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Abstract

Previous diagnostic systems precluded the co-existence of autism spectrum disorder (ASD) and attention-defi-
cit/hyperactivity disorder (ADHD) in one person; but, after many clinical reports, the diagnostic criteria were
updated to allow their co-occurrence. Despite such a clinical change, the neurobiological bases underpinning
the comorbidity remain poorly understood, and whether the ASD1ADHD condition is a simple overlap of the
two disorders is unknown. Here, to answer this question, we compared the brain dynamics of high-functioning
ASD1ADHD children with age-/sex-/IQ-matched pure ASD, pure ADHD, and typically developing (TD) children.
Regarding autistic traits, the socio-communicational symptom of the ASD1ADHD children was explained by
the same overstable brain dynamics as seen in pure ASD. In contrast, their ADHD-like traits were grounded on
a unique neural mechanism that was unseen in pure ADHD: the core symptoms of pure ADHD were associ-
ated with the overly flexible whole-brain dynamics that were triggered by the unstable activity of the dorsal-at-
tention network and the left parietal cortex; by contrast, the ADHD-like cognitive instability of the ASD1ADHD
condition was correlated with the atypically frequent neural transition along a specific brain state pathway,
which was induced by the atypically unstable activity of the frontoparietal control network and the left prefron-
tal cortex. These observations need to be validated in future studies using more direct and comprehensive be-
havioral indices, but the current findings suggest that the ASD1ADHD comorbidity is not a mere overlap of
the two disorders. Particularly, its ADHD-like traits could represent a unique condition that would need a spe-
cific diagnosis and bespoke treatments.
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Significance Statement

Children with autism spectrum disorder (ASD) have cognitive rigidity and tend to persist in specific thoughts,
whereas those with attention-deficit/hyperactivity disorder (ADHD) exhibit overly flexible cognition and have
trouble with concentration. Despite such contrast, clinically, the two neurodevelopmental disorders often co-
exist in one person. How can such a co-occurrence happen? By investigating the global and local brain dy-
namics, this study found that the comorbidity of ASD and ADHD is not a simple overlap of the two conditions.
Instead, the cognitive instability seen in ASD1ADHD children was underpinned by unique brain dynamics that
were not observed in pure ADHD. These findings indicate that the comorbid condition would need a bespoke
diagnosis and treatment.

Introduction
Relations between autism spectrum disorder (ASD) and

attention-deficit/hyperactivity disorder (ADHD) have not

been simple. ASD has cognitive rigidity as one of its core
symptoms (Lopez et al., 2005; Uddin et al., 2015; Watanabe
et al., 2019a; Uddin, 2021), whereas ADHD tends to show
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overly flexible and unstable cognition (Kuntsi and Klein, 2011;
Das et al., 2014). Previous diagnostic systems, such as DSM-
IV-TR and ICD-10, precluded their co-existence in one per-
son (Gargaro et al., 2011). However,.15% of ADHD children
were found to exhibit ASD traits (Kotte et al., 2013; Cooper et
al., 2014), and .40% of ASD children were reported to pos-
sess ADHD characteristics (Kaat et al., 2013; Salazar et al.,
2015; Joshi et al., 2017; Rong et al., 2021). Largely because
of such clinical studies, the diagnostic systems were updated
and now allow the co-occurrence of these two prevalent
neurodevelopmental disorders (Young et al., 2020; American
Psychiatric Association, 2022).
In contrast to this major change in clinical practice, the

behavioral property of the ASD1ADHD comorbidity is still
under debate (Berenguer et al., 2018; Benallie et al.,
2021), and its biological mechanisms are not fully under-
stood (Lau-Zhu et al., 2019).
In behavioral studies, the cognitive properties of

ASD1ADHD individuals (Bühler et al., 2011; Mayes et
al., 2012; Craig et al., 2015, 2016; Dajani et al., 2016;
Colombi and Ghaziuddin, 2017; Yerys et al., 2019a)
have been continually examined, and some of them
suggest that ASD1ADHD cohorts would have unique
executive functions; but multiple systematic reviews
concluded the behavioral observations on the comor-
bidity were incongruent with each other (Berenguer et
al., 2018; Benallie et al., 2021).
Biological knowledge of the brain mechanisms under-

pinning the ASD1ADHD condition is also limited. The
neurobiological bases of pure ASD (Bourgeron, 2015;
Watanabe and Rees, 2017; Demetriou et al., 2018; Hong
et al., 2019; Watanabe et al., 2019b; Roy and Uddin,
2021) and pure ADHD (Castellanos et al., 2002; Dickstein
et al., 2006; Rubia et al., 2010; Castellanos and Proal,
2012; Cortese et al., 2012; Hart et al., 2012, 2013; Cai et
al., 2018; de Lacy and Calhoun, 2018; Kaboodvand et al.,
2020; Jeong et al., 2021; Shappell et al., 2021; Rajagopal
et al., 2022; Yin et al., 2022) have been intensively studied,
and their similarities/distinctiveness were also identified in
genes (Ronald et al., 2008; Rommelse et al., 2011; Cross-
Disorder Group of the Psychiatric Genomics Consortium et
al., 2013; Martin et al., 2014; Satterstrom et al., 2019) and
brain architectures (Christakou et al., 2013; Lim et al., 2013;
Chantiluke et al., 2014; Aoki et al., 2017; Dajani et al., 2019;
Lake et al., 2019; Lau-Zhu et al., 2019; Yerys et al., 2019b;
Boedhoe et al., 2020; Ohta et al., 2020; Sáenz et al., 2020;
Harikumar et al., 2021; Curtin et al., 2022; Hansen et al.,
2022; Hoogman et al., 2022; Safar et al., 2022). In contrast,

except for five MRI studies (Solomon et al., 2009; Chantiluke
et al., 2014; Nickel et al., 2018; Dajani et al., 2019; Yerys et
al., 2019b), no human neurobiological research reported
brain mechanisms of ASD1ADHD comorbidity. In addition,
two of the five exceptional works did not conduct direct
comparisons between ASD1ADHD, pure ASD and pure
ADHD (Solomon et al., 2009; Yerys et al., 2019b). One of the
other three studies identified disorder-general/-specific neu-
ral signatures for atypical temporal foresight but did not in-
vestigate neural architectures for any core symptom of
either disorder (Chantiluke et al., 2014). The other two works
reported no atypical neural representation that correlated
with any symptom of ASD or ADHD (Nickel et al., 2018;
Dajani et al., 2019). Consequently, it remains unknown
whether the comorbid condition is a simple overlap of pure
ASD and pure ADHD or represents a distinct neurodevelop-
mental disorder (Berenguer et al., 2018; Lau-Zhu et al.,
2019; Hours et al., 2022).
Partly because of such behaviorally and biologically lim-

ited knowledge, some clinicians cast doubt on the con-
cept of the ASD1ADHD comorbidity itself and warned
that some standard medications for ADHD symptoms,
such as the administration of amphetamine stimulants,
might cause undesirable effects on ASD1ADHD individu-
als (Hours et al., 2022).
Here, to address this situation, we aimed to identify the

neural mechanisms underpinning the ASD1ADHD condi-
tion by directly comparing the global and local brain dy-
namics of high-functioning ASD1ADHD children with
age-/sex-/IQ-matched pure ASD, pure ADHD and typi-
cally developing (TD) individuals (Table 1).
Technically, we first applied the energy landscape

analysis (Watanabe et al., 2014; Ezaki et al., 2017; Kang
et al., 2017; Watanabe and Rees, 2017) to resting-state
functional MRI (rsfMRI) datasets and depicted global
brain state dynamics for each participant group. Then,
we identified which aspect of the brain state dynamics
was specific to each symptom. Next, we performed ex-
ploratory whole-brain analyses of the intrinsic neural
timescales (Hasson et al., 2008, 2015; Honey et al.,
2012; J.D. Murray et al., 2014; Baldassano et al., 2017;
Watanabe et al., 2019b; Wolff et al., 2022) and nar-
rowed down a focal neural area whose atypically unsta-
ble neural activity triggered the atypical global brain
dynamics. We then integrated these findings using a
mediation analysis and illustrated the unique brain
mechanisms underpinning the ASD1ADHD comorbid-
ity. The robustness of these results was confirmed with
two independent rsfMRI datasets. In the final part, we
conducted a behavioral experiment to examine the va-
lidity of the assumption on the metrics for ADHD-like
traits of ASD1ADHD individuals.

