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Abstract

Computing quantum chemical properties of small molecules and polymers can provide insights 

valuable into physicists, chemists, and biologists when designing new materials, catalysts, 

biological probes, and drugs. Deep learning can compute quantum chemical properties accurately 

in a fraction of time required by commonly used methods such as density functional theory. Most 

current approaches to deep learning in quantum chemistry begin with geometric information from 

experimentally derived molecular structures or pre-calculated atom coordinates. These approaches 

have many useful applications, but they can be costly in time and computational resources. 

In this study, we demonstrate that accurate quantum chemical computations can be performed 

without geometric information by operating in the coordinate-free domain using deep learning 

on graph encodings. Coordinate-free methods rely only on molecular graphs, the connectivity of 

atoms and bonds, without atom coordinates or bond distances. We also find that the choice of 

graph-encoding architecture substantially affects the performance of these methods. The structures 

of these graph-encoding architectures provide an opportunity to probe an important, outstanding 

question in quantum mechanics: what types of quantum chemical properties can be represented 

by local variable models? We find that Wave, a local variable model, accurately calculates the 

quantum chemical properties, while graph convolutional architectures require global variables. 

Furthermore, local variable Wave models outperform global variable graph convolution models on 

complex molecules with large, correlated systems.

Graphical Abstract

INTRODUCTION

Efforts to develop artificial intelligence, culminating in recent advances in deep learning, are 

bringing us closer to solving significant problems in medicinal chemistry,1 dermatology,2 

radiology,3 genomics,4,5 protein folding,6 and other industrial and scientific fields. There has 

been substantial interest in deep learning among chemistry researchers, who are using these 
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technologies on small molecules to reduce drug toxicity,7–9 identify biological probes,10 

predict chemical reactions,11 and compute basic properties.12

The observed behavior of small molecules arises from electronic interactions described by 

quantum mechanics. Often, in practice, approximations of quantum mechanics for chemistry 

are made with simplified density functional theory (DFT),13 and higher level ab initio14 

methods, combined with quantitative structure–activity relation models, are invaluable tools 

for understanding relationships between chemical structure and activity with applications 

in the design of materials,15 catalysts,16 and drugs.17,18 Unfortunately, these methods often 

require minutes or hours to compute the properties of small molecules. Computational 

chemists have been using deep learning to compute quantum chemical (QC) properties 

of molecular systems in a fraction of time required by standard methods. Deep learning 

has been successfully applied for computing the total energy of molecular systems,19 

bond energies,20 orbital energies,21 site-level (atom- and bond-level) properties,22 and 

molecular dynamics.23 This success raises the possibility of using deep-learning-derived 

QC calculations to quickly screen large molecular databases or design new molecules using 

automated de novo or evolutionary algorithms suitable for applications in photovoltaic 

panels,24–26 materials design,27 chemistry,28 biology, and medicine.27,29

There are two key limitations of current deep learning approaches to quantum chemistry 

that limit their practicality for screening tasks. First, most quantum chemistry deep learning 

studies have focused on very small molecules, with fewer than 10 heavy atoms, whereas 

many commonly used biological probes, drugs, and catalysts are substantially larger. 

Second, many of the standard benchmark datasets in this field, such as QM9,30 provide 

molecular geometries optimized at the same level of theory used for the reference quantum 

calculations. Alternatively, other benchmarks may use experimentally derived structures.31 

Deep learning models trained on these data often require coordinate or distance data derived 

from these structures as input and thus, for application to new data, structures must be 

obtained through similar methods as the original datasets. This can be a computationally 

or time-intensive process. For example, given a structural formula for a compound, a three-

dimensional structure could be generated by application of a force field or by deriving a 

structure experimentally. Some groups have even shown that optimized structures at high 

levels of theory can be generated by deep learning via gradient descent. However, generating 

structures computationally in this manner has only been studied with very small molecules, 

and optimization still incurs a significant computational cost.32

Identifying a deep learning architecture with the greatest efficiency—with respect to 

the number of variables, training data requirements, and generalizability of learned 

representations of quantum chemistry—is another area of active inquiry in this field. 

