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Abstract
Motivation: Despite near-experimental accuracy on single-chain predictions, there is still scope for improvement among multimeric predictions.
Methods like AlphaFold-Multimer and FoldDock can accurately model dimers. However, how well these methods fare on larger complexes is still
unclear. Further, evaluation methods of the quality of multimeric complexes are not well established.

Results: We analysed the performance of AlphaFold-Multimer on a homology-reduced dataset of homo- and heteromeric protein complexes.
We highlight the differences between the pairwise and multi-interface evaluation of chains within a multimer. We describe why certain com-
plexes perform well on one metric (e.g. TM-score) but poorly on another (e.g. DockQ). We propose a new score, Predicted DockQ version 2
(pDockQ2), to estimate the quality of each interface in a multimer. Finally, we modelled protein complexes (from CORUM) and identified two
highly confident structures that do not have sequence homology to any existing structures.

Availability and implementation: All scripts, models, and data used to perform the analysis in this study are freely available at https://gitlab.
com/ElofssonLab/afm-benchmark.

1 Introduction

Most biological processes and cellular functions depend on
protein structures and their interactions. Understanding how
proteins form three-dimensional structures can give critical
insights into protein function. Therefore, the determination of
the 3D structure of a protein from its primary amino acid se-
quence has been a fundamental problem in biology (Dill et al.
2008). With the recent advancement of AlphaFold (Jumper
et al. 2021), obtaining a three-dimensional protein structure
with near experimental accuracy is possible for most proteins
by giving only the amino acid sequence as input. AlphaFold
has been trained on protein chains and has shown remarkable
performance in single-domain predictions. However, inside
the densely packed cell environment, proteins are constantly
near each other and perform functions by forming contacts
with other biological macromolecules (Bergendahl and Marsh
2017), often creating large biological complexes of multiple
individual protein chains.

Predicting the structure of large molecular complexes has
long been difficult unless a suitable template existed. Earlier
methods used biophysical and biochemical interaction con-
straints [i.e. HADDOCK (Dominguez et al. 2003)] or pair-
wise docking predictions of components [i.e. Multi-LZerD
(Esquivel-Rodr�ıguez et al. 2012)] to model docking of pro-
tein–protein complexes with limited success. Shortly after the

release of AlphaFold, it was recognized to help predict struc-
tures of protein assemblies if the input sequences are
concatenated using flexible linkers or by modifying their resi-
due numbers (Bryant et al. 2022, Mirdita et al. 2022). In
FoldDock (Bryant et al. 2022) and ColabFold (Mirdita et al.
2022), the multiple sequence alignments (MSAs) of the indi-
vidual protein chains were combined by matching sequences
based on the organisms (paired) and using block diagonaliza-
tion (block). The templates were disabled and the combined
alignments were submitted into the original AlphaFold pipe-
line. These studies showed that generating a ‘paired’ align-
ment is crucial for protein–protein complex prediction.
Simultaneously, AF2Complex (Gao et al. 2022) showed that
using structural templates (without paired alignments) is often
sufficient to predict structures of multimeric proteins.
Methods like OmegaFold predict protein structures from a
single primary amino acid sequence using protein language
models without explicit MSAs (Wu et al. 2022). AlphaFold-
Multimer (Evans et al. 2022), an extension of AlphaFold for
multimeric proteins, was specifically trained on multichains
proteins.

In this study, we evaluated the performance of AlphaFold-
Multimer predictions on a homology-reduced dataset inde-
pendent from the AlphaFold-Multimer training set consisting
of homomeric and heteromeric complexes with two–six
chains. The model quality was evaluated against experimental
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structures using TM-score (Zhang and Skolnick 2005) and
DockQ (Basu and Wallner 2016). While TM-score is more
sensitive to global topology than local variations, DockQ
assigns a higher weight to the accuracy of the predicted inter-
face. The overall success rate ranges from �40% to 60%
across all states, with a small decrease for larger heteromeric
complexes. We also present a novel score, the second version
of the predicted interface DockQ (pDockQ2), which estimates
the quality of the interfaces in oligomers in the real-case sce-
nario when the native (reference) structure is unknown and
can be used to identify partially correct multimeric models.

