminal regions of VPS35, respectively, however, each component is
necessary to enable maximal stability of the others.32,35 Incorporation of VPS26 into
the retromer complex induces conformational changes in VPS35 and VPS29.31,32 VPS29
has a metallophosphoesterase fold which acts as a scaffold for binding to the C-ter-
minus of VPS35.29,30 Its metallophosphoesterase fold weakly binds Mn2þ and Zn2þ

ions, and the residues involved with metal binding appear to be important for its sta-
bility.30,36 Catalytic activity against a phosphoserine peptide corresponding to the CI-
MPR sorting signal by the retromer complex in vitro was initially reported, and this
function was abolished by mutation of key residues in VPS29 or with Zn2þ chelators.37

However, a conserved histidine “trigger” is thought to be required for metallophos-
phoesterase activity in similar proteins but is replaced by phenylalanine at position 63
suggesting that VPS29 is catalytically inactive.29,30 In agreement with this, it was subse-
quently found that VPS29 does not display metallophosphoesterase activity against
generic substrates in vitro.29,36

Recently, the structural organization of retromer on membranes has been
described.38 Retromer expressed in Chaetomium thermophilium co-assembles with
recombinant Vps5 homodimers in vitro to enable engagement with liposome mem-
branes. Retromer is organized into dimer complexes (i.e., dimers of VPS29-VPS35-
VPS26 trimers) with arch-like architecture. VPS26 binds to Vps5 at the membrane-prox-
imal base, with VPS35 extending away to form an arch “leg” that contacts a second
copy of VPS35 on the opposite leg at the apex. VPS29 positioned on the membrane-
distal end engages with VPS35 on the opposite side of the apex. This general architec-
ture enables solvent exposure of distinct retromer surfaces that are known to engage
with transmembrane cargoes. The VPS35 dimer interface is flexible and stabilized
through electrostatic interactions.38,39 Retromer also appears to organize into tet-
ramers (i.e., tetramers of VPS29-VPS35-VPS26 trimers), flat chains, as well as a mono-
meric complex (i.e., a monomer of VPS29-VPS35-VPS26 trimer).39,40 It is important to
note considerable variation in the reported retromer structures.38–40 These reflect
diverse conformations and assemblies which may exist in eukaryotes or may arise from
technical differences in the approaches used. For instance, the reported arch-like archi-
tecture of retromer might have been influenced by the Vps5 homodimer on Folch lipid
liposomes and may differ from that assembled on a Vps5-Vps17 heterodimer.38
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ITINERARY-SPECIFIC RETROMER ADAPTORS—THE EXTENDED FAMILY

Retromer interacts with a variety of adaptors that participate in cargo selection,
endosomal recruitment, dictate trafficking itineraries, and serve other regulatory func-
tions. By and large, retromer forms higher order functional complexes by associating
with SNX1/2 and SNX5/6 (SNX-BAR-retromer) or with SNX3 (SNX3-retromer) to regulate
endosome-to-Golgi retrieval pathways via tubular or vesicular endosomal carriers,
respectively (Fig. 1A and B).41–44 In contrast, endosome-to-plasma membrane recycling
is mediated by a complex of retromer with SNX27 (SNX27-retromer) that generates
tubular endosomal carriers (Fig. 1A).17,45 These carriers are trafficked, then tether and
fuse with target membranes.46

SNX-BAR-retromer. SNX-BAR-retromer was first identified in S. cerevisiae, where
the retromer trimer stably interacts with Vps5 and Vps17 (SNX1/2 and SNX5/6 ortho-
logs, respectively).2,22,47 Although metazoan retromer functionally associates with
SNX1/2 and SNX5/6, these interactions appear to be somewhat transient or of low
affinity, as these components do not consistently co-immunoprecipitate
together.15,21,26,48,49 However, their association is largely appreciated by colocalization
to the same endosomes. Initial reports showed that Vps5 and Vps17 interact, and their
deficiency resulted in enhanced secretion of the vacuolar hydrolase carboxypeptidase
Y.47 Vps10 is a receptor that targets hydrolases from the Golgi to the vacuole.2,47

Vps10 must undergo endosome-to-Golgi retrograde transport to enable subsequent
delivery of carboxypeptidase Y to the vacuole.2 When this process is inhibited, hydro-
lases such as carboxypeptidase Y are aberrantly secreted.2,47 Indeed, this occurs in
Vps29-, Vps35-, and Vps10-deficient yeast strains.2 In mammalian systems, the CI-MPR
performs a similar task and couriers hydrolases to the lysosome.50 Similarly, retromer
depletion impairs endosome-to-Golgi trafficking of the CI-MPR and enhances secretion
of the lysosomal hydrolase cathepsin D, thus reducing the degradative capacity of lyso-
somes.15,16,46 Depletion of either SNX1, -5 or -6 leads to CI-MPR mis-trafficking; strik-
ingly, SNX2 depletion does not, suggesting that its loss may be functionally
compensated for by SNX1.44,51,52 Consistent with this, codepletion of SNX1 and SNX2
limit the endosomal recruitment of VPS26.42 The PX domains of SNX1/2 show a strong
preference for binding to phosphatidylinositol (PtdIns)(3,4)P2 on membranes.53 In con-
trast, SNX5/6 do not exhibit appear to bind to phospholipid membranes, and likely are
recruited to endosomes by binding to the cytoplasmic tails of receptor cargoes.44,53,54

