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Abstract
Signaling pathways play critical roles in executing and controlling important biological processes within cells. Cells/organ-
isms trigger appropriate signal transduction pathways in order to turn on or off intracellular gene expression in response to 
environmental stimuli. An orchestrated regulation of different signaling pathways across different organs and tissues is the 
basis of many important biological functions. Presumably, any malfunctions or dysregulation of these signaling pathways 
contribute to the pathogenesis of disease, particularly cancer. In this review, we discuss how the dysregulation of signaling 
pathways (TGF-β signaling, Hippo signaling, Wnt signaling, Notch signaling, and PI3K-AKT signaling) modulates chromatin 
modifications to regulate the epigenome, thereby contributing to tumorigenesis and metastasis.
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1  Introduction

Cell signaling is the mechanism by which cells respond to 
environmental stimuli and initiate appropriate action by 
turning on or off different signaling pathways; thus, these 
pathways are crucial for regulating biological processes. 
Typically, the binding of ligands to membrane-bound recep-
tors activates the signal transduction processes and triggers 
a cascade of signaling activities through numerous signal-
ing molecules. Ultimately, signaling molecules coordinate 
with activators, coactivators, transcription factors, and chro-
matin remodelers to regulate downstream gene expression, 
and initiate appropriate physiological or cellular responses. 
These responses include development, cell proliferation, 
apoptosis, differentiation, cell cycle arrest, cell migration, 
epithelial–mesenchymal transition (EMT), cellular homeo-
stasis, tissue repair, metabolism, and immunity [1]. It is now 

readily apparent that signal transduction pathways and their 
divergent effector-proteins are critical modulators of gene 
expression and are particularly important for various aspects 
of chromatin dynamics in gene regulation.

2 � Chromatin, histone modifications, 
and epigenetics

Chromatin is a higher-order, complex structure of DNA 
and histone proteins. A nucleosome—the fundamental unit 
of chromatin—is composed of approximately 145–147 
base pairs of DNA wrapped around a histone octamer; this 
octamer is composed of 2 copies of each histone protein: 
H2A, H2B, H3, and H4. The nucleosomes are assembled 
into a compact structure—chromatin—that is further sta-
bilized by the linker histone H1. This creates high-order 
structures known as chromosomes [2]. Presumably, access 
to the DNA sequence for transcription, DNA repair, and 
DNA replication is tightly controlled, and the accessibility 
of DNA sequence is mostly controlled by posttranslational 
modifications (PTMs) of histone proteins.

Although histones are mostly globular, the histone tails 
are unstructured and strikingly possess a large number and 
type of modifiable residues; these residues are the primary 
sites of PTMs (possible modifications and their biological 
functions are reviewed elsewhere [2, 3]). Histone proteins 
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are dynamically modified by PTMs, and these modifications 
are associated with regulating chromatin structure and cel-
lular functions. Different histone modification states (his-
tone marks) have been implicated in the rearrangement of 
chromatin structure and recruitment of histone-related non-
histone proteins [3]. The group of histone-related proteins 
associated with histone modifications can be grouped into 3 
primary classes: writers, readers, and erasers (Fig. 1). The 
histone-related proteins that add modifications to the his-
tone tails are termed “writers,” the proteins that recognize 
specific modifications in histone tails are termed “readers,” 
and the proteins that remove modifications from the histone 
tails are termed “erasers.”

Chromatin can be in two distinct higher-order structures: 
the euchromatin state, which is an open and transcriptionally 
active structure, and the heterochromatin state, which is a 
condensed and transcriptionally inactive structure. PTMs on 
the histone tails regulate the euchromatin and heterochroma-
tin states for different biological functions based on signal-
ing stimuli [4]. For example, acetylation of histone’s lysine 
neutralizes the basic charge of the lysine, which loosens the 
interaction of the negatively charged DNA with histone; 
this allows an euchromatin (relaxed chromatin) structure. 
The euchromatin conformation increases the accessibility of 
histone-associated proteins, such as chromatin-remodeling 
complexes, transcription factors, cofactors, activators, coac-
tivators, and other complexes for transcription. The funda-
mental role of chromatin-remodeling complexes in epige-
netic and transcriptional regulation is important for many 
aspects of biological processes and diseases. In this review, 
we discuss different signal transduction pathways that dys-
regulate the canonical functions of chromatin-remodeling 
complexes to promote tumorigenesis and metastasis.