Numerous architectures have been proposed that leverage different feature sets and 

molecular representations and different internal structures. Past approaches have included 

matrices of inter-atomic distances,33 empirical force fields,34 empirical potentials,32,35 and 

derived features from lower levels of theory.36 The innovation of convolutional neural 

networks provided a tool for deep learning networks to natively process input molecular 

systems with varying size.19,37–41 These convolutional networks operate either on pairs 

of atoms or molecular graphs derived from atomic spatial relationships or structural 
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formulas and process data at the atom level, aggregating empirically derived atom-level 

representations to compute QC properties at the atom, bond, and molecule levels. Input 

representations often include inter-atomic distances or coordinates19,31,38 but can also 

operate solely on non-spatial features such as atomic number.22,40,42 Because they operate 

on a principal of aggregation of local information in atom neighborhoods, convolutional 

networks may not be the most efficient way to represent long-range information in chemical 

systems.40,43 Graph recursive networks such as Wave are an alternative to convolutional 

networks designed to specifically address this issue.12,40,44

The varying deep learning architectures used for chemistry also raise the possibility of 

constructing local variable models of quantum chemistry.45 The existence of local variables 

of quantum mechanics is a subject of a long-standing debate.46,47 Some deep learning 

architectures describe molecular systems with local variables assigned to each atom, 

while other deep learning architectures may also utilize global variables. The performance 

differences between local and global models may shed empirical light on this question, 

determining empirically which aspects of quantum chemistry can, in practice, be represented 

by local variables alone, and which may require global variables.

METHODS

Dataset Selection and Processing.

This work included QC calculations of total energy, gap energy (difference of lowest 

unoccupied and highest occupied molecular orbital energies), atom valence, bond order, 

and bond lengths by DFT from two datasets: QM930 and PubChemQC.48 In addition, we 

included polarizability calculations from a combinatorial oligomer dataset. In the following 

paragraphs, we describe the details of the data and calculations performed for each of these 

datasets.

The QM9 dataset and reference total energy calculations for free atoms of each of the 

five included atomic species (H, C, N, O, and F) were obtained from the figshare QM9 

repository.30 One-fifth of the molecules (26,650) were randomly chosen as a test set, and the 

remainder were retained for model training. The QM9 dataset consists of 13 QC properties 

for 1,34,000 molecules calculated using DFT at the B3LYP/6–31G(2df,p) level.

To improve the diversity of compounds included in this study, a subset of the PubChemQC 

dataset, a repository of 3.9 million DFT calculations on PubChem molecules,48 was obtained 

with the permission of the PubChemQC authors by scraping the content of the PubChemQC 

project website (pubchemqc.riken.jp). PubChemQC aggregates minimum energy structures 

and QC properties computed using DFT at the B3LYP 6–31 + G* level. We selected a subset 

of molecules in three steps. First, we excluded molecules that met the following criteria: 

contained atom types not supported by the 6–31 + G* basis set used in the calculations 

(atomic numbers 1–18 are supported), were mixtures of two or more compounds, had partial 

charges larger in magnitude than two, had more than 10 rings, or had spin values greater 

than triplet. Second, we narrowed our selection to 1.5 million molecules by sampling from 

a joint probability distribution over aromatic system size, conjugated system size, number 

of heavy atoms, charge, spin, and number of rings. Rare compounds (e.g., large number 
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of rings and large aromatic system sizes) were more likely to be selected than compounds 

with more commonly occurring properties. Finally, we selected a topologically diverse 

subset from this filtered list of compounds by iterating over the filtered list and including 

compounds with a Tanimoto similarity less than 0.7 to any compound already included. 

Tanimoto similarity was computed using path-based fingerprints with a depth of 8 and a bit 

vector size of 216.49 The final dataset contained 5,10,010 compounds. For these compounds, 

we extracted total energies, molecular orbital energies, atom valences, bond orders, and bond 

lengths from PubChemQC calculations. Atom valences and bond orders were computed 

with the Mayer valence analysis.50 Gap energy was computed as the difference between the 

lowest unoccupied and highest occupied molecular orbital energies (LUMO–HOMO).