Materials and Methods
Datasets
This case-control study analyzed rsfMRI data that

were recorded from the following four types of cohort:
children with ADHD only, those with ASD only, those
with ASD and ADHD (ASD1ADHD), and TD controls.
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The datasets of the pure ADHD and corresponding TD
children were shared on a website for the ADHD200
project (ADHD-200 Consortium, 2012), whereas those
of the pure ASD, ASD1ADHD and corresponding TD
children were hosted on a website for the ABIDE project
(Di Martino et al., 2014, 2017). We chose these datasets
(1) because all the rsfMRI data were recorded at the same
single site (New York University) by essentially the same
research team with almost the same scan parameters and
(2) also because their sample size was the largest among
such single-site datasets. The other single-site datasets
with smaller sample sizes were used in the confirmatory
test. All the data were collected with the approval of the
ethics committees or institutional review committees of
the recording institutes (ADHD-200 Consortium, 2012; Di
Martino et al., 2014, 2017). Note that, for strict compari-
son, we did not merge the two TD groups into one in both
the main analysis and confirmatory test.

Diagnosis and demographic data
We selected participants based on their age (5 ,

age, 13), IQ (80� full/verbal/performance IQ� 140), and
head motion during echoplanar imaging (EPI) data record-
ing (mean head motion� 3 mm). We set the age range to
reduce the effects of adolescence. The IQ scores of the
pure ADHD and corresponding TD children were quanti-
fied by the Wechsler Intelligence Scale for Children,
Edition 4. The IQ scores of the pure ASD, ASD1ADHD
and corresponding TD children were measured with the
Wechsler Abbreviated Scale of Intelligence. The mean
head motion was calculated in the preprocessing pro-
cedures of EPI data as described below.
ASD was diagnosed based on Autism Diagnostic

Interview-Revised (ADI-R) and DSM-IV-TR. ADHD was
diagnosed by clinical experts in accordance with Conners’
Parent Rating Scale-Revised (CPRS), long version.
For the pure ASD group, we selected ASD children in

the ABIDE dataset who met all the above conditions and
had no comorbidity.

For the pure ADHD group, we chose ADHD children
with no other comorbidity in the ADHD200 dataset. We
employed all the three types of ADHD (hyperactive, inat-
tentive, and combined) to ensure a sufficient sample size.
For the ASD1ADHD group, we selected autistic chil-

dren with ADHD from the participants enrolled in the
ABIDE dataset. In the ADHD200 data, we found no ADHD
children who showed ASD symptoms and met the above
criteria for participant selection. In the ABIDE dataset, the
comorbid ADHD in the ASD children was determined
when the ASD children met all the requirements for ADHD
except for criterion E in the DSM-IV-TR, which excluded the
co-occurrence of ADHD in ASD individuals. In other words,
we selected children who would be given ASD1ADHD dual
diagnosis in the DSM-5.
For the TD groups, we selected age-/sex-/IQ-matched

TD children from the ADHD200 and ABIDE datasets,
respectively.
As a result, this study used the data recorded from 30

high-functioning pure ADHD children, 29 TD children for
the pure ADHD group (TD in ADHD200), 33 high-function-
ing ASD1ADHD children, 30 high-functioning pure ASD
children, and 38 TD children for the ASD1ADHD and pure
ASD children (TD in ABIDE; Table 1).

Symptommetrics
For both the pure ASD and ASD1ADHD groups, the se-

verity of ASD symptoms was evaluated with the ADI-R
scores that were shared in the ABIDE datasets. We did
not use the scores of Autism Diagnostic Observation
Schedule (ADOS), which were also provided in the ABIDE
dataset, to evaluate autistic traits. The range of the ADI-R
scoring system is sufficiently broad to evaluate the details
of ASD symptoms; but the ADOS has narrower score
ranges and, in particular, can give only a limited range of
scores for cognitive rigidity (i.e., RRB). Given this, we used
the ADI-R scores to assess the ASD symptoms.
The severity of ADHD symptoms seen in the pure ADHD

children was assessed based on the CPRS scores (CPRS

Table 1: Demographic data

ADHD200 (NYU) ABIDE (NYU)
ADHD vs
ASD1ADHD

TD in ADHD200
vs TD in ABIDEADHD TD ADHD vs TD ASD1ADHD ASD TD

ASD1ADHD
vs ASD

ASD1ADHD/
ASD vs TD

N 30 29 33 30 38
Age 8.86 0.9

(7–11)
9.061.4

(7–13)
p¼ 0.2 8.16 1.9

(5–13)
8.56 2.3

(5–13)
8.76 1.4

(5–11)
p¼ 0.5 p.0.2 p¼ 0.1 p¼ 0.4

Sex 7 females 10 females p¼ 0.1 3 females 4 females 6 females p¼ 0.6 p.0.2 p¼ 0.1 p¼ 0.1
FIQ 109.16 14.2 111.46 12.8 p¼ 0.4 111.8617.8 109.4614.0 111.46 11.1 p¼ 0.6 p.0.2 p¼ 0.8 p¼ 0.6
VIQ 109.56 12.7 113.36 14.5 p¼ 0.2 112.0616.6 107.5614.9 111.76 13.6 p¼ 0.3 p.0.2 p¼ 0.9 p¼ 0.6
PIQ 105.96 15.4 106.96 12.9 p¼ 0.8 112.2620.2 109.2617.3 108.76 12.3 p¼ 0.5 p.0.4 p¼ 0.2 p¼ 0.9
CPRS ADHD Index 73.268.1 44.56 5.6 p, 10–5 — — — — — — —

CPRS ADHD
inattention

71.569.0 44.16 4.6 p, 10–5 — — — — — — —

CPRS ADHD
hyperactivity

70.3611.5 46.86 7.2 p, 10–5 — — — — — — —

SRS total raw score — — 916 30.6 92.56 30.6 20.3611.4 p¼ 0.8 p,10–5 — —

ADIR social — — 17.16 6.9 19.16 5.3 — p¼ 0.2 — — —

ADIR verbal — — 15.06 5.3 16.06 4.2 — p¼ 0.4 — — —

ADIR RRB 5.26 2.6 6.56 4.2 p¼ 0.03
ADIR Total — — 37.26 12.0 41.56 10.1 — p¼ 0.2 — — —
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ADHD Index, CPRS Inattention score and CPRS hyperac-
tivity score) that were provided in the ADHD200 dataset.
The severity of ADHD-like traits of the ASD1ADHD

group was not quantified with the CPRS scores since, as
stated above, all the ASD1ADHD participants were se-
lected from the ABIDE dataset, which did not contain the
CPRS scores. Instead, here, we inferred such ADHD-like
behaviors of the ASD1ADHD children based on the sub-
score for the repetitive restricted behaviors (RRB) in Autism
Diagnostic Interview-Revised (ADI-R); that is, this study as-
sumed that ASD1ADHD children with lower RRB scores
should have more unstable/flexible cognition and manifest
ADHD-like behaviors.
This inference is primarily grounded on previous literature

showing that (1) the symptoms of high-functioning ADHD in-
dividuals, in particular, their hyperactivity, are correlated
with their cognitive flexibility/instability (Semrud-Clikeman et
al., 2010; Das et al., 2014) and (2) the cognitive instability
measured by psychological experiments is inversely
associated with the RRB score assessed in clinical tests
for ASD symptoms (Lopez et al., 2005; Watanabe et al.,
2019a; Cissne et al., 2022). We can find face validation
for this assumption in other prior findings that (1) pure
ADHD children had more flexible and unstable cognition
compared with TD (Kuntsi and Klein, 2011) and pure
ASD individuals (Ozonoff and Jensen, 1999; Sergeant et
al., 2002; Corbett et al., 2009; Lawson et al., 2015) and
(2) the RRB score was likely to be lower in pure ADHD in-
dividuals than in pure ASD children (Brierley et al., 2021;
Mellahn et al., 2022). In fact, claim (2) was confirmed even
in the current dataset, which showed that the ASD1ADHD
children had lower RRB scores than the pure ASD group
(t(61)¼ 2.1, p¼ 0.03 in a two-sample t test; Table 1).
In addition, we conducted a behavior experiment to

provide supportive evidence for this rationale (see below,
Behavioral experiment).

MRI data acquisition
All the MRI data were recorded in a 3T scanner

(MAGNETOM Allegra, Siemens) at New York University
while the participants were asked to be relaxed with their
eyes open. Functional MRI data were obtained using an
echoplanar imaging (EPI) sequence (for ADHD200 and
ABIDE I: TR 2 s, TE 15ms, 33 slices, interleaved, flip angle
90°, spatial resolution 3.0� 3.0� 4.0 mm, scan time 6min;
for ABIDE II: TR 2 s, TE 30ms, 34 slices, interleaved, flip
angle 82°, spatial resolution 3.0� 3.0� 3.0 mm, scan time
6min). Anatomical images were recorded with a T1-
weighted sequence (TR 2.53 s, TE 3.25ms, flip angle 7°,
spatial resolution 1.3� 1.0� 1.3 mm).