3 � TGF‑β/SMAD signaling in chromatin 
regulation during carcinogenesis

The transforming growth factor-beta (TGF-β) superfamily 
of cytokines includes bone morphogenetic proteins (BMPs), 
growth and differentiation factors (GDFs), activins, inhib-
ins, nodal, anti-Müllerian hormone (AMH), and TGF-β iso-
forms [5]. TGF-β is a pleiotropic, multifunctional cytokine 
(ligand) that is secreted by many cell types and plays a piv-
otal role in diverse biological processes, including cell dif-
ferentiation and growth, migration, apoptosis, tissue home-
ostasis and repair, immune and inflammatory responses, 
and other cellular functions [6–8]. Mature TGF-β ligand 
binds with transmembrane serine/threonine receptor kinase 
TGF-β receptor II (TGF-βRII), which elicits phosphoryla-
tion of TGF-β receptor I (TGF-βRI) and subsequently 
forms a stable, active heteromeric complex of TGF-βRII 
and TGF-βRI. The activated TGF-βRII/TGF-βRI complex 
directly phosphorylates and activates R-SMAD proteins. 
SMADs are downstream effectors of TGF-β/SMADs sign-
aling and can be grouped into 3 classes: receptor SMADs 
(R-SMADs: SMAD1, 2, 3, 5, and 8), inhibitory SMADs 
(I-SMADs: SMAD6 and 7), and the common mediator 
SMAD4 (co-SMAD). Upon phosphorylation and activa-
tion, the R-SMADs (SMAD2 and SMAD3) dissociate 
from the TGF-β receptor complex and subsequently form a 
complex with the common mediator SMAD4 [9], although 
SMAD4 is not obligatory for TGF-β signaling [10]. The 
SMAD2-SMAD3-SMAD4 complex then translocates into 
the nucleus and regulates gene expression, both positively 
and negatively [9]. The elegant simplicity of this core signal 
transduction pathway sharply contrasts with the intricacy of 
the elicited biological response.

Fig. 1   Model for histone 
modifications and functional 
consequences. Histone 
modifications alter the 
conformation of chromatin 
structure by either condensing 
the chromatin and inhibiting 
transcription (heterochromatin) 
or relaxing the chromatin 
and allowing transcription 
(euchromatin)
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The TGF-β/SMADs signaling transduction pathway has 
a pleiotropic role in cellular homeostasis and disease. It 
acts as a powerful tumor suppressor [11] in normal cells; 
however, in cancer cells, it promotes tumor progression and 
metastasis. How TGF-β/SMAD signaling becomes a tumor-
promoting factor, given its antitumorigenic and antimeta-
static functions in healthy cells, is a long-standing paradox 
in cancer biology. This signaling induces transcription of 
cell-cycle regulatory genes (i.e., P21, P16, PTK5) and down-
regulate pro-proliferative genes in healthy tissues; however, 
in cancer cells, it promotes EMT, invasion, and metastasis. 
Furthermore, tumor cells exploit the TGF-β/SMAD signal-
ing to induce the angiogenesis program for tumor vascu-
larization [12].

Failure or dysregulation of TGF-β signaling is involved 
in the development of several diseases. Dysregulation of 
TGF-β/SMAD signaling potentiates progressive renal injury 
and inflammation, and subsequently leads to chronic kidney 
disease [13]. Aberrant activity of TGF-β/SMAD2/3 signal-
ing induces K17 overexpression, which contributes to the 
pathogenesis of psoriasis [14]. Dysregulation of TGF-β/
SMAD4 signaling in smooth muscle cells triggers aortic 
wall inflammation, which leads to the pathogenesis of aor-
tic aneurysms [15] and impairment of SMAD3 potentiates 
microglia-mediated neurodegeneration [16]. Several non-
receptor protein tyrosine kinases have been associated with 
the regulation of TGF-β/SMAD signal transduction path-
ways such as SRC phosphorylates TGF-β type II receptor, 
which significantly enhances the TGF-β-induced EMT of 
mammary epithelial cells [17]. PEAK1 modulates canonical 
TGF-β/SMAD signaling to potentiate TGF-β–induced cell 
proliferation and EMT [18]. Recently, we also discovered 
that protein tyrosine kinase 6 (PTK6) (also known as breast 
tumor kinase, BRK) interacts with SMAD2/3/4 and phos-
phorylates SMAD4, which alters TGF-β/SMAD signaling 

and increases the metastatic potential of breast cancer cells 
[19].

Even though TGF-β/SMAD signaling is inherently sim-
ple, the physiological functions of TGF-β/SMAD signaling 
are diverse and vary among different cell types and environ-
mental conditions [20]. Combinatorial interactions in the 
heteromeric or heterotrimeric SMAD complexes, SMAD-
interacting proteins, promiscuous protein–protein interac-
tions with transcription factors, chromatin remodelers, and 
histone-modifying complexes allow TGF-β/SMAD signaling 
to become versatile and to diversify its biological functions 
[20, 21]. TGF-β signaling maintains cellular homeostasis 
through numerous mechanisms, such as inducing apoptosis, 
cell cycle arrest, EMT, and others [22, 23]. We recently dis-
covered that PTK6 catalyzes the phosphorylation of SMAD4 
at 2 tyrosine sites: Y353 and Y412 [19]; this induces interac-
tion between phosphorylated-SMAD4 and the nucleosome 
remodeling and histone deacetylase complexes (i.e., Sin3/
HDAC, NuRD, CoREST, SWI/SNF), suggesting a potential 
role in epigenetic reprogramming to regulate gene expres-
sion (Fig. 2).

