Skip to main content
. Author manuscript; available in PMC: 2023 Jul 15.
Published in final edited form as: Pain. 2022 Feb 1;163(2):e357–e367. doi: 10.1097/j.pain.0000000000002375

Table 3.

Factor loadings based on a principal component analysis with orthogonal rotation for 25 feature variables from the baseline sensor signal data.

Features Component
1 2 3
 HR_Mean.1 0.964 −0.060 −0.020
 ACCY_Shape.1 0.961 0.058 −0.093
 ACCX_Variance.1 0.942 −0.096 −0.199
 ACCX_Shape.1 0.942 −0.247 −0.257
 ACCZ_Shape.1 0.912 0.031 −0.171
 HR_D.1 0.905 −0.433 0.018
 ACCZ_D.1 0.884 0.131 −0.013
 ACCZ_Variance.1 0.869 0.049 −0.176
 ACCX_D.1 0.863 0.222 0.034
 ACCZ_Scale.1 0.852 0.138 0.002
 ACCY_Variance.1 0.846 −0.161 0.180
 HR_Shape.1 0.817 0.082 0.028
 HR_Scale.1 0.814 −0.520 0.025
 ACCX_Scale.1 0.780 0.300 0.083
 ACCY_D.1 0.693 0.002 0.276
 ACCY_Scale.1 0.603 −0.029 0.339
 EDA_Shape.1 0.434 0.747 −0.166
 HR_Variance.1 0.596 −0.737 0.183
 EDA_D.1 0.390 0.704 0.010
 ACCZ_Mean.1 0.436 0.484 0.174
 ACCY_Mean.1 −0.208 0.470 −0.011
 ACCX_Mean.1 −0.039 0.278 −0.032
 EDA_Scale.1 −0.089 −0.051 0.995
 EDA_Variance.1 −0.246 −0.227 0.975
 EDA_Mean.1 0.333 0.335 0.572

Extraction method: principal component analysis. Rotation method: Promax with Kaiser normalization. Rotation converged in 5 iterations. Numbers in bold indicate high factor loadings onto each component based on the standard threshold in SPSS, unless a higher factor loading was present on a different component.

ACCX, accelerometer x-axis; ACCY, accelerometer y-axis; ACCZ, accelerometer z-axis; EDA, electrodermal activity; HR, heart rate.