SNX1 interacts with SNX6, and SNX5 and -6 are required for the stability of SNX1.44

SNX1/2, along with the SNX1 interacting protein RME8 segregate recycling domains on
endosomes from degradative ones that are decorated with ESCRT machinery.18

SNX1/2 contain BAR domains that sense and mediate local membrane curvature to
generate endosomal tubules in a clathrin-independent fashion.43,51,55 SNX6/5 bind to
the p150glued component of the dynactin-dynein motor complex to elicit minus-end
microtubule transport of tubular carriers loaded with the CI-MPR to the TGN following
scission.56,57 In an SNX1/2-dependent manner, endosomal carriers containing the CI-
MPR are tethered to the Golgi by golgin 245.46 A pool of PtdIns(4)P at the TGN antago-
nizes the p150glued-SNX6 interaction and enables carrier-to-Golgi cargo transfer.58

EHD1 stabilizes SNX1-positive endosomal tubules and may regulate fission to produce
tubular carriers.59 The nucleotide-binding P-loop of EHD1 is necessary for its inter-
action with VPS26, and when in complex with ANKFY1, collectively ensures the recruit-
ment of retromer to endosomes rather than the Golgi.59,60 Moreover, both SNX1 and
-2 can be cleaved by initiator caspases 8, -9 and -10, whereas only SNX2 is cleaved by
the executioner caspase 6 during apoptosis.61 SNX2 cleavage impairs the SNX2-VPS35
interaction and reduces the endosomal recruitment of VPS26.61 In addition, independ-
ent of its catalytic activity, the apoptosis initiator, caspase 9, regulates CI-MPR endo-
some-to-Golgi transport.62 Caspase 9 interacts with VPS35 as well as SNX1, -2, -5 and
-6, and elicits an inhibitory action against the ESCRT pathway.62 Together, these find-
ings suggest that apoptotic signalling may communicate with retromer to modulate
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receptor trafficking and homeostasis. However, these actions may be less coordinated
than expected given the wide array of proteins cleaved by caspases during apoptosis.

Genetic screens to analyze CI-MPR trafficking have been incredibly valuable tools
for the identification of retromer modulators and/or endosome-to-Golgi pathway
modifiers in general.44,63 The rationale for their use was tied to early reports which
independently showed that CI-MPR trafficking required retromer.15,16 Recognition and
sorting of the CI-MPR and sortilin by retromer were mapped to a canonical
[F/L/W]x[L/M/V] (where x is any amino acid) sorting motif in their cytoplasmic tails.21

However, several established cargoes lack this sorting motif, leading to the discovery
of variable bipartite sorting signals in cargoes including Vps10 and Ear1 in yeast.64

Importantly, most of what we understand about retromer stems from its role in CI-MPR
trafficking. The recent demonstrations that retromer was dispensable for CI-MPR traf-
ficking, and that SNX-BAR components carried out this function independently of ret-
romer was both surprising and controversial.48,49 Particularly, because this work by the
Steinberg and Cullen labs seems to contradict their earlier findings.44,54 In their recent
work, genetic deletion of retromer components or their depletion by RNA interference
did not affect CI-MPR trafficking in an array of cell lines.48,49 In broad disagreement
with others,15,21,26 their studies demonstrated that the CI-MPR did not directly bind to
retromer but rather engaged with SNX1/2 and SNX5/6 in a manner that was abolished
by mutation of the WLM sorting motif within its cytoplasmic tail.48,49 Further, the CI-
MPR did not reside on the same tubular endosomal domains as retromer, but rather
with SNX1/2 and SNX5/6.48,49 These observations are difficult to square with previous
findings and call into question our current understanding about SNX-BAR-retromer.65

SNX3-retromer. SNX3 can recruit retromer onto the endosomal surface, and from
here SNX3-retromer regulates the endosome-to-Golgi trafficking of its cargoes through
the generation of vesicular endosomal carriers.41,66 SNX3 contains a PX domain, similar
with SNX1/2.67 The PX domain of SNX3 binds more strongly to PtdIns(3)P than does
the PX domains of SNX1/2, which may account for their spatial separation on endo-
somes.53,68 Similarly, SNX3 is recruited to other compartments enriched with
PtdIns(3)P such as phagosomes sequestering Salmonella enterica or Escherichia
coli.69,70 Control of the SNX3-PtdIns(3)P interaction, and thus its endosomal recruit-
ment, is opposed by phosphorylation of SNX3S72 within its PX domain.71 This residue is
conserved across the PX domains of other proteins such as SNX1 and -2 and may rep-
resent a common mode of regulation.71 However, the kinase responsible for SNX3
phosphorylation at this site awaits discovery. Endosomal recruitment of SNX3 is
reduced following exposure to wortmannin, an inhibitor of phosphoinositide 3-kin-
ase.72 On the endosomal surface, SNX3 docks onto the VPS26-VPS35 interface to
induce a conformational change in VPS26 to enable recognition of the [�/þ]wØw[L/M]
(where, �/þ denotes any charged amino acid, Ø denotes a bulky aromatic residue,
and w denotes a residue with a hydrophobic or long aliphatic hydrocarbon tail) sorting
motif on its cargo DMT1-II.73 SNX3 engages with the MON2-DOPEY2-ATP9A endosome
remodelling complex and is required for proper sorting of its cargo Wntless.74 Indeed,
akin to SNX3 or VPS35 depletion, silencing MON2 and DOPEY2 expression perturbs
Wntless trafficking and enhances its turnover.74 SNX3 is also critical for endosomal
maturation and the formation of multivesicular bodies, a function thought to be dis-
tinct from its role in cargo retrieval.72 In a SNX3-dependent manner, endosomal carriers
containing the CI-MPR carriers are tethered to the Golgi by GCC88.46