NuRD, one of the major chromatin-remodeling com-
plexes, is an important epigenetic regulator of gene expres-
sion in mammalian cells [24]. The NuRD complex regulates 
transcription through chromatin compaction and decompac-
tion. It is a Megadalton, multisubunit protein complex, which 
includes ATP-dependent remodeling enzymes CHD3/4, 
pRB-associated proteins RBBP4 and RBBP7, CpG-binding 
proteins MBD2/3, the GATAD2a and/or GATAD2b, specific 
DNA-binding proteins MTA1/2/3, and histone deacetylase 
HDAC1/2 [25, 26]. However, several subunits (e.g., MBD2/
MBD3, CHD3/CHD4) of this complex are mutually exclu-
sive, and it remains elusive how and when these subunits 
associate with the NuRD complex. Deep proteomics data 
analysis revealed that PTK6-phosphorylated-SMAD4 forms 

Fig. 2   Canonical TGF-β/
SMAD signaling and chromatin 
regulation. The downstream 
effectors of TGF-β/SMAD 
signaling—SMAD2, SMAD3, 
and SMAD4—take part in 
chromatin regulation and gene 
expression by interacting with 
chromatin-remodeler complexes 
and associated proteins. The 
dotted lines indicate further 
experimental validation is 
required



412	 Cancer and Metastasis Reviews (2023) 42:409–425

1 3

a complex with the NuRD complex, which includes CHD4, 
MBD3, HDAC1/2, GATAD2b, RBBP4, RBBP7, MTA1, and 
MTA2; it does not include MTA3 [19].

A recent discovery demonstrated that SMADs can 
directly form a complex with histone deacetylase and sup-
press gene expression. HDAC8, a class I HDAC, forms a het-
erotrimer complex with SMAD3/4 and occupies the SIRT7 
promoter to deacetylate H4 via local chromatin remodeling. 
This results in the suppression of SIRT7 gene expression 
[27]. It is worth mentioning that the inhibition of histone 
deacetylase activity of HDAC8 attenuates the deacetylase 
activity of the SIRT7-SMAD4 axis, resulting in the inhibi-
tion of lung metastasis and the improvement of the efficacy 
of chemotherapy in breast cancer [27]. Moreover, upon acti-
vation of the TGF-β/SMADs signaling, SMAD3 interacts 
with HDAC4/5 (class IIa HDACs) via the MH2 domain and 
forms SMAD3-HDAC4/5 and deacetylates H4 at the osteo-
calcin promoter, resulting in transcriptional repression of 
Runx2 [28], which is required for osteoblasts differentiation 
and bone formation.

Notably, drug exposure (e.g., cocaine) induces SMAD3 
interaction with BRG1 [29], an ATPase subunit of the SWI/
SNF chromatin-remodeling complex, and negatively regu-
lates cell proliferation and suppresses tumor pathogenesis. 
It has been reported that BRG1 incorporates into the tran-
scriptional complexes of SMAD2/3-SMAD4 and modulates 
gene expression; however, the role of the SWI/SNF-BRG1-
SMADs complex in gene regulation during drug addiction 
is unknown. It is also reported that the TGF-β pathway uses 
p300/CBP, a histone acetylase, for transcriptional activa-
tion of target genes. The SAD domain of SMAD4 directly 
binds with p300/CBP and recruits to the SMAD complex 
for transcriptional activation [30, 31]. Recently, it has been 
shown that in healthy cells, SMAD nuclear-interacting pro-
tein 1 (SNIP1) forms a complex with SMAD4 and inhibits 
the acetyltransferase activity of SMAD4/p300, resulting in 
suppression of cell migration-related genes. However, in 
cancer cells, DPF3a—a short isoform of DPF3 which is a 
component of the SWI/SNF chromatin-remodeling com-
plex—binds to SNIP1 and releases it from SMAD4/p300 
histone acetylase complex. This leads to enhanced chroma-
tin acetylation and subsequent expression of cell migration-
related genes, which eventually promote metastasis [32].

Besides being writers and erasers of histone code, 
SMADs proteins are also associated with the regulation of 
histone readers. For example, a well-characterized histone 
reader TRIM33, also known as TIF1γ, was initially discov-
ered as a transcription corepressor [33]; however, it can also 
act as a promoter of transcription by recruiting transcription 
elongation factors p-TEFb and FACT [34]. TRIM33 binds 
to the activated SMAD2/3 complex in competition with 
SMAD4 in response to TGF-β. TRIM33-SMAD2/3 complex 
mediates erythroid differentiation and, on the other hand, 

the SMAD2/3-SMAD4 complex inhibits cell proliferation 
in response to TGF-β in hematopoietic, mesenchymal, and 
epithelial cell types [35]. The PHD finger-bromodomain of 
TRIM33 specifically recognizes and binds unmodified K4 
and R2 and acetylates at least 2 lysines of the histone H3 
tails. Additionally, Xi et al. reported that nodal-activated 
TGF-β signaling induces SMAD4-SMAD2/3 and TRIM33-
SMAD2/3 complex formation and prompts differentiation of 
mammalian embryonic stem cells. The PHD finger-bromo-
domain of TRIM33 facilitates TRIM33-SMAD2/3 binding 
to the H3K9me3 and H3K18ac on the promoters of Gsc and 
Mixl, resulting in the displacement of the chromatin-com-
pacting factor HP1γ, which allows the SMAD4-SMAD2/3 
complex to recruit Pol II, poising chromatin in the active 
state during embryonic stem cells differentiation [36].