To improve on the QM9 data’s limited range of polarizability values, we collected a set of 

9505 oligomers with a larger range of polarizability values (Figure S1). Each oligomer was 

constructed from a pre-defined set of 91 monomers and consisted of between one and six 

monomer subunits.51 Polarizability values were calculated by DFT using the Gaussian 09 

software with the ωB97X-D functional52 and the cc-pVTZ basis set,53–55 which have proven 

to have good accuracy for predicting static polarizabilities.56

Total energy calculations (in both QM9 and PubChemQC) and polarizability calculations 

showed strong correlations with molecule size (Figure S2). Normalization to remove 

these correlations improved the performance of the tested QC models (data not shown) 

and is commonly performed in the literature on deep learning in quantum chemistry.33 

Models were trained against normalized targets, but accuracy values were computed by 

denormalizing model output and comparing to the original calculated values. Total energy 

calculations from both the QM9 and PubChemQC datasets were normalized by subtracting 

the sum of free atom energies of the constituent atoms (computed in the ground state 

at neutral charge) and dividing by the number of atoms (Figure S2A,C). Polarizability 

calculations were normalized by simply dividing by the number of atoms (Figure S2B).

Conjugated Systems and Rotable Bonds.

We computed the number of atoms in conjugated systems and the number of rotable bonds 

within molecules using the RDKit software.57 RDKit uses a topological algorithm to assess 

whether bonds belong to conjugated systems. An atom was defined as belonging to a 

conjugated system if any of its bonds was marked with the is Conjugated flag by RDKit. The 

number of rotable bonds was calculated with the RDKit CalcNumRotatableBonds method.

Matched Pair Analysis.

As coordinate-free methods are based on graph topology, we evaluated the effect of 

topological similarity by selecting matched pairs of molecules from additional PubChemQC 

data. For each molecule in PubChemQC that met our initial filtering criteria, we identified 

the most similar molecule from the training set by Tanimoto similarity (path-based 

fingerprints, depth 8, bit vector size 216). These were then considered a matched pair if 

their Tanimoto similarity was at least 0.5. The majority of matched pairs (17,48,733 of 

23,86,889 or 73%) had Tanimoto similarity greater than 0.8.
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Model Structure and Training.

To evaluate the performance of each graph-encoding architecture on the six QC calculation 

tasks examined in this work, we used a fixed input architecture, fixed decoder architecture, 

and fixed training protocol for all models. Only the architecture used at the graph encoder 

step was allowed to vary between models (Figure 3A).

The input architecture first generated an initial vector of atom features containing a one-hot 

encoding of element type and formal charge. This input representation was transformed 

by a single layer of neighborhood convolution with a depth of three bonds40 with an 

output vector size of 128 and exponential linear unit (eLU) activation.58 These computed 

representations were used to initiate the state of each atom-local variable.

The graph encoders tested in this work included two variants of the graph convolutional 

network that use message passing neural networks (MPNN and MPNN-G) and a breadth-

first graph recurrent network (Wave). Input atom state variables were processed by five 

passes with either algorithm. MPNN and MPNN-G networks were implemented with the 

DeepMind Graph Nets python library.59 MPNN-G used global, node, and edge update 

blocks. The recurrent unit was a single-layer neural network with eLU activation. In 

practice, this worked substantially better than more sophisticated recurrent units, such as 

gated recurrent units (data not shown). Global and edge states were initialized to zero 

for the first pass. MPNN did not use the global block or global state variable. For the 

Wave network, we used the reference implementation provided by the Teflon deep learning 

API.60 Wave used the gated recurrent unit (GRU) with tanh activation,61 a softsign-weighted 

mix-gate,40 and layer normalization at both the mix-gate and GRU output layers.

To calculate the quantum properties, different architectures were used at the atom, bond, 

and molecule levels. At the atom level, each atom variable was passed to a neural network 

consisting of two hidden layers (sizes 64 and 32) with an exponential linear unit or eLU 

activation and a linear output layer. At the bond level, atom variables for each bond were 

concatenated to form input to a two hidden layer neural network (sizes 64 and 32) with 

eLU activation and linear output. The first layer of this neural network performed a weave 

operation to compute a vector representation of each bond that was order invariant.37 