SNX27-retromer. SNX27 lacks a BAR domain, akin to SNX3, but a key difference
between the two is that SNX27-retromer interacts with SNX1, -2, and -5 which mediate
tubular carrier formation for the endosome-to-plasma membrane trafficking path-
way.17 However, SNX1/2 or SNX5/6 depletion only partially phenocopies the degrad-
ation of SNX27-retromer cargoes, indicating that a degree of functional redundancy
exists in the pathway.17 SNX27 contains a PX domain and a FERM domain that collect-
ively bind to PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns(4,5)P2, and PtdIns(3,4,5)P3 on mem-
branes.75,76 The FERM domain is not required for the general endosomal recruitment
of SNX27 but rather for recruitment to transferrin-positive recycling endosomes.76
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The PX domain of SNX27 and SNX1/2 have distinct preferences for binding to
PtdIns(3)P and PtdIns(3,4)P2, respectively, suggesting that SNX27 recruitment to
SNX1/2-decorated endosomes, or vice-versa, may occur indirectly via the SNX27-
SNX1/2/5 interaction or at distinct stages throughout endosomal maturation.17,53 A
surface-exposed b-hairpin within the PDZ domain of SNX27 binds to a groove in the
arrestin fold of VPS26A.77 The PDZ domain of SNX27 binds to transmembrane cargoes
that contain a PDZ binding motif on their cytoplasmic tails.17 The SNX27-VPS26A inter-
action increases the affinity of SNX27 for PDZ binding motifs, suggesting that incorpor-
ation of SNX27 into the retromer complex plays an important role in cargo sorting.77

Similarly, an acidic clamp upstream of the PDZ binding motif on SNX27 cargoes is
important for cargo selection.78 SNX27-retromer cargoes, including the b2 adrenergic
receptor, lack an acidic clamp which is compensated for by phosphorylation of resi-
dues that occupy these positions, thus providing an analogous negative charge.78 In
contrast, phosphorylation of the b2 adrenergic receptorS411 within its PDZ binding
motif abolishes its interaction with SNX27 and enhances its turnover.78,79 The FERM
domain of SNX27 also participates in cargo sorting through recognition of NPxY/NxxY
sorting motifs (where x is any amino acid).80 The VPS26-SNX27 interaction is critical for
GLUT1 recycling but is antagonized by the PTEN-SNX27 interaction.81 Most oncogenic
PTEN mutations impair its lipid phosphatase activity; however, the T401I mutation,
which does not affect its catalytic function, fails to inhibit the VPS26-SNX27 interaction
and leads to enhanced glucose uptake and glycolysis.81 Similarly, the deubiquitinase
OTULIN binds to SNX27 via its PDZ binding motif and OTU domain which inhibits the
VPS26-SNX27 interaction in a manner that is independent of its catalytic function.82 In
response to a variety of stressful stimuli (e.g., nutrient starvation, ER stress, mitochon-
drial depolarization, lipopolysaccharide, pro-inflammatory cytokines, and high ATP lev-
els), phosphorylation of SNX27S51 by MAPK11/14 inhibits the selection and recycling of
cargoes to the plasma membrane.83 This indicates that SNX27 controls the density of
receptors at the plasma membrane as a way of adapting to environmental
fluctuations.

ADDITIONAL RETROMER ADAPTORS—FRIENDS WITH BENEFITS
WASH complex. The Wiskott–Aldrich syndrome and scar homologue (WASH) com-

plex nucleates branched chains of F-actin on the endosomal surface and coordinates
endosomal tubule scission/fission.84–86 The WASH complex consists of WASH, FAM21,
KIAA1033, strumpellin, SWIP, and CCDC53.84–86 Retromer recruits the WASH complex
to endosomes which, together, form a supercomplex via VPS35 binding to the unstruc-
tured tail of FAM21.87–89 The tail of FAM21 contains 21 copies of an unstructured
LF[D/E]2–10LF motif that can simultaneously bind to multiple copies of VPS35, suggest-
ing that FAM21 senses the concentration of cargo-engaged retromer to coordinate F-
actin nucleation on tubulating endosomes.88,89 Depletion of WASH, strumpellin or
KIAA1033 leads to uncontrolled endosome tubulation and CI-MPR mis-trafficking, indi-
cating that endosomal F-actin polymerization is a prerequisite for scission.87,90 A com-
plex of MAGEL2 and TRIM27 binds to VPS26 and VPS35 and controls K63-linked
ubiquitination of WASHK220 to promote F-actin nucleation and CI-MPR trafficking.91