In sum, the elegant simplicity of this core signal trans-
duction pathway sharply contrasts with the intricacy of the 
elicited biological responses. Seemingly straightforward, 
TGF-β/SMAD signaling elicits a dizzying array of biologi-
cal responses by interacting with transcription factors, coac-
tivators, chromatin remodelers, and histone modifiers.

4 � Hippo signaling pathway in chromatin 
regulation during carcinogenesis

The Hippo pathway is highly conserved across vertebrates 
and plays a critical role in organogenesis and homeostasis 
through the precise controlling of cell proliferation, apop-
tosis, differentiation, metabolism, and determination of 
cellular fate and organ size [37–40]. The Hippo signaling 
pathway largely depends on mammalian effectors Yes-
associated protein (YAP) and transcriptional activator with 
PDZ binding motif (TAZ) for target genes regulation and 
subsequent biological processes. In mammals, Hippo sign-
aling is composed of (1) serine/threonine kinase cascade 
Mammalian STE20-Like Protein Kinase 1 and 2 (MST1 and 
MST2), (2) adaptor protein Sav family WW domain-contain-
ing protein 1 (SAV1), (3) large tumor suppressor kinase 1/2 
(LATS1/2), (4) adaptor proteins MOB1A/1B, and (5) the 
transcription coactivators YAP/TAZ [41]. In parallel with 
MST1/2, MAP4K and TAOK kinases directly phosphoryl-
ate LATS1/2 to activate Hippo signaling [42, 43]. Addition-
ally, tumor suppressor neurofibromin 2 (NF2), also known 
as Merlin, potentially activates LATS1/2 in MAP4K- and 
TAOK-dependent manner to activate the Hippo pathway, 
resulting in the inhibition of YAP and TAZ activity [43]. 
Activated Hippo signaling promotes phosphorylation of 
YAP/TAZ, which results in either 14–3-3 protein-dependent 
cytoplasmic retention [44] or proteasomal degradation, [45] 
which inhibits YAP and TAZ activity (Fig. 3).

Dysregulation of the Hippo pathway is associated 
with human pathogenesis, including tumor development, 
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progression, and metastasis [41]. YAP and TAZ are fre-
quently amplified in cancers and associated with hyperprolif-
eration, cancer-cell maintenance, cellular invasion, metasta-
sis, and chemoresistance. Through a comprehensive analysis 
of The Cancer Genome Atlas, scientists found that YAP and 
TAZ were the most frequently amplified genes among the 19 
core genes of the Hippo pathway in squamous cell cancers. 
Moreover, YAP and TAZ were mutually amplified in cervi-
cal squamous cell carcinoma and head and neck squamous 
cell carcinoma [6]. It is worth noting, although the Hippo 
pathway is one of the most altered pathways in cancer [46], 
mutation frequencies in this signal transduction pathway are 
low [6, 47]. Recent progress suggests that besides YAP/TAZ/
TEAD amplifications, crosstalk with chromatin-remodeler 
complexes strongly associates with tumorigenesis, metasta-
sis, chemoresistance, and poor prognosis.

Coactivators YAP/TAZ bind to DNA-binding factors of 
the TEAD transcription factor family (TEAD1–4) to regu-
late the transcription of target genes [38]. YAP/TAZ also 
interacts with several other transcription factors, including 
SMAD2/3 [48], RUNT-related transcription factors (RUNX1 

and RUNX2), and p73 [49], and forms a complex with T-box 
transcription factor 5 (TBX5) and β-catenin [50] to regulate 
the transcription of target genes and to promote cell prolifera-
tion, survival, growth, and migration [51]. For example, YAP 
recruits Trithorax-related histone methyltransferase (HMT) 
complex via nuclear receptor coactivator 6 (Ncoa6), a subunit 
of the HMT complex, to facilitate H3K4 methylation, which 
results in transcriptional activation of Hippo target genes to 
promote cell proliferation and cell survival [50].

Besides transcriptional activation, YAP can also act as a 
transcriptional repressor in association with chromatin remod-
eler and histone deacetylase complexes to attenuate proapop-
totic and cellular growth. YAP interacts with CHD4, a com-
ponent of the NuRD complex, and recruits the NuRD complex 
to the promoter to suppress the transcription of NR4A1 [52]. 
NR4A1 (also known as Nur77, or TR3, or NGFIB) is an 
orphan nuclear receptor that plays a significant role in proap-
optotic function by binding with Bcl-2 [53]. Ectopic expres-
sion of NR4A1 slowed cell proliferation, reduced the capabil-
ity to form colonies in several cancer cells, and inhibited tumor 
growth in mouse xenograft models [52]. Moreover, the SWI/

