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Abstract

In this review, we assessed the diagnostic efficiency of artificial intelligence (AI) models in

detecting temporomandibular joint osteoarthritis (TMJOA) using radiographic imaging data.

Based upon the PRISMA guidelines, a systematic review of studies published between Jan-

uary 2010 and January 2023 was conducted using PubMed, Web of Science, Scopus, and

Embase. Articles on the accuracy of AI to detect TMJOA or degenerative changes by radio-

graphic imaging were selected. The characteristics and diagnostic information of each arti-

cle were extracted. The quality of studies was assessed by the QUADAS-2 tool. Pooled

data for sensitivity, specificity, and summary receiver operating characteristic curve (SROC)

were calculated. Of 513 records identified through a database search, six met the inclusion

criteria and were collected. The pooled sensitivity, specificity, and area under the curve

(AUC) were 80%, 90%, and 92%, respectively. Substantial heterogeneity between AI mod-

els mainly arose from imaging modality, ethnicity, sex, techniques of AI, and sample size.

This article confirmed AI models have enormous potential for diagnosing TMJOA automati-

cally through radiographic imaging. Therefore, AI models appear to have enormous poten-

tial to diagnose TMJOA automatically using radiographic images. However, further studies

are needed to evaluate AI more thoroughly.

Introduction

Temporomandibular joint osteoarthritis (TMJOA), a severe subtype of temporomandibular

joint disorder, is characterized by progressive absorption of articular cartilage, remodeling of

the subchondral bone, and chronic pain [1]. The global incidence of TMJOA is reported to be

8% to 16% [2–4]. The disease severely affects patients’ quality of life, causing excruciating pain

and imposing a heavy social and economic burden on individuals and families [5]. Therefore,
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the importance of early TMJOA diagnosis lies in its potential to enhance treatment efficacy,

alleviate symptoms, implement preventive measures, preserve joint function, and optimize

healthcare resource utilization. Timely identification and intervention can significantly

improve patient outcomes and quality of life while potentially reducing the burden of more

invasive and costly treatments.

Presently, the diagnosis of osteoarthritis mainly depends on medical history, disease charac-

teristics, and digital imaging. However, the first two methods sometimes provide limited infor-

mation about the joint status of patients with TMJOA. Therefore, medical imaging, such as

magnetic resonance imaging (MRI), cone-beam computed tomography (CBCT), and ortho-

pantomogram (OPG), is often necessary to assess osteoarthritis [6–8]. The X-ray passed

through the temporomandibular joint area and was subsequently detected by a detector. The

attenuated X-ray signal is converted into an electrical signal, which is then converted into

computed tomography (CT) and OPG images. The principle of nuclear magnetic resonance is

what MRI uses. Radio frequency excites nuclei within an external magnetic field to produce a

signal and convert it into a medical image. The clinician can detect the morphological changes

of bone components in the TMJ with OPG, MRI, and CBCT images.

The above-mentioned noninvasive imaging modalities have been widely used in diagnosing

TMJOA [9–11]. Studies have indicated that OPG can only detect apparent erosion, sclerosis,

and osteophytes [12]. Although OPG is not sensitive enough to TMJOA [13], it is still an effec-

tive tool for the preliminary screening of TMJ. MRI and CBCT were selected to carefully evalu-

ate temporomandibular joint structure because they can identify osseous changes such as

erosion, osteophytes, and sclerosis [14]. CBCT is the preferred method of bone evaluation

compared to MRI and performs better in diagnosing TMJ osteoarthritis [15]. MRI is also fre-

quently used in TMJOA studies because of advantages in bone evaluation [16]. It not only

assesses the condyle morphology but also identifies abnormalities in the bone marrow. Never-

theless, even with such rapid advances in radiological imaging, accurate diagnosis of TMJOA

remains challenging. The diagnosis of TMJOA is particularly complex because of the diverse

morphological changes of the condyle, such as erosion, flattening, sclerosis, osteophyte, and

subcortical cyst [17]. As the diagnostic accuracy of degenerative changes in the condyle

depends largely on the radiologists’ expertise and quality of the scanner itself, the interpreta-

tion process is susceptible to both misdiagnosis and missed diagnosis [18]. Studies have shown

that CBCT has higher accuracy in diagnosing degenerative bone changes than MRI and OPG,

with a sensitivity of 0.7–0.9 [19].

Additionally, improvements in technology to extract more accurate and meaningful diag-

nostic information have made physicians’ work more complex. Therefore, rapid and accurate

diagnosis of TMJOA has gradually become a research hotspot.