Apart from endosomes, the retromer-WASH supercomplex docks onto macropino-
somes and phagosomes to regulate sorting of p25 and the integrin SibC in
Dictyostelium discoideum.92 SNX27 interacts with WASH complex components FAM21,
strumpellin, and WASH via its FERM domain.17 This interaction suppresses PtdIns 4-kin-
ase b activity and thus PtdIns(4)P production at the Golgi.93 PtdIns(4)P regulates cargo
disengagement from retromer at the Golgi; limiting its production enhances the tar-
geting of SNX27-retromer cargoes to the plasma membrane.93 In addition, ANKRD50
incorporation into the SNX27-retromer-WASH supercomplex is required for the endo-
some-to-plasma membrane trafficking of GLUT1.94 Importantly, the VPS35D620N muta-
tion causes autosomal dominant Parkinson’s disease and impairs the VPS35-FAM21
interaction.54,95 This mutation reduces the endosomal recruitment of the WASH
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complex and perturbs the endosome-to-Golgi itineraries but not the plasma mem-
brane ones.54,95 The direct interaction between SNX27 and the WASH complex via
its FERM domain—independently of the VPS35-FAM21 interaction—might explain
why the recycling pathway is somewhat resistant to the defects caused by the
VPS35D620N mutation.17,54 This mutation, similar with WASH depletion, leads to
mis-trafficking of ATG9A and impedes autophagosome formation.95 Following endo-
somal tubulation the scission and liberation of carriers occurs at endoplasmic reticu-
lum (ER)-endosome contacts.96,97 Indeed, the ER is recruited to FAM21-positive
sorting domains on endosomes prior to fission.97 ER-endosome contacts are coordi-
nated in trans by an interaction between SNX2 on tubular endosomes and the ER-
resident protein VAMPA/B.96 In trans, VAMPA/B regulate endosomal PtdIns(4)P
levels, WASH complex activity, and thus scission dynamics.96 At the ER-endosome
interface, spastin drives tubule fission and its depletion impedes CI-MPR traffick-
ing.98 Altogether, the WASH complex is an important retromer adaptor that assists
in the formation of tubular endosomal carriers for the efficient retrieval and recycling
of receptors. It is interesting to note that the WASH complex is not conserved in
yeast and is therefore not necessary for endosome-to-Golgi trafficking in simple
eukaryotes.

Rab7 GTPase and TBC1D5. The small GTPase Rab7 regulates endosomal matur-
ation, fusion, and lysosome biogenesis.99,100 Apart from these functions, in a GTP-
nucleotide-bound state Rab7 loads retromer onto the endosomal membrane.87,101,102

The Mon1-Ccz1-C18orf8 complex is a guanine nucleotide exchange factor that
switches Rab7 from a GDP- to GTP-bound state, an upstream requirement for the
recruitment of retromer to the endosomal surface.101–104 Rab7 depletion, as well as
expression of a GDP-locked mutant, result in the disassociation of VPS26 from endo-
somes.87,101,102 Rab7 depletion also impairs the endosome-to-Golgi trafficking of the
CI-MPR.101,102 In yeast, the conserved a-helix#6 of Vps35 is required for binding to the
Rab7 ortholog Ypt7.105 Deletion of a-helix#6 in VPS35 leads to mis-trafficking of the CI-
MPR in mammalian cells, suggesting that the VPS35-Rab7 interaction is important for
receptor trafficking.105 The VPS26-Rab7 interaction is enhanced by Rab7 palmitoyla-
tion, and the VPS35-Rab7 interaction is abolished by a RAB7A mutation that causes
Charcot–Marie–Tooth 2B disease.102,106

VPS29 and VPS35 interact with two loops in TBC1D5 to form a complex of similar
affinity to the VPS35-VPS26 interaction (KD � 220 nM).102,107 Importantly, VPS29 binds
to TBC1D5 far more strongly than VPS35 does. The retromer-TBC1D5 interaction has
been highly conserved for over one billion years despite TBC1D5 lacking a clear homo-
logue in yeast.108 TBC1D5 contains a TBC/GTPase-activating protein (GAP) domain that
catalyzes the GTP-to-GDP hydrolysis of Rab7 in vitro, a catalytic function that is
enhanced when it is bound to retromer.107,109 Indeed, over-expression of TBC1D5, but
not mutants lacking the TBC/GAP domain or GAP activity, reduces the endosomal
recruitment of VPS26.87,102 TBC1D5 depletion also enhances the Rab7-retromer inter-
action.110 The loss of TBC1D5 or retromer components promotes Rab7 hyperactivation
and its relocalization to nonendosomal membranes such as mitochondria and ER.111 In
Drosophila, Tbc1d5 deficiency enhances the endosomal retention of retromer.112

TBC1D5 depletion augments some but not all retromer-dependent trafficking itinera-
ries. In cells overexpressing VPS35 or its D620N mutant, TBC1D5 depletion increases CI-
MPR delivery to the TGN; however, this fails to occur in non-overexpressing cells.110