2. Methods
2.1 Benchmark dataset

Initially, the first biological unit of all structures with two–six
chains (each with at least 30 residues) released after 30 April
2018 (the last date used in the training set of AlphaFold) was
downloaded from the biounits part of the Protein Data Bank
(PDB). The structures were classified as homomers (all chains
are 100% identical) or heteromers. Further, nine structures
where at least one protein chain does not have contact with
other proteins (this may occur after DNA/RNA removal from
the PDB structure) were removed from the dataset, resulting
in 23 222 proteins, with 13 136 dimers, 3025 trimers, 4257
tetramers, 942 pentamers, and 1862 hexamers.

2.1.1 Similarity and homology reduction within each
oligomeric state

We removed similar structures within each oligomeric state
separately by aligning all-versus-all structures with MMalign
(Mukherjee and Zhang 2009) and subsequent clustering by
the resulting MM-scores [TM-score (Zhang and Skolnick
2005) calculated for all chains in the structure] utilizing the
highly connected subgraphs (HCSs) method (Hartuv and
Shamir 2000). We used an MM-score threshold of 0.6 for
clustering, which roughly corresponds to the TM-score
threshold for the individual proteins to have the same fold.
To reduce the number of combinations, we only consider pro-
tein pairs where at least one protein is similar, using FoldSeek
(van Kempen et al. 2022) with default settings. After cluster-
ing, the structure with the highest resolution was chosen as
the representative structure. If two structures had the same
resolution, the one with the minimum difference between the
SEQRES sequence and ATOM section of the PDB record was
selected, resulting in a dataset of 5402 proteins, with 3051
dimers, 548 trimers, 1071 tetramers, 205 pentamers, and 527
hexamers.

2.1.2 Homology reduction against the AlphaFold training
dataset

MMseqs2 (Steinegger and Söding 2017) removed homology
between the benchmark dataset and the AlphaFold training
dataset (PDB structures before 30 April 2018). A structure in
our datasets was removed if at least one chain shared �30%
sequence identity with any sequence in the AlphaFold training
dataset. Finally, a manual examination of global stoichiome-
tries for each oligomeric state was performed. Protein struc-
tures with conflicting stoichiometries were removed, resulting
in 1997 proteins, with 1151 dimers, 224 trimers, 397 tet-
ramers, 70 pentamers, and 155 hexamers. A subset of 837
complexes of various oligomeric states, for which Omegafold

and ESMfold did not crash, was used to compare the perfor-
mance with these methods.

2.2 CORUM dataset

For further evaluation, we used the CORUM Version 3.0
Core Set (released in September 2018) (Giurgiu et al. 2019),
containing 512 complexes with two–six chains. To identify
complexes having no homology to any previous PDB struc-
ture, we ran MMseqs2 (Steinegger and Söding 2017) between
all chains of the selected CORUM complexes and PDB struc-
tures. If none of the chains in a CORUM complex has �30%
sequence identity to any PDB chain, then this complex was
kept for further modelling. This strict criterion reduced the
number of CORUM complexes to 53, for which we ran
through the AlphaFold-Multimer pipeline with its default set-
tings. Out of those, 14 complexes did not produce MSAs for
at least one of the chains, and in 10 cases, modelling failed
due to out-of-memory or out-of-time errors, leaving 29 poten-
tially novel complexes.

2.3 Model generation

AlphaFold-Multimer (Evans et al. 2022) models were gener-
ated using AlphaFold v2.2.0 and the top-ranked model by
AlphaFold was used for the analysis. The default parameters
for MSA generations and the number of recycles (3) were
used. In 119 cases, the default pipeline did not produce all
MSAs due to an out-of-memory error when run on 12 cores
(Intel Xeon E5-2690v4) for 60 h. These proteins were rerun
using only one HHblits (Remmert et al. 2011) iteration and
the reduced database small_bfd for 80 h, leaving 18 proteins
which did not generate alignments even with those reduced
settings. AlphaFold-Multimer was run on a single NVIDIA
DGX-A100 Core GPU for 72 h. Still, the modelling of 60
complexes failed with the above settings due to an out-of-time
error; these were ignored. The final dataset comprised 1928
protein complexes (1148 dimers, 220 trimers, 367 tetramers,
62 pentamers, and 131 hexamers).