Given vector-valued atom variables A1, A2, and hidden layer f, the weave operation 

calculated f([A1A2]) + f([A2A1]), where the brackets indicate vector concatenation. At 

the molecule level, the complete collection of atom variables was passed to a decoder 

based on the set2set network architecture,62 which generated a single molecule-level vector 

representation. The set2set decoder has been used to achieve state-of-the-art performance 

on the QM9 benchmark with the MPNN architecture.38 Briefly, the decoder reduces atom 

variables to a single-molecule-level vector by several passes of weighted summation over the 

atom variables and subsequent transformation with a recurrent neural network. The decoder 

performed five passes with a long short-term memory recurrent network63 and a single 

hidden layer attention network with eLU activation. The molecule-level vector was then 

passed to a neural network consisting of one hidden layer size of 32 with eLU hidden layer 

activation and an output layer with linear activation.
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All the models were constructed and trained using TensorFlow,64 DeepMind Graph Nets, 

and the Teflon deep learning toolkit. Models were trained by batch gradient descent on 

the mean-squared error loss using the Adam optimizer65 with a learning rate of 10−3, a 

continuous learning rate decay of 0.98, a batch size of 64 molecules, and 1,00,000 training 

iterations.

Statistical Analysis.

Because all methods were evaluated against the same test sets, all statistical tests were 

calculated by two-sided, paired Student’s t-test.

Data and Code Availability.

Sample python code and pre-trained models of total energy using the Wave and 

MPNNG architectures are available at our Bitbucket Git repository: https://bitbucket.org/

mkmatlock/coordinate_free_quantum_chemistry. The repository provides sample code for 

generating predictions on new molecules and training new models. It also contains a 

pre-processed copy of the training and test data used to evaluate the models in our 

paper. PubChem compound IDs for each compound in the training, test, and external 

validation data are also included, and the raw data are available via the PubChemQC 

project (pubchemqc.riken.jp). The pre-processed extended test data used in Figure 2F,G 

is too large for repository storage but is available on request. The implementations of 

basic operations required by the Wave and MPNN-G architectures are contained in the 

Teflon (https://bitbucket.org/mkmatlock/tflon) and graph_nets (https://github.com/deepmind/

graph_nets) python packages, respectively. To facilitate experimentation with the software, 

the Bitbucket repository includes a docker recipe with the required dependencies.

RESULTS AND DISCUSSION

Graph-Based and Coordinate-Free Quantum Chemistry.

With these considerations in mind, we constructed coordinate-free, local variable models of 

quantum chemistry capable of computing QC properties of molecules in energy-minimized 

states without explicitly computing optimized geometries. Our coordinate-free deep learning 

models utilize a graph-based intermediate representation of molecules. This approach is 

inspired by organic chemists, who often reason about the molecular behavior by representing 

molecules as graphs in a coordinate-free domain, with atoms represented by nodes and 

bonds by edges. This construction enables us to bypass time-consuming molecular geometry 

optimization and energy minimization steps and derive QC properties directly from 

molecular structures (Figure 1A). In this work, we present results from two major classes of 

graph neural network: graph convolution and breadth-first recurrent (Wave) networks. Graph 

convolution, as implemented by message passing neural networks (MPNN),38 computes 

state variables, local to each atom in a molecular system, by aggregating features of 

the atom and the atom’s local neighbors (Figure 1B). In addition to local aggregation, 

MPNN allows for global variables (MPNN-G), which exchange information with each 

atom in the molecule during each aggregation step. These global variables may help in 

contexts where long-range information is important, such as large aromatic and conjugated 

systems.45 In contrast, Wave networks use only local variables and propagate information by 
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ordering atom variable updates by a breadth-first search (Figure 1C). In Wave, atom variable 

updates depend only on ancestors in a breadth-first search. This ordering of updates allows 

Wave to achieve high accuracy and efficiency compared to graph convolution on tasks 

requiring long-range information.43,45 In particular, to ensure that long-range information 

is propagated between all pairs of nodes, in the worst case, graph convolution requires as 

many convolutional passes as there are atoms in the molecule. However, Wave is designed to 

propagate information between all the atoms in a molecule within a small, constant number 

of passes, regardless of molecule size.