Fig. 3   Schematic of the 
Hippo signaling pathway in 
the regulation of chromatin 
remodeler complexes. Several 
upstream stimuli/signals can 
activate Hippo signaling 
through the phosphorylation of 
MST1/MST2 and subsequent 
phosphorylation of LATS1/
LATS2 kinases leading to YAP/
TAZ phosphorylation resulting 
in proteasomal degradation 
or cytoplasmic retention of 
YAP/TAZ via 14–3-3 protein. 
Additionally, Neurofibromatosis 
2 (NF2) along with MAP4k 
and TAOK can also activate 
Hippo signaling without 
MST1/MST2 phosphorylation. 
However, when the Hippo 
pathway is off, YAP/TAZ will 
not be phosphorylated, thus, 
nonphosphorylated YAP/
TAZ translocates into the 
nucleus and form complexes 
with transcription factors, 
co-activators as well as different 
chromatic remodeler complexes 
to facilitate the transcription 
target genes. Dotted lines 
indicate upstream signals
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SNF complex is essential for TAZ to regulate target genes 
expression. TAZ interacts with BRM, the catalytic subunits of 
the SWI/SNF complex, and recruits to the promoter of CTGF, 
a bona fide target gene. This results in an induction of this gene 
in MCF10A cells [54]. It is worth noting that copy-number 
amplification of TAZ is observed in more than 44% of triple-
negative breast cancers (TNBC), whereas only 10% (luminal 
A) and 20% (luminal B) in estrogen-positive breast tumors. In 
accordance with copy-number amplification, TAZ protein lev-
els are higher in TNBC than estrogen receptor-positive breast 
tumors [54]; this suggests a potential role for TAZ in TNBC 
heterogeneity and metastasis.

Recently, it has been reported that tumor suppressor FAT1 
inhibits cell proliferation [55], migration, EMT, and metas-
tasis [56] by activating the Hippo pathway. FAT1 promotes 
TAOKs-mediated phosphorylation of MST1, leading to the 
activation of the Hippo kinase cascade, resulting in YAP 
inactivation [57]. In contrast, mutant-FAT1 alters the Hippo 
pathway by modulating the core Hippo-kinase signalosome. 
This results in increased nuclear localization of YAP/TAZ in 
head and neck squamous cell carcinoma [58], thereby YAP1 
transcriptional program activation in the promotion of cancer 
growth and progression [59]. YAP/TAZ is a chromatin-bind-
ing protein that physically interacts with coactivator bromodo-
main-containing protein 4 (BRD4), a chromatin-binding pro-
tein, and dictates the genome-wide association of BRD4 with 
chromatin to recruit RNA polymerase II and boost the expres-
sion of growth-regulating genes [60]. YAP1/TAZ recruited 
BRD4, a histone acetyltransferase, acetylates histones H3 
and H4 specifically histone mark H3K122ac to enhance the 
transcriptional activity of the YAP1/TAZ target genes to sup-
port the growth of cancer cells [60, 61]. It is also reported 
that the AAA ATPase and bromodomain factor (ATAD2), 
a transcriptional coactivator, guides proteins toward acety-
lated histones to regulate chromatin dynamics associated with 
YAP1 transcriptional activation in head and neck squamous 
cell carcinoma [58]. Moreover, TAZ-CAMTA1 and YAP-
TFE3 (TAZ fused to the protein CAMTA1 and YAP fused 
to the protein TFE3) bind with the chromatin remodeler and 
histone acetyltransferase ATAC complex to activate TAZ- and 
YAP-regulated transcription program to drive uncontrolled, 
cancerous growth.

In summary, YAP/TAZ, the downstream effector of the Hippo 
pathway, encourages wider chromatin accessibility by interacting 
with chromatin-remodeler complexes. In association with chro-
matin-remodeler complexes, YAP/TAZ activates transcriptional 
programs to promote cell proliferation, EMT, migration, and 
tumor metastasis; thus, targeting YAP/TAZ, which highlights it 
as a promising therapeutic option for several cancers.

5 � Wnt signaling pathway in chromatin 
regulation during carcinogenesis

The Wnt signaling pathway is one of the most extensively 
studied signaling pathways. Wnt plays a critical role in 
embryogenesis and adult homeostasis. However, aberrant 
activation of this pathway is implicated in tumorigenesis 
and metastasis. This signaling pathway is highly conserved 
and can be activated through canonical or noncanonical 
mechanisms. In canonical Wnt signaling, intracellular Wnt 
ligands (e.g., Wnt3a and Wnt1) bind to Frizzled recep-
tors (FZD) and low-density lipoprotein receptor-related 
proteins (LRP5/6). Subsequently, CK1α and glycogen 
synthase kinase 3β [GSK-3β] phosphorylate LRP5/6 of 
the FZD-LRP5/6 complex; this triggers the recruitment 
of Dishevelled (Dvl) proteins to the plasma membrane 
[62]. Dvl and FZD-LRP5/6 form a cytoplasmic signalo-
some that is stably polymerized [63]. The Dvl-containing 
polymerized signalosome directly inhibits GSK-3β [63], 
thereby destabilizing the β-catenin destruction complex. 
(The destruction complex is mainly composed of adeno-
matous polyposis coli [APC], axis inhibition protein 
[AXIN], GSK3, and casein kinase 1 [CK1] [62].) Desta-
bilization of the β-catenin destruction complex results in 
β-catenin accumulation and nuclear translocation and sign-
aling. However, in the absence of Wnt ligands, GSK-3β 
phosphorylates β-catenin followed by β-transducin repeat-
containing protein (β-TrCP) E3 ligase mediated ubiquit-
ination and proteasomal degradation [64–66], ultimately 
leading to inhibition of Wnt signaling and expression of 
Wnt target genes (Fig. 4).