2.4 Evaluation
2.4.1 Scores to evaluate the quality of models against native
PDB

We used two scores to evaluate the quality of the models—the
DockQ score (Basu and Wallner 2016) and the TM-score pro-
duced by the MM-align program (Mukherjee and Zhang
2009) (henceforth referred to as MM-score). Both scores
range between 0 and 1. According to the study (Basu and
Wallner 2016), if the DockQ score > 0.23, then the quality of
the model is acceptable by the CAPRI criteria (Janin et al.
2003). MM-score was obtained using the default MM-align
settings. It has been previously shown that when comparing
structures of individual proteins, a TM-score of 0.5 roughly
indicates the same fold. However, when considering a protein
complex of two or more chains, it is possible to obtain scores
higher than 0.5 if the larger chain(s) structure is correct. Still,
the prediction of the quaternary structure can be wrong, i.e. it
is necessary to use a higher cut-off to separate correct and in-
correct multichain models.

2.5 DockQ for multimeric complexes

The DockQ score signifies the quality of an interface of a
model compared with the native structure, with the larger
protein acting as the receptor and the smaller protein as the li-
gand. In a multioligomeric complex, there are several ways to
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define an interface, e.g. (i) residues in contact between any
pair of chains i and j with a complex, pairwise interface
DockQ (DockQij) as illustrated in Fig. 1A or (ii) residues in
contact between one chain i and all the other chains, interface
DockQ (DockQi) as illustrated in Fig. 1B. Except for homo-
mers with identical interfaces and dimers with only one inter-
face, most cases have DockQi 6¼

P
j DockQij. To ensure the

order of the chains in the AlphaFold-Multimer model is the
same as the native structure, we use the MMalign output
alignment mapping chains between the native and modelled
structures so that the chain names are consistent. For exam-
ple, for a tetramer with chains A, B, C, and D, the DockQi

was calculated using the following command line options:

python3 DockQ.py model.pdb native.pdb -
model_chain1 A -native_chain1 A -
model_chain2 B C D -native_chain2 B C D

while DockQij was calculated for each pair of chains (A and B
in the example) with the options

python3 DockQ.py model.pdb native.pdb -
model_chain1 A -native_chain1 A -
model_chain2 B -native_chain2 B

Note that the AlphaFold-Multimer models were generated for
the full-length (PDB SEQRES section) sequences. Thus, to avoid
the impact of residues, possibly not resolved experimentally, we
calculated the DockQ score only for those residues present in
both modelled and reference (PDB ATOM section) structures.

2.6 Predicting the quality of a model

AlphaFold-Multimer provides two intrinsic model accuracy
estimates, pTM and ipTM. Both these scores estimate the av-
erage quality of the complex (or all interfaces of the complex),
predicting the TM-score. However, in addition to estimating
the quality of the entire predicted model, it is sometimes desir-
able to estimate each interface’s quality within a multichain
complex. For dimers, Bryant et al. (2022) proposed to use a
predicted DockQ score (pDockQ) calculated from the number
of contacts and the average quality of the interacting residues
fitted to a sigmoid function:

pDockQ ¼ L

1þ exp½�k � ðX �X0Þ�
þ b (1)

with

X ¼ < pLDDT >int � logðNintÞ; (2)

where <pLDDT>int stands for the average of pLDDT [i.e.
predicted lDDT score (Mariani et al. 2013) from AlphaFold-
Multimer] over dimer interface residues, Nint is the number of
interface contacts, and X0 and b are adjustable parameters.
For multichain complexes, the pDockQ scores for chains i
and j do not perform optimally (see Section 3). Therefore, we
propose a novel variation of the pDockQ score, pDockQ2,
using the relation

Xi ¼ <
1

1þ PAEint

d0

� �2
> � < pLDDT >int: (3)

Here, PAE is the predicted aligned error produced by
AlphaFold-Multimer (Evans et al. 2022). The <PAE>int is the
PAE over all interfaces for chain i, first being scaled by an op-
timized parameter d0 ¼ 10 Å. <pLDDT>int is the average
pLDDT of that combined interface residues. As in pDockQ,
we fit a sigmoid curve (Equation 1) (by the scipy package) to
the actual DockQi values, yielding the coefficients L¼ 1.31,
x0 ¼ 84.733, k¼0.075, and b¼ 0.005.