Coordinate-free methods achieve results comparable to other literature reports on QM9 

(Figure 1D).19,38 Wave achieved a mean absolute error of 0.76 kcal/mol when trained on 

approximately 1,10,000 DFT calculations of total energy at zero kelvin. Most importantly, 

this value is below the benchmark standard of “chemical accuracy”, which is close to the 

accuracy of experimental measurements. Coordinate-free MPNN-G has also been studied 

in the literature and achieves a mean absolute error of 0.72 kcal/mol, which is comparable 

to our results using Wave.38 In comparison, deep tensor neural networks, a deep neural 

network that calculates atom features based on their relative spatial proximity to other 

atoms, achieves a mean absolute error of 0.82 kcal/mol.19 Graph-based neural networks 

have also been investigated in a coordinate-based framework. A variant of MPNN-G that 

used bond lengths from optimized molecular structures as a feature achieved a mean 

absolute error of 0.45 kcal/mol.38 Standard errors were not available for these literature-

derived estimates of MPNN-G accuracy, so a direct statistical comparison is not possible. 

Furthermore, while this evaluation holds the molecule set (QM9), calculation methods (total 

energy), and evaluation metric (mean absolute error) constant, there are variations in training 

protocols, hyperparameter optimization, and selection of training and test subsets that may 

affect the comparability of these values.

Wave Improves the Accuracy on Complex Molecules.

To investigate the feasibility of constructing accurate, coordinate-free quantum chemistry 

models useful in screening applications, we used two benchmark datasets more chemically 

diverse than QM9 (Figure 2A,B). The first benchmark dataset was derived from the 

PubChemQC project, a repository of 3.9 million DFT calculations on PubChem molecules. 

We selected a subset of 5,10,010 molecules with a wide range of atom types for our study 

(Methods). From this dataset, we extracted key properties of molecular systems including 

calculations of total energy, gap energy (difference between the highest occupied and lowest 

unoccupied molecular orbital energy), Mayer atom valence and bond order, and bond length. 

The second benchmark dataset addresses the limited range of polarizability values in QM9. 

Polarizability is a critical property for evaluating non-bonding interactions in the design of 

metal catalysts.66 We collected a set of 9505 π-conjugated oligomers with polarizability 

ranging from 3 to 515 Å3 (Methods). These molecules demonstrated a considerably larger 

range of atom types (19), compared to QM9 (5), as well as a larger range of molecule 

sizes (146 atoms vs 29 atoms), ring counts (20 vs 6), aromatic system sizes (76 atoms 

vs 9 atoms), and conjugated system sizes (84 atoms vs 9 atoms) (Figure S3). In addition, 

calculated QC properties exhibited considerably wider ranges compared to QM9 including 

total energy (3,170,000 kcal/mol vs 423,000 kcal/mol due to increased size of molecular 
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systems), polarizability (512 Å3 vs 28.2 Å3), and molecular orbital energy (42.6 eV vs 16.9 

eV) (Figure S1). This large range of molecular orbital energies arises from PubChemQC’s 

diversity of molecular structures from single atoms and salts to large organic compounds.

Coordinate-free methods perform well on these complex benchmarks (Figures 2C, S4, and 

S5). Both Wave and MPNNG achieve less than 3% error on all six QC properties included 

in this study. However, Wave exhibited small but consistent improvements on all targets 

(using paired t-test on the mean absolute error, p < 1 × 10–8 for total energy, gap energy, 

atom valence, bond order, and bond length and p = 0.028 for polarizability). Coordinate-free 

methods can accurately predict spatial measurements like bond length with a mean absolute 

error of 0.003 Å3, which is less than 1% of the typical range of carbon–carbon bond lengths. 

The deviation of coordinate-free methods from DFT predictions is substantially lower 

than the error of most DFT methods.67 Furthermore, this performance is consistent across 

different types of carbon–carbon bonds (Figure S6A), and across bonds between different 

atom types (Figure S6B). Interestingly, Wave outperforms MPNN-G on less common bond 

types, such as carbon–carbon triple bonds and sulfur–hydrogen bonds, with a 40 and 16% 

decrease in error compared to MPNN-G, respectively (p < 0.01, paired t-test). It should be 

noted that these datasets are biased toward carbon, nitrogen, oxygen, sulfur, and hydrogen 

atom types and may not exhaustively represent the diversity of bond chemistries among the 

supported atom types.