Similarly, TBC1D5 depletion modestly enhances GLUT1 trafficking to the plasma mem-
brane.113 However, a VPS29L152E mutant that fails to bind to TBC1D5 has the opposite
effect and reduces GLUT1 trafficking.108,114 This mutant also fails to bind to
VARP/ANKRD27 making this finding difficult to interpret. Likewise, loss of TBC1D5
impairs the endosome-to-plasma membrane trafficking of CI-MPR.107 These inconsis-
tencies indicate that the relationship between TBC1D5 and retromer is not strictly of
an inhibitory nature.
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TBC1D5 has at least two Atg8/LC3-interacting regions (LIR): its C-terminal LIR is pri-
marily responsible for binding to Atg8 proteins in vitro;115 its N-terminal LIR is required
for binding to VPS29 in vitro but can be outcompeted by increasing amounts of
LC3A.115 Mutant TBC1D5 lacking its N-terminal LIR retains its interaction with LC3A/B
but does not recruit to autophagosomes, suggesting that the TBC1D5-retromer
interaction may be required for targeting to autophagosomes.115 The VPS29-TBC1D5
interaction is antagonized during autophagy, with TBC1D5 favoring interaction with
components of the autophagy initiation machinery including ATG9 and ULK1.116

ATG9 is critical for autophagosome formation and its trafficking to the phagophore
is regulated by retromer and WASH, as well as TBC1D5 in an AP2-dependent man-
ner.95,116,117 Control of ATG9A trafficking by the retromer-TBC1D5 complex also reg-
ulates Rab7-dependent mitophagy.111 In an autophagy-dependent manner, TBC1D5
preferentially binds to LC3A over retromer during glucose deprivation.113 This weak-
ens the inhibitory effect of TBC1D5 for retromer, enhancing the endosomal recruit-
ment of retromer and GLUT1 trafficking to augment glucose uptake.113 This mode of
regulation may be limited to autophagy triggered by glucose deprivation, hypoxia,
and KRAS transformation, as autophagy activation following mTOR inhibition with
rapamycin does not produce the same effect.113 The retromer-TBC1D5 complex acti-
vates mTORC1 signaling and thus suppresses autophagy by restricting Rab7 hyper-
activation.118 Hyperactivated Rab7 outcompetes RagC for lysosomal domains
leading to defective lysosomal recruitment of mTORC1 and reduced mTORC1 signal-
ing even under amino acid replete conditions.118 Moreover, retromer deficiency con-
fers sensitivity to mTORC1 inhibition with rapamycin.119 Indeed, similar to caloric
restriction or exposure to rapamycin, vps-35 and vps-29 deficiency extends lifespan
in Caenorhabditis elegans but this is not the case for Vps29 deficiency in
Drosophila.112,118

VARP. VARP interacts with retromer and regulates the endosome-to-plasma mem-
brane trafficking itineraries of some but not all cargoes.120 The N-terminal region of
VARP is required for its interaction with retromer; this interaction is also conserved for
its related protein in yeast Vrl1.120,121 VARP is a Rab32/38 effector; however, VPS29 but
not Rab32 is required for its endosomal recruitment.114 The VARP-VPS29 interaction is
required for the proper sorting of GLUT1 to the plasma membrane.108,114 However, in
one study, VARP depletion did not lead to appreciable GLUT1 degradation.120 VARP
has a Zn2þ “fingernail” that binds to VPS29 at the same site as TBC1D5.108 In cells,
VARP and TBC1D5 directly compete for binding to VPS29 and thus their incorporation
into the retromer supercomplex.108 A retromer binding switch from TBC1D5-to-VARP
may serve a regulatory function given that VARP also associates with VAMP7, a SNARE
protein involved in vesicle fusion.108,114 VARP displays a preference for binding to ret-
romer dimers suggesting that arrangement of retromer coats may affect the TBC1D5-
to-VARP switch.108

DIRECT CONTROL OF RETROMER—FAMILY POLITICS

Post-translational modifications to retromer components may impact its localiza-
tion, cargo selection, and trafficking functions (Table 1). These modifications may
modulate retromer function in response to environmental and metabolic changes.
Insulin promotes glucose uptake into peripheral tissues by augmenting AKT-
dependent trafficking of GLUT4 to the plasma membrane.125 However, prolonged insu-
lin exposure results in GLUT4 degradation in a similar manner to VPS26 depletion.122

Downstream of the insulin receptor, this effect appears to be driven by CK2 rather
than phosphoinositide 3-kinase or ERK.122 Following insulin stimulation, VPS35 attach-
ment to endomembranes is modestly reduced; however, this is abolished by the
expression of a phosphodeficient mutant of VPS35S7A.122 The residues that immedi-
ately flank VPS35S7 conform to the consensus phosphorylation motif of CK2, although
it is currently unknown if it actually phosphorylates VPS35.122 The DNA damage
responsive kinase NEK1 phosphorylates the C-terminal tail of VPS26BS302/304.124 A
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phosphomimetic mutant of VPS26BS302/304D displays impaired binding to SNX27, yet
increased delivery of its cargo GLUT1 to the plasma membrane.124 Interestingly, a
phosphodeficient mutant of VPS26BS302/304A has reduced ability to bind to SNX2.124

Together, this suggests that phosphorylation of the C-terminus of VPS26B coordinates
the extent to which endosome-to-plasma membrane, or -Golgi trafficking itineraries
are activated by VPS26B-containing retromer. It may also enable retromer to sense and
adapt to stressful situations (e.g., DNA damage). In yeast, phosphorylation of residues
that comprise loop#6 of Vps26 are critical for cargo selection and trafficking, and is
antagonized by Mih1, a member of the CDC25 phosphatase family.126 However, it is
unclear whether a similar regulatory mechanism exists in metazoa.