3. Results and discussion
3.1 Interface quality in homomeric and heteromeric

complexes using different measures

How to best evaluate the quality of a multimeric protein
model is not well examined. Some metrics (e.g. MM-score)
evaluate a complex in its entirety, while others provide evalu-
ation per interface (DockQi) or for each pair of proteins
(DockQij). This study investigates correlations between these
metrics types and the consistency within a complex. In
Fig. 2A, MM-score is compared with the maximum and mini-
mum DockQij scores for a complex and in Fig. 2B, it is com-
pared against DockQi.

3.1.1 Homomers versus heteromers

For the heteromers, the spread of per-interface DockQi scores
within a protein complex is larger than for homomers.
Almost all homomeric complexes (80%–90%) possess inter-
nal symmetry, repeating similar interfaces between subunits,
leading to the uniform quality of the predicted interfaces and,
thus, to a smaller variation in per-interface quality scores

Figure 1. Schematic representation of two types of interface in an

exemplary trimer (A) using pairwise interfaces (i.e. DockQ of chain A

versus chain B and DockQ of chain A versus chain C), (B) using interface

DockQi (i.e. DockQ when chain A is the ligand and chain B and chain C

together form the receptor). Dashed lines in both panels represent

interfaces with a non-zero number of contacts, and (C) using overall

structure as in MM-score.

Figure 2. (A) Pairplot showing correlations between min DockQij, max

DockQij, and MM-score for complexes >2 chains. (B) Pairplot showing

correlations between min DockQi, max DockQi, and MM-score for

complexes >2 chains. Diagonal elements show density plots for

corresponding quantities.
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compared with heteromers, where each interface may be
structurally unique. That explains the observation that for
97.5% of the complexes, all or none of the interfaces are pre-
dicted correctly in homomers (Fig. 3A). For heteromers, one-
fifth (20.5%) of the complexes have only a subset of the inter-
faces predicted correctly (Fig. 3B).

3.1.2 Variation of DockQi versus DockQij within a complex

To perform per-complex comparisons, we aggregated per-
interface scores (DockQij and DockQi) for an entire complex,
using minimum or maximum scores for all interfaces.
Variations in DockQij values within a complex tend to be larger
than in DockQi. The average difference between min and max
DockQi is 0.11, while the average difference between min and
max DockQij is 0.30 (Fig. 2A versus B). Some examples of het-
eromers with partially correctly predicted interfaces and, conse-
quently, big differences between min DockQij and min DockQi

scores are shown in Supplementary Fig. S1.
A notable example is displayed in Supplementary Fig. S1A,

where a significant difference in the scores is caused by a very
low (only one in this case) number of native contacts, not pre-
dicted in the AlphaFold-Multimer model. In such cases,
DockQij for that interface is very low. In contrast, contributions
of that interface to all DockQi scores are levelled out by cor-
rectly predicted interactions with other chains, yielding higher
scores (for details, see caption to Supplementary Fig. S1).

Further, Fig. 2B indicates that a significant fraction of the
complexes have an MM-score indicating good overall model-
ling quality (>0.75) and low min DockQi score (<0.1), indi-
cating that one protein chain is not correctly docked while the
rest are correct. Out of these 58 complexes, only 5 are homo-
mers, strengthening the earlier ‘all or none’ observation for
homomers. Figure 4A shows a homodimeric membrane pro-
tein (7STL) with a small alpha-helical swapped between the
chains in the native structure. AlphaFold-Multimer predicts
that those domains are associated with the corresponding
main chain, i.e. not being domain-swapped. Figure 4B illus-
trates another homo-dimeric complex (6WKU) with low min
DockQi and high MM-score for the AlphaFold-Multimer
model. Here, the single protein chain contains a repeat of
three domains. In the AlphaFold-Multimer model, the rota-
tion between the chains is 120 degrees off, leading to a high
MM-score as the structural alignment algorithm is performed
without paying attention to the exact residue matching.

Finally, we note a high overlap among the good models
identified by the different methods using the following cutoffs,
MM-score > 0.75, min DockQij > 0.23 and min DockQi >
0.23 (see Fig. 3C). Overall, 70% of the good models are

identified by all three measures, showing that for benchmark-
ing, it is not crucial which measure is used. The min DockQi

and max DockQi correlate significantly better (Spearman’s
rank correlation coefficient, q¼ 0.97) than the correlation be-
tween min DockQij and max DockQij (q¼ 0.78). Moreover,
our benchmarking study aimed to identify the models where
all the chains and interfaces are completely correct (min
DockQi) instead of considering only the best possible inter-
face (i.e. max DockQi); hence, all our subsequent analysis
involves only the min DockQi for each complex.

