Table 7.
Cross-validation and testing performance metrics for the four selected machine learning models.
Model | Cross-validation metrics | Testing metrics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
|
|
||||||||||
AUC | Accuracy % | TPR, % | TNR, % | PPV, % | NPV, % | Accuracy, % | TPR, % | TNR, % | PPV, % | NPV, % | |
| |||||||||||
FINE KNN | 0.84 | 84.1 | 85 | 83 | 84 | 84 | 85.7 | 88 | 84 | 84 | 87 |
| |||||||||||
WEIGHTED KNN | 0.90 | 81.2 | 83 | 79 | 80 | 82 | 82.7 | 84 | 81 | 82 | 84 |
| |||||||||||
FINE GAUSSIAN SVM | 0.90 | 82.2 | 80 | 84 | 83 | 81 | 83.0 | 81 | 85 | 85 | 82 |
| |||||||||||
BAGGED TREE | 0.92 | 83.7 | 82 | 85 | 85 | 83 | 84.0 | 81 | 88 | 87 | 82 |
AUC, areas under the ROC curves; NPV, negative predictive values; PPV, positive predictive values; TPR, true-positive rates/sensitivities; TNR, true-negative rates/specificities.Numbers in bold indicate the values of the model that provided the highest combination of AUC and validation accuracy.