Preprocessing of rsfMRI data
We preprocessed the EPI data with SPM12 (https://

www.fil.ion.ucl.ac.uk/spm/software/spm12/) in the same
manner as in our previous studies applying the energy
landscape analysis or intrinsic neural timescale analysis to
rsfMRI data (Watanabe and Rees, 2017; Watanabe et al.,
2019b). First, we discarded the first five images and con-
ducted realignment, unwarping, slice timing correction,

normalization to the standard template (ICBM 152) and
spatial smoothing (Gaussian kernel with 8 mm of full-width
at half maximum). We then removed the effects of head
motion, white matter signals, cerebrospinal fluid signals
and global signals before performing bandpass temporal
filtering (0.01–0.1Hz). We found no significant difference in
any of the six parameters for the head motion between the
groups (p. 0.4).

Overview of energy landscape analysis
The energy landscape analysis conducted here was es-

sentially the same as that in our previous studies (Watanabe
et al., 2014; Watanabe and Rees, 2017; Watanabe, 2021).
Here, to investigate network-based brain state dynamics, we
adopted a widely used brain parcellation system (Yeo et al.,
2011; Hansen et al., 2022; Saggar et al., 2022) that divides
the cerebral cortex into the following seven functionally dis-
tinct networks (Fig. 1A): visual network, sensory-motor
network (SMN), dorsal attention network (DAN), ventral at-
tention network (VAN), limbic network, frontoparietal con-
trol network (FPCN), and default mode network (DMN).
We adopted this brain segmentation systemmainly because
our previous study using basically the same parcellation
system succeeded in capturing ASD-specific brain dynam-
ics. In addition, the amount of the current dataset is not
enough for an accurate energy landscape analysis adopting
a smaller ROI definition: the energy landscape analysis with
N nodes requires data with 2N–1 timepoints for sufficiently
accurate estimation; therefore, given the sample size of the
current datasets, we could not adopt brain parcellation sys-
tems consisting of smaller regions of interest (ROIs).
Technically, we first calculated the mean rsfMRI signal

for each network at each time point in each participant.
We then binarized the network activities using the whole-
brain average fMRI signal as a threshold. This binarization
procedure balanced the numbers of active and inactive
states and should improve the accuracy of the following
analysis (Watanabe et al., 2013). We repeated this for
every time point and obtained seven binary time-series
data for each participant.
Using this dataset, we then conducted the energy land-

scape analysis. In short, first, we concatenated the binary
data across participants in the same group and fitted a
pairwise maximum entropy model (MEM) to them with a
gradient ascent algorithm. We used the concatenated
data so that we could achieve high accuracy of model fit-
ting: in fact, because of the short fMRI scanning time
(here, 6min), we could not fit the pairwise MEM to individ-
ual data with sufficient accuracy.
This MEM fitting allows us to infer a hypothetical energy

value for every activity pattern. Based on this energy
value, we then built so-called dysconnectivity graphs (Fig.
1C), which showed structures of the energy landscapes
and clarified local minima and corresponding basins (i.e.,
attractors). To avoid the risk of arbitrary reverse inference
(Poldrack, 2006), we did not put psychologically meaning-
ful labels on the brain states. Finally, we investigated the
brain state dynamics on the energy landscapes by a random-
walk simulation in a Markov chain Monte Carlo method with
the Metropolis–Hastings algorithm (Girvan and Newman,
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2002; Massen and Doye, 2005). Using this random-walk sim-
ulation, we quantified brain state transition frequencies,
which were validated by looking into the individual empiri-
cal rsfMRI data.
Theoretically, the group-level random-walk simulation

is supposed to capture the brain state dynamics more

accurately than the examination of the individual empirical
rsfMRI data, because the numerical simulation can give a
sufficiently long brain-state history for us to calculate all
the types of brain-state transitions. In contrast, rare brain-
state transitions are likely to be missed in the relatively
short empirical rsfMRI data. Although, such an individual

Figure 1. Six brain states determining global neural dynamics. A, We performed energy landscape analysis to examine the global
neural dynamics. After parcellating the brain into seven functionally distinct networks, we fitted a pairwise maximum entropy model
(MEM) to the network-wise rsfMRI signals and identified the structure of the energy landscape for each group. In the energy land-
scape, local minima represented the most stable brain activity patterns in their neighboring areas, and basins (attractors) indicate
the sets of the brain activity patterns that can be summarized into the corresponding local minimum. B, The pairwise MEM was ac-
curately fitted to the rsfMRI data in all the participant groups (.97.5%). C, The dendrograms, so-called disconnectivity graphs,
show the structures of the energy landscapes. All the participant groups shared the same six local minima (local min a–f), whose ac-
tivity patterns were displayed in the right panel. D, The six brain states (States A–F) corresponding to the six local minima were simi-
lar between the five participant groups (r. 0.91). TD, typically developing. ADHD, attention-deficit/hyperactivity disorder. ASD,
autism spectrum disorder. ASD1ADHD, a comorbid condition of ASD and ADHD. TD (ADHD200), TD data stored in the ADHD200
project. TD (ABIDE), TD data stored in ABIDE project.
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assessment of brain state dynamics based on each fMRI da-
taset is known to be somewhat correlated with the results
of the random-walk simulation (Watanabe et al., 2014;
Watanabe and Rees, 2017). Based on such differences and
previous observations, we first conducted the group-level
random-walk simulation to exploratorily find disorder-
specific/common neural dynamics; then, aiming to link
such neural dynamics to disorder severity, we quantified
individual brain state dynamics by looking into each em-
pirical fMRI time-series data.

Energy landscape analysis: model fitting
To quantify network-based brain state dynamics, we

adopted a brain parcellation system (Yeo et al., 2011;
Hansen et al., 2022; Saggar et al., 2022) that divides the
cerebral cortex into the seven functionally distinct net-
works (Fig. 1A). After calculating the mean rsfMRI signal
for each network at each time point in each participant,
we binarized the network activities using the whole-brain
average fMRI signal as a threshold (11 for active and –1
for inactive). We repeated this for every time point and ob-
tained seven binary time-series data for each participant.
An activity pattern of the seven networks at time point t
was described such as Vt ¼ ½s t

1;s
t
2; :::;s

t
N�, where s t

i rep-
resents a binary activity of network i at time t (i.e.,
s t

i ¼ 11or � 1) and N denotes the number of the net-
works (here, N¼ 7).
We then concatenated the binary data across partici-

pants in the same group and fitted a pairwise MEM to
them. This simple model consisted of two parameters, hi
and Jij. The hi is supposed to show the basal activity of
network i, whereas Jij should represent a pairwise interac-
tion and coupling strength between network i and network j.
The hi and Jij were determined so that the average of the
model-based network activity hs iim and the average of the
model-based pairwise interactions hs is jim are sufficiently
close to the average of the empirical network activity hs ii
and the average of the empirical pairwise interaction hs is ji,
respectively. The hs iim was defined as R2N

‘¼1s i V‘ð ÞP V‘ð Þ and
the hs is jim was defined as R2N

‘¼1s i V‘ð Þs j V‘ð ÞP V‘ð Þ, where
s i Vkð Þ is the activity of network i in the activity pattern Vk
and PðVkÞ is the appearance probability of the neural activity

pattern Vk. The P Vkð Þ is given as e�E Vkð Þ=R2N
‘¼1e

�EðV‘Þ, where
E Vkð Þ ¼ �RN

i¼1his i Vkð Þ � 1=2ð ÞRN
i¼1R

N
j¼1Jijs i Vkð Þs j Vkð Þ:

Based on these definitions, we adjusted hi and Jij until the
hs iim and hs is jim were approximately equal to the hs ii and
hs is ji with a gradient ascent algorithm.
The accuracy of this model fitting was evaluated by calcu-

lating a proportion of Kullback–Leibler (KL) divergence in
this second-order model (D2) to that in the first-order model
(D1) as follows (Watanabe et al., 2013, 2014; Watanabe and
Rees, 2017; Watanabe, 2021): (D1 –D2)/D1.