The noncanonical Wnt signaling pathways are diverse 
and less distinct, often defined as β-catenin–independent 
Wnt- or FZD-initiated signaling [67] (reviewed in Ana-
stas and Moon). The noncanonical Wnt signaling trans-
duction pathways include several signaling cascades, such 
as Wnt-PCP (planar cell polarity) signaling, Wnt-cGMP/
Ca2+ signaling, Wnt-ROR2 signaling, Wnt-RAP1 signal-
ing, Wnt-PKA signaling, Wnt-GSK3-microtubule (MT) 
signaling, Wnt-aPKC signaling, and Wnt-mTOR signaling 
[68]. The implication of the noncanonical Wnt pathway in 
cancers is largely unknown. Studies have shown that non-
canonical Wnt signaling is involved in several physiologi-
cal processes, including stem cell maintenance [69], tumor 
progression [70], and tumor suppression [71]. Although 
the correlation between noncanonical Wnt pathways and 
cancer is undisputed, this review focuses on canonical Wnt 
signaling and the epigenetic modifiers that are exploited 
during tumorigenesis and metastasis.



415Cancer and Metastasis Reviews (2023) 42:409–425	

1 3

The Wnt pathway modulates epigenetics to promote can-
cer initiation and progression. The downstream effector of 
Wnt signaling, β-catenin, interacts with DNA methyltrans-
ferase I (Dnmt1); this interaction stabilizes both proteins. 
This Wnt/β-catenin/Dnmt1 complex alters DNA methyla-
tion patterns on a specific locus and drives tissue differ-
entiation [72]. In colon adenocarcinoma tissues, Dnmt1 
hypermethylates the promoter of NHERF1, resulting in 
epigenetic silencing of NHERF1. This silencing has been 
associated with an EMT phenotype in colon cancer [73]. 
Moreover, β-catenin recruits EZH2, an enzymatic catalytic 
subunit of the polycomb repressive complex 2 (PRC2), 
which trimethylates Lys-27 in histone 3 (H3K27me3) to 
suppress genes expression through polymerase-associated 
factor 1 (PAF1). This enhances the transactivation of Wnt 
target genes in cancers [74]. Overall, β-catenin–mediated 
transcriptional regulation is largely dependent on the inter-
acting partners and the place of recruitment; thus, recruit-
ment is crucial in determining whether it would function as 
a tumor suppressor or oncogene.β-catenin directly interacts 
with acetyltransferases p300/CBP to modify the structure 
of chromatin. This chromatin remodeling results in acety-
lation and reorganization of chromatin, thereby allowing 
recruitment of the transcription machinery to promoters of 
Wnt target genes [75]. The C-terminal domain of β-catenin 
acts as a scaffold and interacts with diverse factors, includ-
ing BRG1, ISWI, HMTs, the Mediator component MED12, 
and PAF1, to modify the histones and to rearrange histone 
structure, thus inducing rapid gene expression [74]. Moreo-
ver, β-catenin interacts with lysine demethylases (KDMs) 
and demethylates the repressive marks on histones. 

KDM4D interacts with β-catenin and erases methyl groups 
from H3K9me3, a marker of transcriptional suppression, 
to augment gene expression of Wnt/β-catenin target genes 
[76]. In stem cells from human colorectal cancer, the 
β-catenin/Tcf complex recruits KDM3A and KDM3B to 
demethylate H3K9me2 and promotes MLL1-mediated 
H3K4 methylation. In turn, BCL9/PYGO is recruited to 
the chromatin, which leads to the transcription of Wnt tar-
get genes [77, 78].

In the absence of Wnt signaling, LEF1 interacts with HDAC1 
and recruits the NuRD complex to repress the transcription of Wnt 
target genes. However, when Wnt signaling is activated, β-catenin 
removes HDAC1 from the HDAC1-LEF1 complex and attenuates 
the deacetylase activity of HDAC1. β-catenin then forms the dimeric 
β-catenin-LEF1 complex that activates the transcription of Wnt tar-
get genes [79]. Although β-catenin–mediated attenuation of HDAC1 
activity is important for the transcriptional activity of β-catenin-LEF1 
complex, how β-catenin enzymatically inactivates HDAC1 remains 
unclear. It has been reported that β-catenin competes with HDAC1/2 
for its main transitional activator, T cell factor 4 (TCF4), to form the 
β-catenin-TCF4 complex, which activates gene expression and is 
essential for intestinal homeostasis and tumorigenesis [80, 81].