3.2 Performance of AlphaFold-Multimer

Performance of AlphaFold-Multimer using MM-score and
min DockQi for each oligomeric state is shown in Fig. 5A and
B. There is little difference between the homomers and hetero-
mers, in general, using MM-score, whereas homomers have
better accuracy if adopting min DockQi as the metric. The
success rate for AlphaFold-Multimer for each oligomeric
state, using min DockQi > 0.23, is reported in Fig. 5C.
Evaluations using per-interface measures can be found in
Supplementary Tables S1 and S2, and evaluations using
per-complex measures can be found in Supplementary Tables
S3–S5. The performance of AlphaFold-Multimer does not
broadly vary across oligomeric states, meaning that, still, for
complexes with six chains, there is an approximately 50%
chance that the predicted protein complex is correct.

Analysis of other multichain prediction methods, FoldDock
(Bryant et al. 2022), Omegafold (Wu et al. 2022) and
ESMFold (Wu et al. 2022, Lin et al. 2023), is conducted on a
subset of our benchmark dataset 837 complexes of various
oligomeric states, for which all four methods produced docking
models. Figure 5D presents the success rate for each of the four
prediction methods on that subset and it shows that for dimers
FoldDock makes around 40% correct models, while two lan-
guage model-based methods OmegaFold and ESMFold only
make around 25% of such models (Supplementary Table S6).
FoldDock is worse than AlphaFold-Multimer for higher-order
multimers but still successfully docks 30%–40% of the targets,
while the corresponding numbers for OmegaFold and
ESMFold are 10%–15% and �10%.

In Supplementary Fig. S2, we examine the difference in
quality for proteins included in the training set of AlphaFold-
Multimer or not [deposited into PDB before 30 April 2018

Figure 3. Fraction of models where none of the interfaces predicted

correctly (NONE, i.e. no interface has DockQi � 0.23), some of the

interfaces predicted correctly (SOME, i.e. only some of the interfaces

have DockQi � 0.23) and where all of the interfaces predicted correctly

(ALL, i.e. all the interfaces have DockQi � 0.23) separately for each

oligomeric state for homomers (panel A) and for heteromers (panel B).

(C) Venn diagram for the number of successful docking models indicated

by three different metrics (MM-score > 0.75, red circle; min DockQij >
0.23, cyan circle; and min DockQi > 0.23, green circle).

Figure 4. Different domain positions in the native (left panels) and model

(right panels) structures. (A) Chains A and B of homodimer from PDB

7STL are shown as yellow and blue cartoons. Correspondingly, domains

consisting of residues 868–914 are shown as semi-transparent green and

red surfaces for chains A and B, respectively. (B) Chains A (lower

structures) and B (upper structures) of a homodimer from PDB ID 6WKU.

Each chain results from the fusion of three proteins with UniProt IDs

Q01955 (residues 16–243, yellow cartoons), P53420 (residues 246–468,

red cartoons), and P29400 (residues 471–695, blue cartoons). Disordered

(flexible) parts of the model structures, which are missing in the native

structures, but were modelled by AlphaFold-Multimer, are omitted for

clarity.
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(Evans et al. 2022)]. The difference between homomers before
and after the dataset is insignificant (P-value¼ .49 obtained
using Mann–Whitney T-test). However, heteromeric struc-
tures show a significant difference (P-value¼ 1.98 � 10�17)
with newer proteins being better than those used for training,
i.e. there seems to be no indication that AlphaFold-Multimer
is severely overtrained.

While distinguishing near-native (min DockQi > 0.23 and
MM-score > 0.75) and incorrect docking models (min
DockQi � 0.23 and MM-score < 0.75), we found that the
number of effective sequences (Neff) in the paired alignment in
wrong models is lower on average (Fig. 6A). However, it is
not an absolute causation. Although most complexes with
min DockQi close to 0 have a Neff score of 0, the inverse is
false, i.e. the docking might fail even when the MSA is deep
(Supplementary Fig. S3). Since we observe some heteromeric
predictions with significant differences among chains, we
check if the high variance among chain lengths within one
complex might be a major factor for performance. Figure 6B
shows no significant separation in chain length variance be-
tween good and bad models. Some failed cases have long dis-
ordered regions (i.e. residues in the SEQRES sequence missing
from the ATOM record). However, some successful cases
also have such long disordered regions (see Fig. 6C).
Symmetry does not appear to influence the quality of pre-
dicted models (see Fig. 6D).