The ubiquitin ligase Parkin mediates ubiquitylation of three C-terminal lysine resi-
dues on VPS35K515/555/701.123 A similar notion was supported by an unbiased screen for
Parkin substrates in the Drosophila eye.127 VPS35 ubiquitylation does not affect its sta-
bility.123 However, WASH and FAM21 are reduced in the mid-brain of Parkin-deficient
mice, and Parkin depletion leads to mis-trafficking of ATG9A.123 These observations
hint that VPS35 ubiquitylation may affect the stability of the WASH complex and cargo
trafficking, although further investigation is required to understand how VPS35 ubiqui-
tylation truly affects retromer.123

The transcription factor TFEB promotes VPS26A and VPS35 expression following
amino acid depletion.128 Phosphorylation of TFEBS211 by mTORC1 antagonizes its entry
into the nucleus and inhibits transcription of its target genes.129 Thus, one way that
cells may attempt to adapt to amino acid withdrawal is to augment retromer function
given that the glutamine transporter ASCT2 is an SNX27-retromer cargo.128,130

Remarkably, cells lacking VPS35 or VPS29 display reduced mTORC1 signalling and
increased nuclear localization of TFEB, suggesting that their relationship may be
bidirectional.118

TABLE 1 Post-translational modifications that regulate retromer function

Protein Site and PTM type Regulated by Outcome Effect on trafficking Reference

Vps35 S7 phosphorylation Unknown kinase
(likely CK2)

# endosome recruitment of
retromer

Likely # endosome-to-
Golgi/plasma
membrane trafficking

122

Vps35 K515/555/701 ubiquitination Parkin Unclear
May "WASH and FAM21

stability

Likely " endosome-to-
Golgi/plasma
membrane trafficking

123

Vps26B S302/304 phosphorylation NEK1 # binding of VPS26B to
SNX27

" binding of VPS26B to SNX2

" endosome-to-plasma
membrane trafficking

124

SNX2 D84 Cleavage Caspase 6, 8, 9
and 10

# binding of SNX2 to
retromer

Likely # endosome-to-
Golgi/plasma
membrane trafficking

61

SNX3 S72 phosphorylation Unknown kinase # binding of SNX3 to
PtdIns(3)P

# endosome recruitment of
SNX3-retromer

Likely # endosome-to-
Golgi trafficking

71

SNX27 S51 phosphorylation MAPK11/14 # binding of SNX27 to PDZ
motif-containing cargoes

# endosome-to-plasma
membrane trafficking

83

WASH K220 ubiquitylation MAGEL2-TRIM27
complex

" actin nucleation at
endosomal surface to
promote tubule
formation

" endosome-to-Golgi
trafficking

Likely " endosome-to-
plasma membrane
trafficking

91

Rab7 GTP-bound Mon1-Ccz1-
C18orf8 (GEF)

" endosome recruitment of
retromer

Likely " endosome-to-
Golgi/plasma
membrane trafficking

102,101,104

Rab7 GDP-bound TBC1D5 (GAP) # endosome recruitment of
retromer

# endosome-to-Golgi
transport

87,102,110
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RELATED ENDOSOMAL SORTING COMPLEXES—LONG LOST COUSINS

Retromer shares a high degree of structural and functional homology with newly
identified endosomal sorting complexes. By contrasting various targeted interactomics
datasets the evolutionarily conserved commander/CCC complex was identified to con-
sist of �14 putative subunits, including COMMD1–10, CCDC22, CCDC93, VPS26C, and
VPS35L.131 VPS26C and VPS35L share predicted structural homology to VPS26 and
VPS35, respectively.20,131 Retriever is a stable trimer consisting of VPS26C, VPS35L, and
VPS29 with predicted similarity in overall architecture to retromer.20 Retriever is incor-
porated into a supercomplex with SNX17 and the other CCC components.20 Retromer
and retriever exist as distinct complexes.20 It is likely that most VPS29 is incorporated
within retromer rather than retriever as loss of VPS35 markedly depletes VPS29 levels.46