Coordinate-free methods perform well even on flexible molecules with many rotational 

degrees of freedom, and Wave exhibits increased accuracy on large, chemically complex 

molecules (Figure 2D,E). We binned molecules by conjugated system size and number 

of rotable bonds and assessed total energy prediction performance. Large conjugated 

systems typically suggest delocalized electrons which can increase the molecular rigidity 

by constraining bond rotation, while many rotable bonds suggest high flexibility. Both 

coordinate-free methods exhibit good performance on flexible and rigid molecules (Figure 

2D). However, error decreased by 50% with Wave compared to MPNN-G on molecules 

with a large number of rotable bonds (p < 0.1, paired t-test). In addition, Wave performed 

significantly better than MPNN-G on molecules with large conjugated systems, with a 36% 

decrease in error (p < 0.01, paired t-test). To determine whether these increases in error 

could be attributed to increased molecular size alone, we binned by conjugated system 

size and number of heavy atoms. Error increased with increasing conjugated system size 

even within each molecular size bin (Figure S7). For the largest molecules with the largest 

conjugated systems, Wave achieved a 46% decrease in error compared to MPNN-G (p = 

0.01, paired t-test). These data support our hypothesis that the Wave architecture enables 

accurate, coordinate-free calculations of QC properties for chemically diverse molecules.

Coordinate-Free Methods Discern between Similar Molecules.

Coordinate-free methods accurately predict differences in QC properties between similar 

small molecules. Graph topology-based predictive algorithms have a long history in 

chemistry, but some literature suggests that algorithms relying primarily on topological 

features may fail to identify property differences between topologically similar molecules.68 

When designing drugs and biological probes, medicinal chemists often test many variants of 
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the same core molecular scaffold with different substituted functional groups, which results 

in a series of topologically similar molecules. Matched pairs of molecules were collected 

from PubChemQC to test whether graph-based ML methods were able to identify property 

differences between topologically similar molecules (Figure 2F). For each molecule in the 

PubChemQC database matching our selection criteria, we identified the closest matched 

molecule in our training data by fingerprint similarity (Methods). The dataset contained 

1.8 million matched pairs. Both Wave and MPNN-G accurately predict the difference in 

total energy between these matched pairs (Figure 2G). Mean error increases less than 0.15 

kcal/mol between pairs more or less than 90% similar. These data suggest that graph-based 

deep learning algorithms are able to correctly discern QC differences between similar 

molecules.

Wave Enables Local Variable Models of Quantum Chemistry.

Whether it is possible to construct local variable models that describe quantum mechanics 

is a subject of longstanding debate in physics. With the architectural flexibility of deep 

learning, it is possible to investigate how choices in the representation of molecular systems 

affect the accuracy of QC calculations. In this work, graph-based encodings are used to build 

accurate representations of molecular systems from simple input descriptions. These learned 

representations are then passed to a decoder, which can compute QC properties (Figure 3A). 

Wave and MPNN-G achieve similar performance on the datasets in this study, but Wave is 

a local variable model, while MPNN-G is a mixed local and global variable model. When 

the global variables are removed from MPNN-G (MPNN), total energy and polarizability 

error increase by an average of 473 and 7.6% (Figure 3B,C). Importantly, MPNN-G and 

Wave exhibit a similar behavior insofar as their errors are strongly correlated (Pearson 

correlation R2 = 0.56, Figure S8B). However, MPNN behaves differently, exhibiting a low 

error correlation with MPNN-G and very large errors on molecules accurately predicted 

by MPNN-G (R2 = 0.04, Pearson correlation, Figure S8A). Furthermore, MPNN exhibits 

a substantial 22-fold increase in error on total energy for large molecules compared to 

MPNNG (Figure 3D). This suggests that, without global variables, graph convolutional 

methods such as MPNN have difficulty representing long-range information. In contrast, 

Wave is a local variable model and outperforms both methods both total energy and 

polarizability. This suggests that local variable deep learning models can predict non-local 

quantum mechanical properties such as polarizability and that propagating information in a 

Wave-like pattern improves these local variable models.

CONCLUSIONS

Recently, there has been a substantial growth of interest in the applications of high-

throughput, in silico screening and automated de novo design of small molecules for a 

wide range of applications including new materials, catalysts, biological probes, and drugs. 