3.3 pDockQ2—improved estimate of DockQ for

multichain predictions

In addition to per-structure quality estimation scores (pTM
and ipTM), we believe there is a need to quantify the quality
of each interface in a multichain complex prediction. Many
models have a low min DockQi while a high pTM and ipTM
(Supplementary Fig. S4). Next, we examined if pDockQ could
be used. The results in Fig. 7 indicate that pDockQ over-
predicts DockQi for some complexes in this benchmark data-
set. pDockQ was developed to predict DockQ on a dataset of

heteromeric dimer models created with FoldDock. In
Supplementary Figs S5 and S6, we show that in datasets con-
sisting of homomers or multimeric complexes and for models
created with AlphaFold-Multimer, pDockQ sometimes gives
high scores to incorrect models. More than 10% of the chains
in all these sets have pDockQ > 0.5 and DockQi < 0.23.
pDockQ does not utilize the predicted average errors (PAEs)
but only considers the size of the interface and the predicted
quality (pLDDT) of residues in the interface. Therefore, it
does not work if a method generates models with large, highly
confident incorrect interfaces. To correctly classify such mod-
els as wrong, it is necessary to consider the PAE. Therefore,
we developed pDockQ2 (see Section 3), which considers
PAEs between all chains. It is visually better correlated with
DockQi for all subsets of models (Fig. 5 and Supplementary

Figure 5. Performance comparison for different oligomeric states. (A and

B) AlphaFold-Multimer performance using (A) min DockQi and MM-score

per complex between homomers and heteromers. The white dot

represents the median, while the thick grey bar in the centre represents

the interquartile range. The ‘violin shape’ shows a kernel density

estimation of the data. (C) Success rates (i.e. the fraction of acceptable

models with min DockQi > 0.23) for AlphaFold-Multimer predictions. (D)

Success rates on the common subset (n¼ 837) of the benchmark dataset

using AlphaFold-Multimer, FoldDock, OmegaFold, and ESMFold. The

common subset comprises 592 dimers, 103 trimers, 110 tetramers, 6

pentamers, and 26 hexamers.

Figure 6. Comparison between models with (min DockQi >0.23 and MM-

score > 0.75, referred as ‘good models’ and coloured in orange) and

models with (min DockQi < 0.23 and MM-score < 0.75, referred as ‘bad

models’ and coloured in green) using (A) Log of the number of effective

sequences (Neff)—small differences observed (P-value¼ 9 � 10�4 for

heteromers; P-value¼ 1.4 � 10�3 for homomers). (B) Differences in

length of chains within a heteromer—significant differences (P-

value¼ 1.75 � 10�6). (C) Differences between SEQRES (model) and PDB

ATOM sequence (native)—significant differences observed (P-

value¼ 1.70 � 10�30 for heteromers; P-value¼ 7.362 � 10�6 for
homomers). (D) For symmetric protein complexes, the fraction of ‘good

models’ and ‘bad models’.

Figure 7. Pairplot showing the relationships between DockQi and

pDockQ scores (pDockQ and pDockQ2) for interfaces of the complexes

using AlphaFold-Multimer on the benchmark dataset. High confidence

CORUM predictions.
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Figs S5 and S6), except for heteromeric dimers using
FoldDock (Supplementary Fig. S6B). A comparison between
the two model confidence scores (pDockQ, pDockQ2) and
DockQi shows that pDockQ2 also is better using FoldDock
(Supplementary Fig. S7).

Although pDockQ2, in general, correlates well with
DockQi, for some models, the difference is large, i.e. some
wrong models are predicted to be good or vice versa, and we
took a further step on the possible reasons to explain these
outliers. Using pDockQ2<0.1 and DockQi > 0.6 resulted in
55 interfaces. By comparing different metrics, we found that
these models have a considerable length difference between
the SEQRES sequences and the PDB sequences (P< .01
obtained using Mann–Whitney T-test) (see Supplementary
Fig. S8). An example (PDB 6XWT) is shown in
Supplementary Fig. S9A. The total SEQRES length of this
hexamer is 2514 residues, whereas the PDB sequence length is
only 352 residues. AlphaFold-Multimer successfully predicts
the part of all chains which are aligned to the native structure
well, and this produces min DockQi of 0.614. However, the
overall estimation of the prediction gives low confidence, al-
though pDockQ2 only utilizes the residues in the interface.
Further, two out of six interfaces have an average interface
pLDDT below 50. Though the partial prediction might be
correct, the confidence of the whole predicted model would
be affected. Thus, the min pDockQ2 over all the interfaces for
this prediction is 0.011.