The Wnt signaling downstream effector β-catenin acts as a molec-
ular switch to regulate global gene activation by interacting with tran-
scription factors and chromatin-remodeler complexes. For instance, 
the chromatin organizer special AT-rich binding protein 1 (SATB1) 
recruits β-catenin and p300 acetyltransferase to induce GATA-3 
expression during helper T cell differentiation [82]. The precise spa-
tiotemporal regulation of gene expression during tumorigenesis, and 
metastasis is a critical event that depends on the Wnt-induced rear-
rangement of chromatin to poise genes for gene expression.

Fig. 4   Activation of Wnt 
signaling pathway promotes 
β-Catenin–mediated chromatin 
regulation. In the absence of 
Wnt ligands, activated wnt-
destruction-complex phospho-
rylates β-Catenin and promotes 
ubiquitin-mediated proteolysis 
of β-Catenin. However, wnt-
ligands dependent activation 
inhibits wnt-destruction-com-
plex, resulting in the stabiliza-
tion of β-Catenin. The stabilized 
β-Catenin translocates into the 
nucleus and the accumulation of 
nuclear β-Catenin facilitates the 
transcription of its target genes 
in association with several 
chromatin remodeler com-
plexes. The dotted lines indicate 
further experimental validation 
is required



416	 Cancer and Metastasis Reviews (2023) 42:409–425

1 3

6 � Notch signaling pathway in chromatin 
regulation during carcinogenesis

The Notch signaling pathway is a conserved master intra-
cellular pathway that regulates diverse developmental pro-
cesses, including organ formation, tissue function, and tis-
sue homeostasis through cell-to-cell communication [83, 
84]. In humans, Notch receptors (4 receptors: NOTCH1, 
2, 3, and 4) and their ligands (Delta-like [DLL1, 3, and 
4] and Jagged 1 and 2) are transmembrane proteins; thus, 
the Notch signaling pathway is restricted to adjacent cells 
[85]. In canonical Notch signaling, when a Notch ligand-
expressing cell (signaling cell) directly binds with a Notch 

receptor-expressing cell (receiving cell), the ligand-recep-
tor interaction triggers the Notch signaling cascade. The 
ligand-receptor interaction promotes 2 proteolytic cleavage 
events of the Notch receptor by the protease ADAM10 or 
by TACE, which is subsequently cleaved by γ-secretase to 
release of Notch Intra Cellular Domain (NICD) [85]. The 
released NICD translocates into the nucleus and coordi-
nates with the coactivator Mastermind (Mam) or the DNA-
binding protein CSL (CBF1 Suppressor of Hairless Lag1, 
also known as RBP-JK) to regulate the transcription of 
Notch target genes [84, 86] (Fig. 5). Although the frame-
work of the Notch signal is remarkably simple, Notch sign-
aling is involved in a variety of cellular processes. Given 

Fig. 5   Notch signaling pathway in chromatin regulation. The bind-
ing of the notch-ligand from the signaling cells to the notch-receptor of 
signal-receiving cells promotes the proteolytic cleavages of the notch-
receptor. Metalloprotease ADAM10 catalyzes the S2 cleavage followed 

by γ-secretase dependent catalysis of S3 cleavage, resulting in release of 
the Notch intracellular domain (NICD). Released NICD translocates into 
the nucleus, where it interacts with the co-activators and DNA-binding 
proteins and chromatin modifying complexes for regulating transcription
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this, defective Notch signaling has been implicated in a 
variety of human malignancies, including cancer progres-
sion and metastasis.

The dysregulation of Notch signaling can be involved 
in proliferation and growth arrest during differentiation, 
either survival or death pathways, and is largely depend-
ent on the physiological conditions and protein–protein 
interactions; thus, it is not surprising that Notch signal-
ing shows mixed, and contradicting, effects across tumor 
types. A growing body of emerging evidence supports the 
idea that Notch signaling is a major player in tumor initia-
tion and progression in different cancers, including small 
cell lung cancers [87], peripheral T cell lymphoma [88, 
89], and osteosarcoma [90]. Moreover, NOTCH signaling 
promotes EMT in BRCA1-defective conditions, resulting 
in initiation of TNBC [91]. However, conditional gene 
deletion or overexpression of NOTCH2 can suppress 
tumor growth cooperation with p53 glioma mouse models 
of human brain tumors [92]; this indicates that Notch sign-
aling may play both an oncogenic and a tumor-suppressive 
role in human cancers.

