Skip to main content
. Author manuscript; available in PMC: 2023 Jul 15.
Published in final edited form as: Pain. 2022 Feb 1;163(2):e357–e367. doi: 10.1097/j.pain.0000000000002375

Table 7.

Cross-validation and testing performance metrics for the four selected machine learning models.

Model Cross-validation metrics Testing metrics


AUC Accuracy % TPR, % TNR, % PPV, % NPV, % Accuracy, % TPR, % TNR, % PPV, % NPV, %

 FINE KNN 0.84 84.1 85 83 84 84 85.7 88 84 84 87

 WEIGHTED KNN 0.90 81.2 83 79 80 82 82.7 84 81 82 84

 FINE GAUSSIAN SVM 0.90 82.2 80 84 83 81 83.0 81 85 85 82

 BAGGED TREE 0.92 83.7 82 85 85 83 84.0 81 88 87 82

AUC, areas under the ROC curves; NPV, negative predictive values; PPV, positive predictive values; TPR, true-positive rates/sensitivities; TNR, true-negative rates/specificities.Numbers in bold indicate the values of the model that provided the highest combination of AUC and validation accuracy.