Energy landscape analysis: hierarchy between local
minima
Next, we examined the structure of each group-specific

energy landscape, which was defined as a graph of brain
activity patterns Vk (k¼ 1, 2, ..., 2N). In the graph, two

activity patterns were regarded as adjacent if and only if
their difference was seen at only one network activity.
In the energy landscape, we first searched for local en-

ergy minima, whose energy values were smaller than
those of all the N adjacent patterns. We then visualized
and quantified the hierarchical structures between the
local minima by building so-called disconnectivity graphs
in the following procedures (Watanabe et al., 2014;
Watanabe and Rees, 2017; Watanabe, 2021): (1) We pre-
pared a hypercube graph, in which each node (i.e., each
brain activity pattern) was adjacent to the N neighboring
nodes. (2) We set a threshold energy level, Ethreshold, at the
largest energy value among the 2N nodes. (3) We then re-
moved the nodes whose energy values E Vkð Þwere greater
than Ethreshold. (4) We examined whether each pair of local
minima was still connected by a path in the slightly dis-
connected graph. (5) We repeated steps (3) and (4) after
changing Ethreshold down to the next largest energy
value. We stopped these procedures when all the re-
maining local minima were isolated. (6) Based on the
obtained results, we built a hierarchical tree, discon-
nectivity graph, whose leaves (i.e., terminal nodes
down in the tree) represented the local minima and in-
ternal nodes indicated the branching points of differ-
ent local minima.

Energy landscape analysis: classification to brain
states
Using this disconnectivity graph, we then classified all

the brain activity patterns into one of basins (attractors)
with a corresponding local minimum at their bottoms.
First, we picked up node i from the 2N nodes. If any of its
neighbor nodes had a smaller energy value than the node
i, we moved to such a node. Otherwise, we did not move
and classified the node as a local minimum. We repeated
this procedure until we reached any of the local minima.
The initial node i was then assigned to the basin of the
local minimum that we finally reached. This procedure
was repeated for all the 2N nodes, which allowed us to
classify all the brain activity patterns on the energy land-
scape, except for nodes on the saddles, into any of the
basins. In this study, these basins were regarded as brain
states (Fig. 1A).

Energy landscape analysis: brain state dynamics
Finally, we probed the brain state dynamics on the en-

ergy landscapes by a random-walk simulation that was
based on a Markov chain Monte Carlo method with the
Metropolis-Hastings algorithm (Girvan and Newman,
2002; Massen and Doye, 2005). This simulation allowed a
brain activity pattern Vi to move only to a neighboring pat-
tern Vj. Technically, we first chose one of such neighbor-
ing patterns randomly and then determined whether
actual movement to the pattern occurred or not at the
probability Pij ¼ min½1; eE Við Þ�EðVjÞ�. In other words, when Vi

was more unstable than Vj [i.e., E Við Þ.EðVjÞ], the brain ac-
tivity pattern always moved from Vi to Vj. In the meantime,
this probability setting left some room for moving to Vj

even if Vi was more stable than Vj [i.e., E Við Þ,EðVjÞ],

Research Article: New Research 6 of 20

July 2023, 10(7) ENEURO.0146-23.2023 eNeuro.org



which prevented the brain activity pattern from being
trapped in a local minimum forever.
For each group, we repeated this random walk 105

steps with a randomly chosen initial pattern, which re-
sulted in a trajectory of the brain activity pattern such
as ½V1;V2; :::;V105 �. After discarding the first 100 steps
to reduce the effects of the initial condition, we then
classified all the Vt into either of the brain states and
converted ½V101;V102; :::;V105 � to, for example, [State A,
State C, State B, State D, ...]. We then counted how
long each brain state continued in the trajectory (dwelling
time) and how often one brain state transited to another
state (transition frequency).
These indices based on the group-level energy landscape

analysis were validated by looking into the individual empiri-
cal rsfMRI data. For example, for each participant, we di-
rectly converted its binary time-series data into a brain state
trajectory and counted the transition frequency between
specific brain states.

Intrinsic neural timescale analysis
To examine local neural dynamics, we applied voxel-wise

intrinsic neural timescale analysis (Hasson et al., 2008, 2015;
Honey et al., 2012; J.D. Murray et al., 2014; Baldassano et al.,
2017; Watanabe et al., 2019b; Wolff et al., 2022) to the pre-
processed rsfMRI data. Note that this analysis of intrinsic
neural timescale analysis did not use the binarized data that
were employed in the energy landscape analysis. First, we
estimated an autocorrelation function (ACF) of the rsfMRI

signal of each voxel (time bin ¼ TR) and then calculated the
sum of ACF values in the initial period where the ACF showed
positive values. The upper limit of this period was set at
the point where the ACF hits zero for the first time. We re-
peated this procedure for every voxel and applied spatial
smoothing to the brain map (Gaussian kernel, full-width at
half maximum¼ 8 mm), which improved the signal-to-
noise ratio. This whole-brain map was used as an intrinsic
timescale map.
We conducted this analysis on every participant in all the

groups and compared the maps between the groups using a
random-effectsmodel.We searched for brain regions showing
significant differences (pFDR, 0.05;Watanabe et al., 2019b).

Confirmatory tests
We examined the reproducibility of the main analyses

using two independent datasets collected at Kennedy
Krieger Institute (KKI) and Oregon Health and Science
University (OHSU; Table 2). Basically, we conducted the
same analyses as in the main study. In the intrinsic neural
timescale analysis, we did not perform the whole-brain
voxel-wise analysis but a region of interest (ROI) analysis:
the ROIs were defined as 4-mm spheres around the same
coordinates as those of the left SFG and IPS found in the
main analysis.

Statistics and data availability
Effects of multiple comparisons were addressed with

Bonferroni correction except for the cases of the whole-

Table 2: Demographic data for confirmatory tests

ADHD200 ABIDE

ADHD TD ADHD vs TD ASD1ADHD ASD TD
ASD1ADHD
vs ASD

ASD1ADHD/
ASD vs TD

KKI dataset
N 15 29 18 7 74
Age 10.56 1.7 10.16 1.2 p¼0.4 9.96 1.3 9.06 1.2 10.06 1.1 p¼ 0.1 p.0.1
Sex 6 females 13 females p¼0.8 4 females 2 females 27 females p¼ 0.7 p.0.2
FIQ 100.26 12.8 105.56 7.5 p¼0.2 100.16 12.1 106.46 15.6 105.56 6.4 p¼ 0.4 p.0.1
VIQ 103.16 14.9 108.46 10.1 p¼0.2 106.46 15.2 112.86 18.4 110.26 11.0 p¼ 0.6 p.0.4
PIQ 105.36 14.3 106.16 10.3 p¼0.8 98.7610.6 110.36 5.6 104.16 9.4 p¼ 0.1 p.0.1
CPRS ADHD Index 72.36 10.3 45.16 4.4 p, 10–5 — — — — —

CPRS ADHD
inattention

71.36 10.9 45.36 4.9 p, 10–5 — — — — —

CPRS ADHD
hyperactivity

71.66 11.0 46.36 4.7 p, 10–5 — — — — —

ADIR social — — — 21.165.1 20.96 6.9 — p¼ 0.9 —

ADIR verbal — — — 14.365.1 15.16 4.5 — p¼ 0.9 —

ADIR RRB — — — 5.16 1.6 5.66 1.5 — p¼ 0.5 —

OHSU dataset
N 17 23 12 17 16
Age 9.56 1.0 9.46 1.2 p¼0.6 12.761.5 11.66 1.7 11.76 1.2 p¼ 0.1 p.0.1
Sex 5 females 11 females p¼0.2 1 female 0 female 2 females p¼ 0.2 p.0.1
FIQ 110.26 13.4 116.86 8.9 p¼0.1 996 20.1 106.46 18.2 110.06 8.8 p¼ 0.3 p.0.1
CPRS ADHD
inattention

72.96 7.2 47.26 7.0 p, 10–5 — — — — —

CPRS ADHD
hyperactivity

67.56 14.3 45.36 4.7 p, 10–5 — — — — —

ADIR social — — — 19.266.6 19.86 5.4 — p¼ 0.8 —

ADIR verbal — — — 15.864.8 16.66 4.9 — p¼ 0.7 —

ADIR RRB — — — 4.86 2.9 8.26 3.4 — p¼ 0.008 —
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brain analysis of the intrinsic neural timescales, in which
we adopted FDR correction (Watanabe et al., 2019b). All
the MRI data used here are available on ADHD200 and
ABIDE sites. Essentially the same code used for the cur-
rent energy landscape analysis was shared in our previ-
ous work (Ezaki et al., 2017).