AI is becoming increasingly popular, especially deep learning (DL), owing to remarkable

data mining and processing progress. It is considered a reliable method for combining clinical

data and physician reports from electronic medical records to improve the accuracy of various

medical tasks [20]. AI has been applied to segment or diagnose lesions automatically in medi-

cal images and can be combined with the results of other medical tests to determine disease

prognosis [21–23]. In this review, we aimed to assess the diagnostic efficiency of AI models in

detecting TMJOA using radiographic image data.

Materials and methods

Our study protocol was registered on PROSPERO (CRD42023396713). This systematic review

and meta-analysis were completed following the Preferred Reporting Items for Systematic

Review and Meta-Analyses (PRISMA) guidelines, including search strategy, eligibility criteria,
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data extraction, risk of bias assessment, and data analysis (S1 Checklist). In addition, the QUA-

DAS-2 tool [24] was used to assess the quality of the included studies.

Search strategy

Two authors (QKX and WWL) separately performed PubMed, Web of Science, Scopus, and

Embase database search using standard search formulas. A comprehensive search was con-

ducted across four databases using a combination of predetermined keywords. The keywords

used for the search were ("artificial intelligence" [Mesh] OR "machine learning" [Title/

Abstract] OR "neural networks, computer" [Title/Abstract] OR "deep learning" [Title/

Abstract]) AND ("temporomandibular joint"[Title/Abstract] OR "osteoarthritis"[Title/

Abstract]) AND "sensitivity and specificity"[Title/Abstract]. Additional information regarding

the search strategy can be found in the S1 File. Additional articles were identified by manual

search. Then, a full-text review was conducted to determine whether the identified literature

met the inclusion criteria. If there was any disagreement during the search process, it was set-

tled via consultation with the third author (YF).

Eligibility criteria

The literature published in PubMed, Web of Science, Scopus, and Embase between January

2010 and January 2023 on the detection of TMJOA using AI in radiographic images was

included. There were no restrictions on the countries where the studies were conducted, but

only articles published in English were included. The inclusion criteria according to PICOS

was as follows: P, patient with TMJOA or degenerative change of condyle; I, AI models includ-

ing deep learning, machine learning, and radiomic; C, not appliable; O, sensitivity, specificity,

AUC value; S, prospective or retrospective study. Excluded criteria were narrative reviews, let-

ters, reviews, editorials, protocol studies, guides, systematic reviews, and meta-analyses.

Data extraction

The following data were extracted from the included literature: types of AI models, research

characteristics, and outcome measurements. To obtain diagnostic accuracy data, a 2×2 confu-

sion matrix, sensitivity, specificity, accuracy, true positive, false positive, true negative, false

negative, and the area under the receiver operating characteristic curve (AUROC) were

extracted or reconstructed. For further analysis, the following data were extracted: authors,

publication year, country, sex, study style, imaging modality, total images, the sample size of

test data, and techniques.

Quality assessment and publication bias

Two independent reviewers (QKX and YF) performed quality assessments of selected studies

using the QUADAS-2 criteria. When there was a disagreement, the third author made the

final decision based on the criteria. Publication bias was assessed by funnel plot of diagnostic

AUC. Asymmetric shape of the funnel plot of included studies indicated study heterogeneity.

Data analysis

Sensitivity and specificity were calculated by true positives, false positives, true negatives, and

false negatives. Forest plots of sensitivity and specificity and a summary receiver operating

characteristic (SROC) curve were generated using Stata 15.1. Meta-regression analysis was

conducted to estimate the source of heterogeneity when I2 was� 50%.
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Results

Search results

We retrieved 510 articles from the four databases. Three additional articles were identified

through manual screening. After removing 103 duplicates, we analyzed the titles and abstracts

of the remaining 407 articles. Twenty-two articles of interest were identified according to the

inclusion and exclusion criteria. Sixteen of these articles were subsequently excluded due to

incomplete data or a narrative review style. Finally, six studies [25–30] were included in the

systematic review. The literature screening process is shown in Fig 1.

Study characteristics

All six included studies were retrospective (Table 1). MRI was used in one study, CBCT in two

studies, and OPG in three studies. Five studies used the Diagnostic Criteria for Temporoman-

dibular Disorders published by Schiffman as the reference standard [31], whereas one study

did not offer a reference standard. The research was completed in Belgium, Iran, and Korea,

with 66.6% (4/6) of the studies conducted in South Korea. The selected studies utilized one of

two AIs: KNN (2/6, 33.3%) or convolutional neural networks (CNN) (4/6, 66.7%).