Similar to SNX27, SNX17 has PX and FERM domains that dock onto PtdIns(3)P and par-
ticipate in selection of NPxY/NxxY sorting motifs, respectively (where x is any amino
acid).53,80 CCDC22 and CCDC93 engage with the WASH complex by binding to FAM21,
and therefore commander/CCC complex components may have a common role in the
coordination of retromer and retriever functions.132 Through their C-terminal COMM
domains, the COMMD subunits form heterodimers.133 COMMD3 is required for endo-
somal recruitment of VPS35L.134 The SNX17-retriever-WASH supercomplex regulates
the endosome-to-Golgi and -plasma membrane trafficking of a diverse array of recep-
tors including integrin a5.20 Similar to retromer, retriever controls the steady-state
abundance of >120 cell surface proteins as well as copper and low-density lipoprotein
homeostasis.20,132,135 Depletion of CCDC93, COMMD3 or VPS26C elevates PtdIns(3)P
levels and impairs the plasma membrane trafficking of integrin a5, a defect that can be
rescued by inhibition of the phosphoinositide 3-kinase VPS34.134 The lipid phosphat-
ase MTMR2 interacts with CCDC22 to restrict its phosphorylation at serine 58, which in
turn suppresses PtdIns(3)P levels and ensures proper retriever-dependent
trafficking.132,134

RETROMER AND HUMAN DISEASE—A DYSFUNCTIONAL FAMILY
Parkinson’s disease. Parkinson’s disease is a progressive motor disorder that is

characterized by the degeneration of dopaminergic neurons in the substantia nigra
pars compacta.136 With this, the Parkinson’s disease brain displays Lewy body path-
ology within neurons, which are insoluble deposits of a-synuclein, as well as mitochon-
drial dysfunction.136 The VPS35D620N missense mutation causes a rare form of
autosomal dominant Parkinson’s disease.137,138 Similarly, other VPS35 variants are asso-
ciated with Parkinson’s disease, albeit from a mechanistic perspective: pathology aris-
ing from the D620N mutation has been the most thoroughly characterized.137 The
D620N mutant of VPS35 impairs its interaction with FAM21, and thus the WASH com-
plex, and impairs receptor trafficking, lysosomal function, and autophagosome forma-
tion.54,95 The autophagy-lysosome axis is critical for suppressing a-synuclein
aggregation.139 The VPS35D620N mutation increases a-synuclein aggregation, its tox-
icity, and neuronal loss.140–142 Retromer also supports healthy neuronal function by
other means such as dendritic spine maintenance, and recycling of neuromodulator
and neurotransmitter receptors.143,144 Indeed, retromer regulates the recycling of the
dopamine receptor D1 and AMPA receptor components GluR1 and -2, all of which
undergo mis-trafficking upon VPS35D620N expression.143–145 Retromer is important for
mitochondrial dynamics, function, and quality control. The VPS35D620N mutant confers
enhanced sensitivity to mitochondrial inhibitors.146,147 Similar to VPS35 deficiency the
D620N mutant promotes aberrant mitochondrial fragmentation in dopamine neurons
via enhancement of MUL1-dependent ubiquitylation and turnover of MFN2.148 A simi-
lar effect occurs via enhanced lysosomal turnover of DLP1 complexes following
VPS35D620N expression.149 Through control of ATG9A trafficking, the retromer-TBC1D5
complex also regulates mitophagy.111 Moreover, RME8 is interacts with SNX1 and
FAM21 and mutation of this protein causes autosomal dominant Parkinson’s disease
that are phenotypically similar to VPS35 mutations.150
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Alzheimer’s disease and neurodegerative tauopathies. Alzheimer’s disease is a
progressive neurological disorder resulting in cognitive decline and memory loss.151

These clinical features coincide with brain atrophy and the deposition of extraneuronal
amyloid plaques and intraneuronal neurofibrillary tangles consisting of aggregated
amyloid-b and tau, respectively.152–157 VPS35 and VPS26 are reduced in the entorhinal
cortex of people with Alzheimer’s disease.158–160 In addition, an L625P missense muta-
tion in VPS35 was identified in an individual with sporadic early onset Alzheimer’s dis-
ease; this mutation perturbs the VPS35-VPS29 interaction, and therefore the stability of
the retromer complex.161 Similarly, all three retromer components are depleted in the
hippocampus and frontal cortex of other neurodegenerative tauopathies which lack
amyloid-b pathology, including Pick’s disease and progressive supranuclear palsy.162 In
tauP301S transgenic mice, Vps35 depletion exacerbates cognitive and behavioral phe-
notypes.162 Retromer depletion enhances pathological tau hyper-phosphorylation, a
phenotype that is antagonized by Vps35 overexpression or with retromer chaper-
ones.162–165 In addition, retromer is critical for autophagy-dependent clearance of tau
aggregates, and limits tau-induced neurotoxicity.166–168 Indeed, retromer depletion
promotes amyloid-b production and amyloid plaque deposition via mis-trafficking of
the amyloid-b precursor protein APP and its processing enzymes, b- and c-secre-
tase.169–172 Endosome-to-Golgi trafficking of APP is mediated by retromer indirectly via
binding to the retromer cargo SORL1.173 Interestingly, SORL1 is also major genetic risk
factor for Alzheimer’s disease.174 Pharmacological stabilization of retromer limits amyl-
oid-b production both in vitro and in vivo.164,175 In a small-scale genetic study, the ret-
romer interactors SNX3, SNX1, KIAA1033, and RAB7A were shown to be genetically
linked with Alzheimer’s disease, however, these “hits” failed to reach genome-wide sig-
nificance in larger and more robust studies.66,176