Behavioral experiment
Because of the limited demographic information in the

rsfMRI datasets used here, we assumed that the degree
of the ADHD-like traits in the ASD1ADHD children should
be related to cognitive overflexibility and could be inferred
by their RRB scores in ADI-R. Albeit indirectly, we tested
this assumption by conducting a behavioral experiment
employing 30 TD adults (seven females, 22.76 2.3 years
old, FIQ/PIQ/VIQ¼ 113.865.6/117.56 9.3/109.86 8.7,
mean6 SD). This experiment was approved by an institutional
ethics committee at TheUniversity of Tokyo, and all the partici-
pants provided written informed consents and were financially
compensated for their participation.
First, all the participants completed two self-as-

sessment-based questionnaires: autism spectrum
quotient (AQ) for the evaluation of their autistic traits
(Baron-Cohen et al., 2001; Wakabayashi et al., 2006)
and Conners’ Adult ADHD Rating Scale–Self-Report:
Long Version (CAARS) for the quantification of their
ADHD traits (Conners et al., 1999). For each partici-
pant, we then calculated an RRB-related score by
adding “Attention switching score” to “Local details”
in the AQ. To evaluate the ADHD-like trait, we calcu-
lated the “ADHD hyperactivity score” based on the
CAARS. We focused on the hyperactivity score since
the aforementioned main analysis highlighted the link
between ADHD-specific neural dynamics and its hy-
peractivity trait.
Second, they underwent a spontaneous task-switching

test, which was designed to assess cognitive flexibility/ri-
gidity both in TD and autistic individuals (Arrington and
Logan, 2004; Poljac et al., 2012; Watanabe et al., 2019a).
In the spontaneous task-switching test, we presented

the participants with a series of visual stimuli consisting of
four marks with different shapes and brightness. For each
visual stimulus, the participants were asked to conduct ei-
ther a shape task or a brightness task: in the shape task,
they were required to find the preinstructed shape (e.g.,
circle); in the brightness task, they were asked to identify
the brightest figure. The participants were also asked to
complete either of the two tasks as accurately and quickly
as possible. When they did not respond even 3 s after the
stimulus onset, the next stimulus set was presented
automatically.
To make the choice of the task as random as possible,

we asked the participants, “You have to choose which task
to perform on each trial. Ideally, you should perform each
task randomly but on about half of the trials. Sometimes you
will repeat the same task and sometimes you will switch
from one to another. We don’t want you to count the num-
ber of times you’ve done each task or alternate strictly be-
tween tasks to make it sure you do each one half the time.
Just try to do them randomly.” This instruction was used in

the previous studies employing this psychological paradigm
(Arrington and Logan, 2004; Poljac et al., 2012; Watanabe et
al., 2019a).
The participants practised the two tasks separately until

they were able to respond correctly (�95% of accuracy)
and quickly (reaction time � 2 s). Then, the participants
underwent five 3-min runs of this test.
After this test, we retrospectively inferred which task was

selected for each trial. The participants rarely responded to
any stimuli in a way in which we could not make such an in-
ference (the proportion of the unclassifiable trials �1.2%).
After excluding the unclassifiable trials, we counted how
long each participant repeated the same task (¼ task-repeti-
tion length).
Finally, we compared the associations between the

RRB-related score in AQ, “ADHD hyperactivity”measured
by CAARS-S (T-score), and the task-repetition length in
the spontaneous task-switching test.

Results
This study analyzed the rsfMRI data recorded from the

high-functioning ASD1ADHD, pure ASD, pure ADHD and
two groups of TD children (Table 1). In all the following
analyses, no statistically significant difference was found
between the two TD cohorts; but, for strict comparison,
we did not merge the two TD groups and used them as in-
dependent controls.

Six brain states defining global neural dynamics
We investigated the global brain state dynamics using

energy landscape analysis (Watanabe et al., 2014; Ezaki
et al., 2017; Kang et al., 2017; Watanabe and Rees, 2017),
which enables us to depict the complex spatiotemporal
changes of whole-brain neural activity as dwelling in and
transitions between the parsimonious number of different
brain states (Fig. 1A).
First, we confirmed that the pairwise maximum entropy

model, a basis of the energy landscape analysis, was ac-
curately fitted to the rsfMRI data in all the participant
groups (fitting accuracy .97.5%; Fig. 1B), which sup-
ports the validity of the following analyses.
Then, we examined the structures of the energy

landscapes (Fig. 1C). All the participant groups shared
the same six local minima (local min a–f), and the six
brain states corresponding to the six local minima
(state A–F) were also similar between the groups
(r.0.91; Fig. 1D).
However, the six brain states showed different depths

and stability in different patient groups (Fig. 1C).
In the two TD groups, their six brain states were classi-

fied into three types: the two deepest, i.e., the most sta-
ble, brain states (states A and B), two relatively shallow
states (states C and D), and two unstable states (states E
and F).
In the pure ASD children, the gaps between the sta-

ble and unstable brain states were widened: the sta-
ble brain states (states A and B) were deeper than the
corresponding TD children, whereas the other brain
states (states C–F) were shallower compared with the
control.
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In contrast, the gaps were reduced in the pure ADHD
children: the depths of the relatively stable states (states
A–D) were decreased, and the unstable states (states E
and F) were deepened.
As for the energy landscape structure of the ASD1ADHD

children, it was basically a shallower version of that of
the pure ASD group. Only their states E and F were
slightly deeper than those of the pure ASD individuals.

Brain state dynamics
Next, we examined how different brain dynamics were

yielded on these structurally distinct energy landscapes.
To this end, we conducted random-walk simulations on
the energy surfaces and calculated the interstate transi-
tion frequencies and duration time of each state (Fig. 2A,
B). Such simulation-based calculations were confirmed
by counting how often these transitions actually hap-
pened in the empirical rsfMRI data.
In particular, we assessed the frequency of the so-called in-

direct transitions, which were defined asmovements between
the most stable brain states (states A and B) via the
other states (states C, D, E or F). We focused on these
transitions because our previous study successfully
identified ASD-specific neural fingerprints in the atypi-
cally low frequency of such an indirect transition
(Watanabe and Rees, 2017).
As a result, we found the following three indirect transitions

whose frequencies showed atypical increases/decreases in
symptom-specific manners.
First, the indirect transition via either state C or D (A–C/

D–B; Fig. 2C, right panel) was atypically infrequent in the
pure ASD and ASD1ADHD groups compared with the
control (t. 18.6, pBonferroni , 0.05, Cohen’s d. 4.4 in
two-sample t tests), whereas such a reduction was not
seen in the pure ADHD children (t(57) ¼ 2.0, pBonferroni .
0.05; Fig. 2C).
Second, the indirect transition via either state C or D

and either state E or F (A–[C/D–E/F]–B; Fig. 2D, right
panel) was seen more often in the pure ADHD and
ASD1ADHD groups than the TD children (t. 31.5,
pBonferroni , 0.05, d. 8.2), while such an elevation
was not found in the pure ASD group (t(57) ¼ 2.4,
pBonferroni . 0.05). Moreover, the magnitude of this
atypical increase in the A–[C/D–E/F]–B transition was
significantly larger in the pure ADHD children than in
the ASD1ADHD individuals (F(1,126) ¼ 457.5, p,10�5,
h2 ¼ 0.16 in a two-way ANOVA; Fig. 2D).
Third, we found that the indirect transition between

states A and B via states C and F (i.e., A–C–F–B transition;
Fig. 2E, right panel) characterised the ASD1ADHD group.
This indirect transition occurred more frequently in the
pure ADHD and ASD1ADHD groups than in the other co-
horts (t.26.2, pBonferroni , 0.05, d. 6.8). In addition, this
transition frequency was significantly higher in the
ASD1ADHD children than in the pure ADHD individuals
(F(1,126) ¼ 158.8, p, 10�5, h2 ¼ 0.09; Fig. 2E).
Note that, for any of the three indirect transitions, no

significantly different frequency was found between the
two TD groups (p. 0.7 in two-sample t tests).