For these tasks, it is valuable to avoid the time-consuming computations of optimized 

molecular geometries or numerical approximations to the Schrödinger equation. In this 

study, we have demonstrated that coordinate-free methods can be used to compute QC 

properties of complex molecules in energy-minimized states, while bypassing the significant 

computational costs incurred by other methods. These coordinate-free methods achieve 
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parity with coordinate-based methods on benchmark data. Coordinate-free methods also 

succeed when computing geometric properties, such as bond lengths, and when computing 

properties of highly flexible molecules. Using the Wave graph encoding improves 

predictions for large molecules and for molecules with delocalized electrons (conjugated 

systems). Importantly, these graph-based algorithms are able to discern QC differences 

between topologically similar molecules, which is critically important for successfully 

identifying optimal chemical structures in many applications.

While we have focused primarily on analyzing coordinate-free methods for quantum 

chemistry, work on deep learning and quantum chemistry has broader implications. Deep 

learning architectures may provide a new approach to investigate a broader question in 

physics: what types of quantum mechanical systems can be represented by local variable 

models? In this study, we show that Wave, a local variable model, can represent quantum 

chemistry equally well when compared to MPNN-G, a state-of-the-art graph convolutional 

architecture, which requires global variables for similar performance. With a better 

algorithm, which propagates information in Waves, it is possible to construct local variable 

models of quantum chemistry for diverse molecules. Enumerating and studying which QC 

systems can or cannot be accurately represented with local variables remains an open 

question. Several groups working in this field are extending quantum chemistry to very large 

molecular systems. Furthermore, developing an understanding of how quantum chemistry is 

being internally represented by these algorithms may shed light on the generalizability of 

deep learning in quantum chemistry. Can deep learning represent all the information in a 

quantum system, similar to a Wave function? This ongoing work presents an opportunity to 

generate empirical data that may shed light on this fundamental question.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Coordinate-free methods leverage deep learning to compute QC properties. (A) Many 

deep-learning-based QC calculation methods require coordinates from experiment or 

computational optimization, which can be time-consuming to obtain. Coordinate-free 

methods operate directly on structural formulas without the need for coordinates. (B) 

Many graph-based deep learning methods describe atoms by aggregating features from 

other atoms in their local environment. Atoms may also exchange information with global 

variables, as in message passing neural networks (MPNN-G). (C) Wave deep learning 

architecture describes atoms based only on their ancestors as defined by a breadth-first 

search. Information is propagated in Waves, forward and backward across a molecule. (D) 

Wave achieves better than chemical accuracy when predicting total energy on QM9, a 
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standard benchmark dataset. This result is comparable to the published, coordinate-based 

methods. CF: Coordinate-free 3D: 3D coordinates used as input features, *value from 

published results.19,38
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Figure 2. 
Wave enables more accurate coordinate-free calculation of QC properties across diverse 

molecules. (A) PubChemQC and Oligomer datasets used in this study cover a substantially 

larger number of atom types and (B) include substantially larger molecules than QM9. (C) 

Wave was slightly more accurate than MPNN-G on the six QC properties included in this 

study. (D) Wave exhibits substantially lower error compared to MPNN-G when calculating 

total energy for molecules with large conjugated systems and also outperformed MPNN-G 

on large, flexible molecules. (E) Example molecules on which Wave achieves lower absolute 

error on total energy (kcal/mol) compared to MPNN-G with (e1) many atoms in conjugated 

systems and (e2) many rotable bonds. (F) Matched pairs were selected by choosing 

topologically similar molecules from a large external validation set. (G) Coordinate-free 

methods exhibit a small increase in error when computing the difference in total energy 

between matched pairs of molecules. Wave slightly outperformed MPNN-G on this task. 

Statistical tests were performed by paired t-test. +: p < 0.1, *: p < 0.05, **: p < 0.01, and 

***: p < 0.001.
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Figure 3. 
Wave represents QC systems accurately with a local variable model, while convolution 

requires global variables. (A) Graph-based deep learning methods can be used to learn 

an atom-local variable model of quantum chemistry. This intermediate representation can 

then be decoded to a quantum measurement. Wave is an atom-local variable model, while 

MPNN-G, which includes a global variable, is a mixed local variable model. (B) Removing 

the global variable from MPNN-G (MPNN) results in substantially higher error on total 

energy and (C) polarizability. Both methods exhibit higher error than Wave. (D) Increase in 

total energy error of MPNN vs MPNN-G. MPNN exhibits a statistically significant increase 

in error for all molecules, but substantially larger error increases for large molecules. 

Statistical tests were performed by paired t-test. *: p < 0.05, ***: p < 0.001.
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