We found that 72 predicted interfaces are the extreme cases
with high pDockQ2 (>0.8) but low DockQi (<0.1). By manu-
ally checking those cases, the most prominent finding is that
usually individual chains are predicted quite accurately, but
the docking positions are wrong compared with the native
structures. However, the high pDockQ2 values indicate that
AlphaFold-Multimer is quite confident regarding the interface
residues. Apart from this, 79% of the pTM scores for the
complexes are above 0.8. Thus, other possible explanations
might be needed. For example, the number of residues in con-
tacts at the interface in the native structure of PDB 6JBD
(Supplementary Fig. S5B) and PDB 5XLL (Supplementary
Fig. S9C) is far fewer than those in the AlphaFold-Multimer
prediction. We checked the original reference paper for the
structure (Kita et al. 2020). We found that the dimer was cut
out of a crystallization structure of pantoate kinase, which
has 2-fold homodimers. The AlphaFold-Multimer prediction
gives the homodimer interface if one cuts the tetramer along
the active binding site. In other words, the biological assembly
from PDB might not represent the only biological assembly.
In total, we encounter 65 such cases from 31 predicted mod-
els, which might be interesting to examine in detail
(Supplementary Table S7).

Now we asked if AlphaFold-Multimer can be used to pre-
dict truly novel structures by turning to the CORUM data-
base. Out of the 29 potentially novel complexes
(Supplementary Table S8) that were predicted by AlphaFold-
Multimer (see Section 3), 9 had pTM > 0.5 and min
pDockQ2> 0.23 (see Supplementary Fig. S10). Two highly
confident complexes (pTM > 0.75 and pDockQ2>0.23)
were obtained. Monomers of these complexes were then run
with FoldSeek (van Kempen et al. 2022) against PDB. The
PAC1–PAC2 complex (CORUM Complex ID: 3034) contains
two chains, with chain A having a hit to 3GAA and chain B
having a hit to 7LS6. However, the sequence identity is below
30% (see Supplementary Fig. S11A). The Mouse Metaxin

complex (Mtx1, Mtx2) complex (CORUM Complex ID:
3094) is also a dimer (Supplementary Fig. S11B). Foldseek
found a match to 6WUM with chain A and 6WUT to chain
B. However, these hits (6WUM and 6WUT) are membrane
proteins and part of the mitochondrial SAM complexes in
Thermothelomyces thermophilus.

4 Conclusion

By preparing an independent homology-reduced dataset for
benchmarking the performance of protein complex predic-
tors, we have shown that taking the min DockQi over all
interfaces is a useful way to evaluate the quality of the multi-
meric complex. Also, the performance of AlphaFold-
Multimer (Evans et al. 2022) slightly decreases as the size of
the complex increases, i.e. the number of chains in the com-
plex increases, and consistent with the AlphaFold-Multimer
study (Evans et al. 2022), homomeric complex prediction out-
performs heteromeric complex prediction. By assessing the
quality of the models with DockQ (Basu and Wallner 2016)
and MM-score (Mukherjee and Zhang 2009), we show that
for homomeric models, they are almost exclusively either
completely correct or completely wrong, while for hetero-
meric complexes, there are cases where one or a few of the
chains are incorrectly placed while the larger part of the com-
plex is correct. We also provide a modified version of
pDockQ, the pDockQ2 score for estimating the quality of an
individual chain in a predicted multimer model. Lastly, we
evaluate the chain-level predictions for highly confident struc-
tures using pDockQ2 obtained from CORUM using
AlphaFold-Multimer. Here, we present a structure of the
Metaxin complex (Mtx1, Mtx2) complex having no detect-
able homology to any PDB structure.
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03979] and Knut and Alice Wallenberg Foundation. The
computations/data handling was enabled by the supercom-
puting resource Berzelius provided by National
Supercomputer Centre at Linköping University and the Knut
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