Brain state dynamics and symptoms
We then examined associations between these atypical

brain dynamics and symptoms. Here, the autistic symp-
toms in the pure ASD and ASD1ADHD children were as-
sessed with their ADI-R scores, and the symptoms of
the pure ADHD individuals were quantified with their
CPRS scores. Because of the limited data availability,
the ADHD-like cognitive instability in the ASD1ADHD
children was inferred based on their ADI-R RRB score;
that is, we assumed that a lower RRB score indicated
higher cognitive instability. For a more detailed justifi-
cation of this assumption, please see Materials and
Methods, Symptom metrics.
In the pure ASD, the atypical decrease in the A–C/D–

B transition frequency was linked with the severity of
both the socio-communicational symptoms (r ¼ –0.42,
pBonferroni , 0.05; Fig. 3A) and the RRB symptom (r ¼
–0.41, pBonferroni , 0.05; Fig. 3B), which is consistent
with our previous work (Watanabe and Rees, 2017).
In contrast, the autistic symptoms of the ASD1ADHD

children were not fully explained by such atypically stable
neural dynamics: their socio-communicational symp-
tom was associated with the atypical reduction in the
A–C/D–B transition frequency (r ¼ –0.49, pBonferroni ,
0.05; Fig. 3A), whereas their RRB symptom was not
(r ¼ –0.09, p¼ 0.62; Fig. 3B). Instead, their RRB symptom
was negatively correlated with their atypical increase in the
A–C–F–B transition (r ¼ –0.49, p¼ 0.003; Fig. 3C). Given that
a lower RRB score indicates more flexible cognition (Lopez et
al., 2005; Watanabe et al., 2019a; Cissne et al., 2022) and
such cognitive instability is related to ADHD symptoms
(Semrud-Clikeman et al., 2010; Das et al., 2014), this result
suggests that the ADHD-like trait in the ASD1ADHD children
is linkedwith the atypically frequent A–C–F–B transition.
In the pure ADHD group, by contrast, their symptoms

were not explained by this A–C–F–B transition frequency
(r ¼ –0.05, p¼ 0.79); instead, the severity of their overall
ADHD symptoms was correlated with their atypically en-
hanced A–[C/D–E/F]–B transition (r¼ 0.41, p¼ 0.02; Fig.
3D). In particular, the A–[C/D–E/F]–B transition frequency
was correlated with their hyperactivity, specifically (r¼ 0.61,
p¼ 0.0003; Fig. 3E). Note that, in the ASD1ADHD children,
the frequency of the A–[C/D–E/F]–B transition did not account
for their cognitive instability (r¼ –0.14, p¼ 0.43).
Taken together, these findings indicate that the autistic

social symptoms of high-functioning ASD1ADHD chil-
dren are based on the same neural mechanisms as those
of pure ASD individuals, whereas their ADHD-like cogni-
tive instability is attributable to unique brain dynamics
that are not related to any symptom of pure ADHD
children.

Brain state dynamics and intrinsic neural timescale
The above results highlight the double dissociation be-

tween the pure ADHD symptom and the ADHD-like traits
in the ASD1ADHD comorbidity: the overly frequent A–[C/
D–E/F]–B transition was associated with pure ADHD but not
with the ADHD-like cognitive instability of the ASD1ADHD
comorbidity, whereas the atypical enhancement of the A–C–
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F–B transition was linked with the ADHD-like behavior of the
comorbid condition but not with pure ADHD.
To identify the origins of such double dissociation in the

global brain dynamics, we examined the local neural

dynamics of the pure ADHD and ASD1ADHD children.
Technically, we performed intrinsic neural timescale anal-
ysis (Hasson et al., 2008, 2015; Honey et al., 2012; J.D.
Murray et al., 2014; Chen et al., 2015; Baldassano et al.,

Figure 2. Brain state dynamics. A, Transition frequency matrix. A cell (i, j) represents the frequency of the transition from brain state
i to j, which was calculated by a random-walk simulation. B, The graphs show the transition frequency (thickness of the lines) and
duration (radius of the circle). C–E, Three brain state transitions whose frequencies appeared to be specific to ASD/ADHD symp-
toms: panel C indicates the ASD symptom-specific reduction in the A–C/D–B transition frequency; panel D represents ADHD-spe-
cific enhancement of the A–[C/D–E/F]–B transition; panel E shows the ASD1ADHD comorbidity-specific increase in the A–C–F–B
transition frequency. In every panel, the left bar graphs are based on the random-walk simulation, whereas the middle graphs are
based on the empirical data. The right network schemata represent the patterns of the corresponding brain state transitions.
*pBonferroni , 0.05 in a two-sample t test. †p, 0.05 for interaction in a two-way ANOVA.
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2017; Runyan et al., 2017; Watanabe et al., 2019b; Wolff
et al., 2022; Fig. 4A) for the entire brain in a voxel-wise
manner (Fig. 4B) and searched for focal brain regions
whose unstable neural activities were related to the atypi-
cal global brain state dynamics. In theory, brain areas with
shorter neural timescales should yield fluctuating neural
activities, destabilize the global brain dynamics, and in-
duce more frequent brain-state transitions.
In the pure ADHD children, we identified the left inferior pa-

rietal sulcus (IPS; x¼ –50, y¼ –30, z¼ 42 inMNI coordinates)
as a single region that showed a significantly shorter intrinsic
neural timescale compared with the control group (t(57) ¼ 4.9,
pFDR , 0.05; Fig. 4C). This region’s neural timescale in the
pure ADHD group was also shorter than in the ASD1ADHD
individuals (F(1,126) ¼ 27.7, pBonferroni , 0.05, h2 ¼ 0.15) and
pure ASD children (F(1,126)¼ 15.5, pBonferroni, 0.05, h2 ¼ 0.1;
Fig. 4D).
As expected, such an atypically short neural timescale

in the left IPS was associated with the atypically higher
frequency of the A–[C/D–E/F]–B transition (r ¼ –0.65,
p¼ 0.0001; Fig. 4E). Moreover, mediation analysis indi-
cated that this shortened neural timescale of the left IPS

increased the A–[C/D–E/F]–B transition frequency, which
resulted in the hyperactivity of the pure ADHD children
(Fig. 4F).
In the ASD1ADHD children, the left superior frontal

gyrus (SFG; x ¼ –22, y¼ 62, z¼ 12), dorsolateral prefron-
tal cortex (DLPFC; x ¼ –44, y ¼ 32, z¼ 20) and inferior
frontal gyrus (IFG; x ¼ –50, y ¼ 10, z¼ 14) had significantly
shorter neural timescales than the pure ASD group (t(61) .
4.1, pFDR , 0.05; Fig. 4G, left). Particularly, the neural
timescales of the left SFG and DLPFC in the ASD1ADHD
children were shortened even compared with the TD indi-
viduals (t(69) . 4.8, pFDR , 0.05; Fig. 4G, right).
Among these three frontal regions, only the left SFG was

significantly correlated with the A–C–F–B transition frequency
(r ¼ –0.70, pBonferroni , 0.05; Fig. 4I). Mediation analysis
showed that this atypically shorter neural timescale in the left
SFG enhanced the A–C–F–B transition, which reduced cogni-
tive rigidity of the ASD1ADHD children and resulted in their
ADHD-like cognitive instability (Fig. 4J).
These results suggest that pure ADHD and ASD1ADHD

comorbidity are underpinned by the different brain
state dynamics that are triggered by different local
neural activities.

Figure 3. Brain state dynamics and symptoms. Three brain-state transitions exhibited symptom-specific atypical frequencies. A, In
both the pure ASD and ASD1ADHD groups, the severity of the autistic socio-communicational symptom (ADI-R social) was nega-
tively correlated with the A–C/D–B transition frequency. B, This A–C/D–B transition frequency explained the cognitive rigidity (ADI-R
RRB) of the pure ASD children but did not that of the ASD1ADHD individuals. C, Instead, the cognitive rigidity of the ASD1ADHD
children was correlated with their atypically frequent A–C–F–B transition. D, The ADHD symptom in the pure ADHD children was not
explained by this A–C–F–B transition frequency but by the A–[C/D–E/F]–B transition frequency. E, In particular, the atypical increase
in the A–[C/D–E/F]–B transition frequency was specifically correlated with the hyperactivity tendency in the pure ADHD group.
†pBonferroni , 0.05.
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Figure 4. Local neural dynamics and global brain state dynamics. A, To identify brain areas that induced atypical brain state dynam-
ics in the pure ADHD and ASD1ADHD children, we examined the intrinsic neural timescales for all the brain regions. The neural
timescale was defined as the area under the curve of the autocorrelation function. Brain areas with shorter neural timescales are
thought to be sensitive to neural inputs and likely to exhibit an unstable and fluctuating neural signal. B, For each of the participant
groups, we obtained an average whole-brain map of the intrinsic neural timescale. C, D, In the pure ADHD children, only the left in-
ferior parietal sulcus (IPS) showed a significantly shorter neural timescale compared with the TD individuals (pFDR , 0.05; C). The
neural timescale of the brain area was also shorter than that of the pure ASD and ASD1ADHD groups (D). E, This atypically shorter
neural timescale in the left IPS in the pure ADHD children was correlated with their atypically frequent A–[C/D–E/F]–B transition. F, A
mediation analysis demonstrated that, in the pure ADHD individuals, their atypically shorter intrinsic neural timescale in the left IPS
induced their frequent transition along the A–[C/D–E/F]–B pathway, which resulted in their hyperactive behavior. G, H, In the
ASD1ADHD children, the neural timescales in the left superior frontal gyrus (SFG), dorsolateral prefrontal cortex (DLPFC), and infe-
rior frontal gyrus (IFG) were significantly shorter than those of the pure ASD group (pFDR , 0.05; G), those of the pure ADHD children
and those of the corresponding TD individuals (H). I, Among the three regions, only the neural timescale of the left SFG showed a
significant correlation with the atypical A–C–F–B transition frequency in the ASD1ADHD children. J, A mediation analysis indicated
that the short neural timescale of the left SFG induced the frequent A–C–F–B transition, which reduced the cognitive rigidity in the
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Bridges between local and global brain dynamics
How can such a local neural activity of a single brain