Quality assessment and publication bias

To evaluate the quality of the studies, we applied the QUADAS-2 risk checklist to test the bias

risk in each study (Fig 2). The risk of bias in patient selection was low in one half (3/6, 50%) of

the studies and unclear in the other half. The same was true for the risk of bias in the index

test, flow, and timing. The reference standard test included all six studies with a low risk of

bias (100%). Applicability concerns regarding patient selection were low in five (83.3%) studies

and unclear in one (16.7%). Applicability concerns in the index test were low in one study

(16.7%), high in one study (16.7%), and unclear in four studies (66.6%). Applicability concerns

in the reference standard were low in four (66.7%) and high in two (33.3%) studies. The funnel

plot assessment (Fig 3) showed no significant publication bias (P = 0.68).

Fig 1. PRISMA flowchart of the included articles.

https://doi.org/10.1371/journal.pone.0288631.g001
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Diagnostic accuracy

The included studys’ sensitivity and specificity ranged from 0.54 to 0.94 and from 0.50 to 0.91,

respectively. The pooled sensitivity and specificity for AI models were 0.80 (95% confidence

interval [CI]: 0.67–0.89) with severe heterogeneity (89%) and 0.90 (95% CI: 0.87–0.92) with

Table 1. Characteristics of individual studies.

author year country study style total

images

Sample size of

test data

age and gender AI Techniques Female in

sample (%)

Eunhye Choi 2021 Korea retrospective

study

1599 272 210males, 979females; mean ± SD

age, 37.1 ± 16.0y;

Keras ResNet (CNN) 82.3

K.S. Lee 2020 Korea retrospective

study

3514 300 84 males, 230 females; mean ± SD

age, 39.5 ± 18.2y;

single-shot detector

(SSD)(CNN)

73.2

Won Jung 2021 Korea retrospective

study

858 172 142 males, 376 females; mean ± SD

age, 47.3 ± 20.1y;

EfficientNet-B7 (CNN) 72.6

Donghyun Kim 2020 Korea retrospective

study

1932 231 700 male and 592 female; mean

age: 43.3 years

Fine-tuned VGG16

network(CNN)

45.8

Kaan Orhan 2021 Belgium retrospective

study

856 18 34 male and 73 female; mean age:

38 years ± 17.97;

k-nearest neighbors

(KNN)

68.2

Haghnegahdar

A

2018 Iran retrospective

study

264 264 unclear k-nearest neighbors

(KNN)

unclear

MRI, magnetic resonance imaging; CBCT, cone-beam computed tomography; OPG, orthopantomogram; TMJOA, temporomandibular joint osteoarthritis; CNN,

convoluted neural networks; KNN, k-nearest neighbor

https://doi.org/10.1371/journal.pone.0288631.t001

Fig 2. Quality assessment by QUADAS-2 tool.

https://doi.org/10.1371/journal.pone.0288631.g002
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moderate heterogeneity (53%) (Fig 4). According to the SROC curve, the AUC was 0.92 (95%

CI: 0.89–0.94) (Fig 5). We performed a meta-regression analysis to explore the sources of het-

erogeneity and found that imaging modality, ethnicity, sex, age, AI techniques, and sample

size were all possible causes of heterogeneity (Table 2).

Discussion

AI has been used to study knee and hip arthritis, mainly for autodetection, classification, and

segmentation. Artificial intelligence (AI) has shown promising applications in the diagnosis of

temporomandibular arthritis (TMJ arthritis). AI algorithms have been developed to analyze

medical imaging data, such as X-rays, CT, and MRI, to aid in the detection and diagnosis of

TMJ arthritis. These algorithms can assist in identifying characteristic features, measuring

joint space, assessing bone changes, and detecting early signs of arthritis. By training models

on large datasets, AI algorithms can learn to distinguish healthy TMJ joints from those affected

by arthritis, enabling more accurate and efficient diagnosis. It is important to note that while

AI shows promise in TMJ arthritis diagnosis, its clinical application is still evolving. Further

research, validation, and refinement of AI models are needed to ensure their accuracy, reliabil-

ity, and integration into routine clinical practice. To our knowledge, only a few studies and

meta-analyses for the auto-detection of TMJOA have been conducted on temporomandibular

osteoarthritis. de Dumast et al. constructed a neural network algorithm to classify TMJOA

based on an imaging dataset [32]. Ribera et al. also designed a similar deep learning model

[33]. However, the diagnostic accuracy differed appreciably between these studies, ranging

from 78.0% to 92.4%. We have retrieved two meta-analyses that bear similarities to our current

article. The first study evaluated TMD [34], while the second investigated TMJOA [35]. It is