Amyotrophic lateral sclerosis. The gene expression of retromer components, as
well as its adaptors, is reduced in the spinal cords of humans with the motor neuron
disease amyotrophic lateral sclerosis.177 These reductions in gene expression coincide
with deficiency at the protein level.177 Retromer deficiency is also observed in stem
cell-derived motor neurons from amyotrophic lateral sclerosis patients with SOD1
mutations and in transgenic Sod1G93A mice.177,178 Enhancing retromer stability with
the chaperone 2a improves motor neuron survival and locomotor function in Sod1G93A

mice.178 However, others have reported that enforcing Vps35 expression enhances par-
alysis in Sod1G93A mice, whereas depletion of Vps35 has the opposite effect.177 Due to
these conflicting findings, it remains unclear if targeting retromer will be useful in the
context of amyotrophic lateral sclerosis.

Microbial infections. Several microbes have evolved ways to hijack the retromer-
TBC1D5 system for their benefit. The Legionella pneumophila effector RidL outcom-
petes TBC1D5 and VARP for binding to VPS29 and inhibits retromer-dependent traffick-
ing to promote intracellular growth and replication of the pathogen.179–182 L.
pneumophila may also disrupt retromer indirectly by depleting PtdIns(3)P levels.183

Similarly, the retromer-TBC1D5 complex is exploited by human papillomaviruses, for
which TBC1D5 is a host factor required for pathogen invasion.184 The human papillo-
mavirus L2 capsid protein binds to retromer to promote TBC1D5-dependent GTP-
hydrolysis by Rab7.184 Interestingly, constant cycling of the Rab7 nucleotide state
through a “start-stop-start” mechanism ensures that retromer preferentially traffics the
virus to the TGN instead of its cargoes.184 The influenza A virus effector protein M2
abrogates the Rab7-TBC1D5 interaction by binding to the C-terminus of TBC1D5 which
inhibits autophagosome-lysosome fusion and enhances virus secretion.185 In addition,
following herpes infection, the viral M45 protein induces aggregation of NFjB and
RIPK1 and their turnover via autophagy in a VPS26B- and TBC1D5-dependent manner
to inhibit inflammation and cell death.186 SARS-CoV-2 is the virus that causes the
respiratory disease COVID-19. Recently, a CRISPR screen identified retromer compo-
nents (VPS35, VPS26A, VPS29) and SNX27, as well as the related commander/CCC com-
plex members (COMMD2, -3 and -4), several components of the lysosomal V-type
ATPase and the lysosomal protease CTSL as host factors required for SARS-CoV2
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infection.187 Binding of SARS-CoV-2 to the ACE2 receptor on the plasma membrane of
host cells enables the virus to be endocytosed and delivered to the lysosome where its
enzymatic breakdown enables the release of its genetic material for viral replication.187

Interestingly, ACE2 contains a PDZ binding motif that engages with the PDZ binding
domain of SNX27 which, together with retromer, recycles ACE2 bound to SARS-CoV-2
back to the plasma membrane to inhibit delivery of the virus to lysosomes and thus its
replication.188

Other diseases. Retromer and its adaptors are linked with several other metabolic
and neurodegenerative diseases. VPS26 is a genetic risk factor for type 2 diabetes.189

VPS35 has a potential oncogenic function in liver cancer by augmenting the phosphoi-
nositide 3-kinase–AKT–mTORC1 pathway.190 SNX27 is depleted in the brains of people
with Down’s syndrome, which is associated with Alzheimer’s disease-like pathology.191

Mutations in KIAA0196 which encodes the WASH complex component strumpellin
cause hereditary spastic paraplegia.192 Interestingly, mutations in KIAA0196 as well as
retriever and commander/CCC complex genes VPS35L and CCDC22, respectively, cause
Ritscher-Schinzel syndrome.193,194 In addition, RAB7A mutations cause the axonopathy
Charcot–Marie–Tooth 2B disease.195

CONCLUSIONS—FAMILY HISTORY AND THE NEXT GENERATION

More than 20 years after its discovery in yeast, we have now begun to understand
the function of retromer at the molecular level. The mechanisms that govern its recruit-
ment to endosomes, engagement with adaptors, and cargo selection/sorting have
been characterized in much greater detail. Loss and gain of function experimental
approaches have allowed us to understand the widespread consequences of retromer
dysfunction which are not limited to general perturbation of the endolysosomal and
autophagy systems. Indeed, retromer dysfunction recapitulates an array of pathologies
relating to neurodegenerative diseases, and retromer is commonly exploited by viruses
and bacteria. From a pharmacological standpoint, targeting retromer in a variety of
diseases seems promising given that its dysfunction contributes to a variety of disease-
related phenotypes.196 It will be interesting to see how these evolve as potential thera-
peutics and whether single or combined downstream functions of retromer account
for their benefits. An important aspect of retromer biology that is poorly understood is
its upstream regulation. The mechanisms by which cells fine-tune retromer function to
adapt to dynamic changes in nutrient availability, growth factor stimulation, and the
switching of metabolic states is only beginning to be explored. To better understand
the workings of retromer at the molecular level, future efforts must seek to answer
such fundamental questions.
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