area affect the dynamics of the entire brain activity? We
filled this gap by examining the intrinsic neural timescale
of the brain networks.
In the pure ADHD children, we focused on the dorsal at-

tention network (DAN), to which the left IPS belongs. The
mean neural timescale of the DAN was correlated with

both that of the left IPS and the A–[C/D–E/F]–B transition
frequency (|r| . 0.56, pBonferroni , 0.05; Fig. 5A). A media-
tion analysis demonstrated that the fluctuation of the left
IPS destabilized the DAN activity, which increased the A–
[C/D–E/F]–B transition frequency (Fig. 5B).
In the ASD1ADHD group, we examined the mean neu-

ral timescale of the frontoparietal control network (FPCN),
which includes the left SFG. The neural timescale of

continued
ASD1ADHD individuals. The significantly large values of the a, b , and g validate our application of the mediation analysis to the
current datasets. The statistical significance of the a�b (indirect effect) and the insignificance of the g ’ support our conclusions.
†pBonferroni , 0.05 in a two-way ANOVA. *pBonferroni , 0.05 in a two-sample t test.

Figure 5. Focal neural activity, brain network activity and whole-brain dynamics. We investigated the mechanisms by which local
neural activity affected the whole-brain neural dynamics. A, In the pure ADHD group, the neural timescale of the left inferior parietal
sulcus (IPS) was correlated with that of the dorsal attention network (DAN), the parent network of the IPS, which was associated
with the frequency of the A–[C/D–E/F]–B transition. B, A mediation analysis showed that the short neural timescale of the left IPS in-
creased the frequency of the A–C–F–B transition by reducing the neural timescale of the DAN. C, In the ASD1ADHD children, the in-
trinsic neural timescale of the left superior frontal gyrus (SFG) was correlated with that of the frontoparietal control network (FPCN),
the parental network of the SFG, which was related to the A–C–F–B transition frequency. D, A mediation analysis demonstrated that
the shorter neural timescale of the left SFG enhanced the A–C–F–B transition frequency by decreasing the neural timescale of the
FPCN. E, The autistic behavior in the pure ASD children was explained by the atypical reduction in the A–C/D–B transition fre-
quency. F, In the ASD1ADHD children, their ASD symptom was correlated with the atypical decrease in the A–C/D–B transition fre-
quency. Their ADHD-like cognitive instability was induced by the atypically frequent A–C–F–B transition, which was triggered by the
unstable activities of FPCN and left SFG. G, The hyperactivity of the pure ADHD children was underpinned by the atypically frequent
A–[C/D–E/F]–B transition, which was attributable to the fluctuating activity of the FPCN and left IPS.
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the FPCN was associated with both that of the left SFG
and the frequency of the A–C–F–B transition (|r| . 0.69,
pBonferroni , 0.05; Fig. 5C). A mediation analysis indicated
a link from the atypically short neural timescale of the SFG
to the overly frequent A–C–F–B transition via the shorter
neural timescale of the FPCN (Fig. 5D).
These results indicate that the shorter neural timescales

of the focal brain regions, such as the left IPS and SFG,
accelerate the relevant brain state transitions by destabi-
lizing the activities of their parent networks.

Neural dynamics underlying ASD1ADHD comorbidity
In sum, the autistic socio-communicational traits of the

ASD1ADHD children were associated with the same in-
frequent A–C/D–B transition as seen in the pure ASD indi-
viduals (Fig. 5E,F, autistic social symptoms), whereas
their ADHD-like cognitive instability was underpinned by
unique biological mechanisms that were not linked with
the core symptoms of the pure ADHD children. The cogni-
tive instability of the ASD1ADHD comorbidity was corre-
lated with the atypically frequent A–C–F–B transition,
which was attributable to the unstable activity of the
FPCN and left SFG (Fig. 5F, cognitive instability). In con-
trast, the hyperactivity of the pure ADHD group was
grounded on the overly frequent transitions along the A–
[C/D–E/F]–B pathway, which was induced by the fluctuat-
ing neural activity of the DAN and the left IPS (Fig. 5G).

Confirmatory tests
Qualitatively, the same findings were observed in two

independent datasets collected at Kennedy Krieger Institute
(KKI) and Oregon Health and Science University (OHSU;
Table 2).
First, we confirmed that, in both datasets, the pairwise

maximum entropy model was accurately fitted to all the
types of participant data (�87.5%), and the energy land-
scape analysis identified the same six brain states (States
A–F) with the same six local minima (local min a–f) as in
the original results.
The frequency of the A–C/D–B transitions in the pure

ASD and ASD1ADHD children was lower than that in the
other groups (pBonferroni , 0.05; Fig. 6A) and significantly
correlated with the severity of their autistic socio-commu-
nicational symptoms (r� –0.44; Fig. 6B).
The A–[C/D–E/F]–B transition frequency in the pure

ADHD children was atypically higher than in the other
groups (pBonferroni , 0.05; Fig. 6C) and predictive of their
hyperactivity (r� 0.53; Fig. 6D).
This overly frequent transition in the pure ADHD indi-

viduals was linked with the atypically short neural
timescale of the left IPS (t(38) . 3.7, p, 0 0.05; Fig. 6E)
via the unstable neural dynamics of the DAN (|r | � 0.5,
p, 0.05; Fig. 6F).
The A–C–F–B transition in the ASD1ADHD children

was more frequent than in the other participant groups
(pBonferroni , 0.05; Fig. 6G) and linked with their cognitive
instability (r � –0.67; Fig. 6H). This frequent transition in
the ASD1ADHD condition was associated with the atypi-
cally short neural timescale of the left SFG (t(23) . 2.8,

p, 0 0.05; Fig. 6I) via the neural fluctuation of the FPCN
(|r | � 0.53, p, 0.05; Fig. 6J).
Note that the atypical changes in the neural timescales

seen in the left IPS and SFG were not detected in explora-
tory whole-brain analyses of the intrinsic neural timescale,
presumably because of the smaller sample sizes of the
datasets used in this confirmatory test.

Associations between ADHD-like hyperactivity and
ASD-like RRB
Throughout the above analyses, we assumed that the

ADHD-like trait, in particular, hyperactivity, and the ASD-
like RRB trait can be located at opposite ends of one
dimension representing cognitive rigidity/flexibility.
We indirectly confirmed this assumption with a behav-
ioral experiment employing 30 TD adults.
First, we asked the participants to complete question-

naires to evaluate their ADHD traits (CAARS; Conners et
al., 1999) and those for the examination of their ASD tend-
ency (AQ; Baron-Cohen et al., 2001; Wakabayashi et al.,
2006) and found a significant inverse correlation between
the hyperactivity score in CAARS and the RRB score
(“Attention switching”1 “Attention to details”) in AQ (r ¼ –

0.66, p, 10�4; Fig. 7A).
Second, the participants underwent a spontaneous

task-switching test, which is thought to allow us to quanti-
fy their cognitive rigidity (Arrington and Logan, 2004;
Poljac et al., 2012; Watanabe et al., 2019a; Fig. 7B). We
found that the task-repetition length observed in the
test was correlated with the RRB score in AQ (r¼ 0.69,
p, 10�4; Fig. 7C, left panel) and negatively associated
with the hyperactivity score in CAARS (r ¼ –0.72,
p, 10�4; Fig. 7C, right panel).
Moreover, a partial correlation analysis indicated that

both the RRB score in AQ and the hyperactivity score in
CAARS are manifestations of cognitive rigidity/flexibility
(Fig. 7D).
Albeit this experiment employed TD adults, these ob-

servations indicate that we could put the ASD-like RRB
score and ADHD-like hyperactivity at opposite ends of
cognitive rigidity, which indirectly support our usage of
the ADI-R RRB score to evaluate ADHD-like hyperactivity
in the ASD1ADHD children.