Fig 3. Funnel plot for diagnostic accuracy of AI in detection of TMJOA. TMJOA, temporomandibular joint

osteoarthritis; AI, artificial intelligence.

https://doi.org/10.1371/journal.pone.0288631.g003
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Fig 4. Meta-analysis of sensitivity and specificity for AI.

https://doi.org/10.1371/journal.pone.0288631.g004

Fig 5. SROC for diagnostic accuracy of AI in detection of TMJOA.

https://doi.org/10.1371/journal.pone.0288631.g005
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noteworthy that both studies included additional diagnostic biomarkers beyond medical

images to establish the diagnosis of TMD and TMJOA. This limitation reduced the scientific

value of these two meta-analyses. The present systematic review and meta-analysis aimed to

explore the diagnostic rate of AI models developed for the detection of TMJOA on medical

images. Six articles were included in our research, comprising 523 images with osteoarthritis

and 734 images from controls. After the synthesis, the pooled specificity, sensitivity, and accu-

racy were 0.80, 0.90, and 0.92, respectively. This high-pooled DTA shows that AI models can

successfully differentiate between patients with and without degenerative changes. Researchers

have confirmed a similar conclusion in other fields that artificial intelligence is more accurate

and reliable than radiologists [36].

The sensitivity of DL in Kim’s literature was only 0.54. We carefully reviewed the literature

and found that although model 1 and model 2 could identify condyle region and morphology,

respectively, their detection efficiency was relatively low. Adjusting the hyperparameters of the

model may result in the desired performance. In Orhans’s literature, the low specificity may be

due to insufficient samples in the test set, which is much lower than in other articles. The MRI

images in this article were used to analyze osseous changes and disc displacement. Therefore,

the samples were selected from patients with temporomandibular joint disorder. The test set’s

samples were insufficient because the proportion of TMJOA patients in the total sample was

low. However, we agree with the authors on the design of the deep learning model. Therefore,

these two articles were eventually included in our meta-analysis.

In our analysis, heterogeneity was observed among the included studies. Therefore, we per-

formed a meta-regression analysis to identify the source of heterogeneity and revealed that

imaging modality, ethnicity, sex, age, AI techniques, and sample size might account for hetero-

geneity. OPG (50.0%), CBCT (33.3%), and MRI (16.7%) were selected as the study images in

the included literature. Imaging modalities may be the primary source of heterogeneity. It is

generally believed that CBCT is superior to other imaging modalities for diagnosing TMJOA

[16]. In our meta-analysis, the included articles based on OPG were less accurate (78%–88%)

Table 2. Meta-regression analysis for diagnostic accuracy of AI in detection of TMJOA.

Covariate/Subgroup Studies(n) Sensitivity (95%CI) P-value Specificity (95%CI) P-value

Image modality 0.86 <0.001

OPG 3 0.73 (0.58–0.88) 0.90 (0.87–0.93)

The rest 3 0.87 (0.77–0.97) 0.90 (0.86–0.94)

Number of total images <0.001 <0.001

>1000 3 0.69 (0.59–0.80) 0.89 (0.86–0.92)

�1000 3 0.90 (0.84–0.96) 0.90 (0.85–0.94)

Number of test data

>200 4 0.78 (0.65–0.91) <0.001 0.90 (0.87–0.92) <0.001

�200 2 0.85 (0.69–1.00) 0.90 (0.83–0.97)

Type of AI techniques

CNN 4 0.74 (0.63–0.85) <0.001 0.90 (0.87–0.93) <0.001

KNN 2 0.91 (0.84–0.99) 0.88 (0.81–0.96)

Mean age 0.2 <0.001

>40 2 0.73 (0.58–0.88) 0.88 (0.84–0.93)

�40 3 0.76 (0.64–0.88) 0.91 (0.88–0.94)

Female in sample (%) <0.001 <0.001

>65 4 0.79(0.73–0.84) 0.91(0.88–0.93)

�65 1 0.54(0.73–0.84) 0.86(0.81–0.91)

https://doi.org/10.1371/journal.pone.0288631.t002
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than those based on CBCT (86%–92%). This is similar to the conclusion from Kaimal S [37],

who compared the diagnostic effects of OPG, MRI, and CBCT for TMJOA. Their results

showed that the inter-observer reliabilities based on OPG, MRI, and CBCT had a Kappa of

0.16, 0.47, and 0.71, respectively. OPG performance can be poor because the condyles may

overlap with the articular eminence or cervical vertebrae in OPG images. In the process of

deep learning, the pixels of the overlapping region increase, thus affecting the calculation

results. However, CBCT does not have a similar situation because of its three-dimensional

nature. Since the included literature using MRI was insufficient, this paper does not discuss it

here. The diagnostic efficiency of MRI was inferior to that of CBCT, which was similar to the

results of previous studies [16]. The short relaxation time of hard tissue resulted in poor MRI

performance [38]. However, many articles still use MRI to study TMJOA [39, 40]. The advan-

tage of MRI is that it can evaluate hard and soft tissues simultaneously to analyze TMJ more

comprehensively.