Discussion
This study has directly compared the brain dynamics

underlying the high-functioning ASD1ADHD, pure ASD
and pure ADHD children and found that the ASD1ADHD
comorbidity is not a mere overlap of the two prevalent
neurodevelopmental disorders. The autistic socio-com-
municational traits of the ASD1ADHD children were
explained by the same neural rigidity as that of the pure
ASD individuals. In contrast, their ADHD-like cognitive
instability was attributable to an atypically frequent brain
state transition and unstable local neural activity, neither
of which was associated with any core symptom of the
pure ADHD children. These findings have uncovered the
unique brain mechanisms underpinning the ASD1ADHD
comorbidity and, in particular, indicated that ADHD-like
cognitive instability seen in ASD1ADHD children may

Research Article: New Research 14 of 20

July 2023, 10(7) ENEURO.0146-23.2023 eNeuro.org



have to be treated as a distinct neurodevelopmental
condition.
One of the limitations of this study is in the manner of

evaluating the ADHD-like traits in the ASD1ADHD

children. Because the ABIDE project focuses on autism,
we could not obtain CPRS scores for the ASD1ADHD
children. Instead, their cognitive instability was inferred
based on the RRB score in the ADI-R system. Such an

Figure 6. Confirmatory tests. We confirmed that the main findings were qualitatively preserved in two independent datasets: data collected
at Kennedy Krieger Institute (KKI) and those recorded at Oregon Health and Science University (OHSU). The pure ASD and ASD1ADHD
children had significantly infrequent transitions along the A–C/D–B pathway (A), which were correlated with their autistic socio-communica-
tional symptoms (B). The frequency of the A–[C/D–E/F]–B transition was atypically higher in the pure ADHD children (C) and associated with
their hyperactivity tendency (D). The intrinsic neural timescale of the left IPS in the pure ADHD children was atypically shorter than controls
(E) and correlated with the atypically frequent A–[C/D–E/F]–B transition via the unstable activity of the DAN (F). The A–C–F–B transition fre-
quency in the ASD1ADHD children was atypically frequent (G) and correlated with their cognitive instability (H). This atypical A–C–F–B tran-
sition frequency was correlated with the atypically shorter neural timescale of the left SFG (I) via the fluctuating neural activity of the FPCN
(J). *pBonferroni , 0.05, †p, 0.05 for interaction in a two-way ANOVA. The error bars represent the SDs.
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inference is based on previous findings on (1) close links
between the ADHD symptoms and cognitive flexibility/in-
stability (Semrud-Clikeman et al., 2010; Das et al., 2014)
and (2) significant inverse correlations between the cogni-
tive instability and the RRB score in clinical tests (Lopez et
al., 2005; Watanabe et al., 2019a; Cissne et al., 2022).
Although this inference was indirectly supported by the
behavioral experiment employing TD individuals (Fig. 7),
future studies may have to use ADHD-specific behavioral
indices to measure such ADHD-like traits of ASD1ADHD
individuals.
Psychologically, the current findings allow us to specu-

late cognitive differences between the hyperactivity of
pure ADHD and cognitive instability of the ASD1ADHD
comorbidity. Given that the DAN is closely linked to atten-
tion selection and generation of attentional sets (Spadone
et al., 2015; Corbetta and Shulman, 2002), the close link
between the ADHD hyperactivity and unstable DAN activ-
ity implies that the hyperactivity of pure ADHD could rep-
resent insufficient control of top-down attention. In
contrast, considering that the FPCN is involved with the
coordination of multiple functional systems in the brain
(Cole et al., 2012, 2013; Cocuzza et al., 2020), the correla-
tion between the cognitive instability of the ASD1ADHD
children and unstable FPCN activity indicates the cogni-
tive instability of ASD1ADHD children may not be a direct
consequence of atypical attention but represent the insuf-
ficient integration of various neural information.

Clinically, this study implies the possibility of new non-
invasive treatments for ASD, ADHD, and ASD1ADHD
comorbidity. For example, as demonstrated in our recent
study (Watanabe, 2021), some behavioral traits can be
changed by a brain-state-driven neural stimulation sys-
tem, in which we can modulate the structure of the energy
landscape and modify relevant behaviors. Therefore, the
hyperactivity of pure ADHD may be mitigable by means of
stabilizing states A and B and destabilizing states E
and F.
In addition, the current findings may indicate the neces-

sity to re-evaluate the conventional treatments for high-
functioning adults with both ASD and ADHD. In particular,
given that the ADHD-like traits of ASD1ADHD individuals
and those of pure ADHD patients are underpinned by dif-
ferent biological mechanisms (Fig. 5F,G), we may have to
re-examine the medication on ADHD symptoms seen in
the comorbid condition. In fact, some previous studies re-
ported that mainstream medication for pure ADHD, such
as methylphenidate, did not have as sufficient effects on
ADHD-like behaviors of ASD1ADHD individuals as those
of pure ADHD children (M.J. Murray, 2010; Joshi and
Wilens, 2022). One research using functional near-infra-
red spectroscopy even found a significant difference in
the whole-brain neural responses to methylphenidate be-
tween ASD1ADHD and pure ADHD children (Sutoko et
al., 2019). Considering these previous findings along with
the current observation, we might have to search for

Figure 7. Additional behavioral experiment. The current study assumed that the ADHD-like traits in autistic individuals are related to
cognitive overflexibility and inversely correlated with their RRB score. We indirectly examined this assumption with a behavioral ex-
periment employing 30 TD adults. A, We first confirmed a significant negative correlation between their ADHD-like hyperactivity,
which was measured by CAARS, and their ASD-like RRB trait, which was calculated as a summation of “Attention switching” and
“Attention to details” scores in AQ. B, Second, we quantified the cognitive rigidity, an inverse form of cognitive flexibility, using a
spontaneous task-switching test. This test allows us to quantify cognitive rigidity by counting how many same tasks the participants
repeated spontaneously. C, The cognitive rigidity was associated with the RRB score in AQ and inversely correlated with the hyper-
activity score measured by CAARS. D, A partial correlation analysis indicates that both the RRB score in AQ and hyperactivity score
in CAARS would be behavioral manifestations of cognitive rigidity. *pBonferroni , 0.05.
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novel interventions to mitigate ADHD-like behaviors of the
ASD1ADHD comorbidity.
This neurobiological distinctiveness of the ASD1ADHD

condition is also consistent with a recent systematic re-
view of behavioral literature on the comorbidity (Benallie
et al., 2021): the review suggested that, compared with
pure ADHD children, ASD1ADHD individuals have unique
executive functions that are particularly related to plan-
ning and organizing. This behavioral difference may be at-
tributable to the distinct properties between the DAN and
FPCN.
The association between ASD symptoms and rigid

brain state dynamics is consistent with and expands our
previous findings (Watanabe and Rees, 2017). The prior
work found that high-functioning autistic adults and typi-
cally developing controls shared the same two stable
brain states (major states) and two relatively unstable
ones (minor states). In contrast, the frequency of the tran-
sitions between the major states via one of the minor
states was significantly reduced in the ASD adults, and
such atypical reduction predicted the severity of their
ASD symptoms. Given the qualitative similarity between
the major states in the prior work and the states A and B
in this study and between the minor states in the prior
work and the states C and D in this research, the signifi-
cant correlation between the ASD symptoms and the A–
C/D–B transition frequency can be seen as additional evi-
dence for our previous observations. Also, the current
finding shows that this brain-symptom association is not
limited to ASD adults but is applicable to children with au-
tistic traits.
Despite intensive neuroimaging research on pure ADHD

(Dickstein et al., 2006; Castellanos et al., 2002; Rubia et
al., 2010; Castellanos and Proal, 2012; Cortese et al.,
2012; Hart et al., 2012, 2013; Rajagopal et al., 2022), the
global brain state dynamics of the neurodevelopmental con-
dition were little understood. One study examined such
macroscopic neural dynamics by applying a version of en-
ergy landscape analysis (Jeong et al., 2021), but the main
purpose of the study was the validation of its analysis
method but not the investigation of biological mechanisms
behind ADHD. In addition, the prior work focused on the de-
fault mode network and executive control network but did
not examine the brain-wide neural dynamics. Considering
this, the current findings may be one of the first observations
on the global brain state dynamics underpinning ADHD
symptoms in humans.
Using the two data-driven analyses, the current study

identified the distinct neural dynamics underpinning the
ASD1ADHD comorbidity. The autistic social symptoms
of the ASD1ADHD children were associated with similar
neural bases as those of the pure ASD individuals, where-
as their ADHD-like cognitive instability was governed by
the unique global and local brain dynamics compared
with the pure ADHD children. These observations indicate
that “ASD1ADHD” is not a simple overlap of ASD and
ADHD, and in particular, its cognitive instability would rep-
resent a distinct disorder and need unique treatments.
The current approach focusing on the global and local
neural dynamics could provide a new perspective for a

comprehensive biological understanding of multiple neu-
ropsychiatric disorders.
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