Sample sizes (P < 0.001), including the size of the test data and techniques used to train

deep learning (P< 0.001), were also identified as sources of heterogeneity. In general, the per-

formance of deep learning models improves as the amount of data increases [41, 42]. Several

experiments have used training sets of different sizes to train deep learning models to deter-

mine the ideal sample size [43, 44]. Their results revealed that insufficient sample sizes lead to

undertraining, which can affect the final accuracy. A similar situation was observed in this

study. The accuracy fluctuated greatly (78%–92%) in the articles with small total sample sizes,

while it fluctuated slightly (78%–84%) in the articles with large total sample sizes. The influ-

ence of the size of the test data on accuracy was also similar.

Additionally, the performance of deep learning is directly related to the inherent character-

istics of deep learning [45, 46]. The included studies constructed two deep learning models:

CNN and KNN. The accuracy of CNN was higher than that of KNN, which may be due to

their different structures and characteristics. CNN is essentially a mathematical model whose

structure and operation logic refer to a biological nervous system, so information can be dis-

tributed and processed in parallel [47]. The KNN algorithm, also known as KNN or K-NN, is a

supervised learning model for classification [48]. KNN classifies or predicts groupings of indi-

vidual data points by proximity. Owing to KNN’s relatively simple architecture and algorithm

of the KNN, small sample sizes and sample imbalance would lead to classification bias.

In contrast, for larger sample sizes, CNN has better classification ability than KNN. Early

studies indicate that the average recognition rate of neural networks is higher than that of the

KNN classification method [49, 50]. Two studies in our meta-analysis used small samples to

train KNN. Combined with the influence of unbalanced samples, the accuracy of KNN may be

lower than that of CNN. This suggests that the architecture of deep learning affects perfor-

mance. Therefore, different deep-learning algorithms should be compared for different appli-

cation scenarios to determine the most appropriate one.

Although the prevalence of degenerative joint disorder varies widely [51], the incidence of

TMJOA is closely correlated with sex and age. Incidence and severity are higher in women

[52]. TMJOA is at least twice as common in women than men [53]. Cellular sexual dimor-

phism, hormones, genetic factors, and immune modulation mechanisms may contribute to

the sex disparity observed in TMJOA [54–56]. Numerous studies have confirmed the strong

correlation between age and TMJOA [57, 58]. TMJOA has significantly different peak age

characteristics, which are approximately 30 and 55 years [59]. This relationship reflects the

inherent accumulation of tissue damage owing to a gradual decline in cellular adaptation.

Although the title of our search include artificial intelligence, almost all the literature

included in the research used deep learning technology. Deep learning does not require artifi-

cial feature sets compared to traditional machine learning. Feature extraction is data-driven,
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which enables deep learning to extract deeper features. Meanwhile, higher precision and stron-

ger robustness make deep learning more widely used. Nevertheless, deep learning has its lim-

its. First, deep learning does not negate any data nor detect hidden biases in the data, which

can lead to unobjective results. Second, deep learning is susceptible to counterattack, which

leads to radically different judgments. Third, it can only find correlations between events but

cannot explain causation. Finally, the performance of deep learning depends on the size of the

data set, which requires high computational power. Despite these problems, deep learning is

still a promising tool.

This meta-analysis only included six papers, which may lead to the need for more objective

conclusions. However, this is because the research on deep learning in temporomandibular

osteoarthritis is still exploratory, and more literature meeting the inclusion criteria are needed.

For this reason, we expanded the search scope to include LILACS, Scopus, Web of Science,

and other databases, but no other literature meeting the inclusion criteria was retrieved. We

will regularly update this paper in the later stages to ensure its timeliness.

Conclusion

AI models appear to have enormous potential to diagnose TMJOA automatically using radio-

graphic images. Although AI still has shortcomings in automatic diagnosis and various models

differ in accuracy, its high average accuracy still makes it an auxiliary means to avoid misdiag-

nosis or missed diagnosis. However, further studies are needed to evaluate AI more

thoroughly.
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