In recent years, a growing body of the literature sug-
gests that the interaction of effector proteins (NICD, RBP-
J, and MAML) with chromatin-remodeler complexes 
is responsible for the activation of the NOTCH-targeted 
genes [93, 94]. It has been reported that NOTCH effector 
bifunctional protein RBP-JK recruits the histone deacet-
ylase activity containing corepressor N-CoR complex to 
deacetylate histone tails and repress transcriptional activity. 
The RBP-JK–mediated suppression of gene expression is 
therefore reversed in the activation of NOTCH signaling 
[95]. Nonetheless, activation of Notch signaling promotes 
NICD interaction with KMT2D, a lysine methyltransferases 
of COMPASS complexes (complex of proteins associat-
ing with Set1), resulting in the displacement of the N-CoR 
complex, which allows recruitment of MAML and the HAT 
p300 [96, 97]. Moreover, p300 markedly enhances tran-
scription from chromatin templates in conjunction with 
MAML in in vitro settings [94]. The Notch transcription 
complex (NICD, RBP-JK, and MAML) recruits p300 [98], 
which influences H3K27 acetylation marks [99] and the 
recruitment of KMT2D, and promotes H3K4 methylation 
[100], which in turn promotes the transcription of Myc; 
this might be an important event in several human tumors, 
including T-ALL [101], breast cancer [102], and mantle cell 
and marginal zone lymphoma [103, 104].

Chromatin remodeling mediated by Notch signaling, and 
the subsequent changes in gene expression caused by the 
chromatin remodeling, remain contentious. Genetics and 
phenotypic studies have shown that activated Notch and its 
binding partner, RBP-JK, recruit the SWI/SNF chromatin-
remodeling complex, which positively regulates Notch-
targeted transcription activity [105, 106]. However, during 

the differentiation of retinal progenitor cells into different 
retinal cell types, BRM, an ATPase subunit of the SWI/SNF 
chromatin-remodeling complex, interacts with RBP-JK and 
prevents NICD-RBP-JK complex formation. Concomitantly, 
RBP-JK recruits the SWI/SNF complex to the promoter of 
Hes1/Hes5 to suppress Notch-mediated transcription [107]. 
Recently, it was reported that NICD-RBP-JK-MAML 
containing Notch-repressive complex (NRC), recruits the 
polycomb repressive complex 1 (PRC1) to repress MAD4, 
a MYC repressor, resulting in the elevation of MYC expres-
sion and oncogenic functions [108].

Notch signaling is activated through cell-to-cell 
contact, and cancer cells take advantage of elevated 
expression of Notch ligands for the activation of Notch 
signaling in endothelial cells to activate angiogenesis, 
an indispensable process for sustainable tumor growth 
and progression [109–112]. Lymphoma cells express 
FGF4 to activate FGFR1 in neighboring endothelial 
cells to upregulate the Notch ligand Jag1. In turn, 
upregulated Jag1 in endothelial cells activates Notch 
signaling in lymphoma cells to induce Hey1 expres-
sion, which in turn makes lymphoma cells aggressive 
and chemoresistance [113]. Under hypoxia, hypoxia-
inducible factor 1 (HIF-1) recruits the NTC complex 
to promote the expression of SNAI1, resulting in EMT, 
tumor cell migration, and invasion [114] in several can-
cers, including oral squamous cell carcinoma [115], 
bladder [116], and pancreatic cancers [117]. Hence, 
the deceptively simple Notch signaling pathway plays 
an extremely dynamic role by interacting with several 
coactivators including chromatin-remodeler complexes 
HAT, NuRD, SWI/SNF, PRC1, and N-CoR in tumor 
suppression, progression, and metastasis.

Thus, it is conceivable that the Notch signaling pathway 
serves as a platform for transcription activators and corepres-
sors to regulate target genes in accordance with the physi-
ological condition. This suggests an extremely dynamic, mul-
tifunctional role for Notch signaling in oncogenic processes. 
In the near future, we expect more scientific evidence to delin-
eate the diverse roles of Notch signaling in different physi-
ological conditions; this information is essential if we hope 
to develop therapeutic strategies to modulate Notch signaling.

7 � PI3K/AKT signaling in chromatin 
regulation during carcinogenesis

The PI3K/AKT/mTOR signal transduction pathway is one 
of the most critical pathways as it is involved in numerous 
biological processes, including cell proliferation, migra-
tion, adhesion, invasion, metabolism, and survival [118]. 
Aberrant activation of PI3K/AKT/mTOR signaling is fre-
quently observed in most human cancers that modulate 
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apoptosis, autophagy, EMT, tumorigenesis, metastasis, 
and chemoresistance [118–120]. Oncogenic PI3K/AKT/
mTOR signaling is extensively studied and reviewed else-
where [121]. Briefly, the activation of this signaling initi-
ates from cell-surface receptor tyrosine kinases (RTKs) or 
G-protein-coupled receptors, leading to plasma membrane 
recruitment of the lipid kinase PI3Ks (composed of cata-
lytic subunits p110α and regulatory subunits p85α) which 
catalyzes the phosphorylation of PtdIns 4,5-bisphoshate 
(PIP2) to produce phosphatidylinositol 3,4,5-trisphosphate 
(PIP3), which in turn activates the downstream protein ser-
ine–threonine kinase AKT (also known as protein kinase B 
or PKB) (Fig. 6). Activated AKT phosphorylates a diverse 
array of downstream substrates, including Bcl-2 antago-
nist of cell death, glycogen synthase kinase-3, forkhead 
transcription factors, and mTOR complex (mTORC1) 
to regulate a variety of cellular functions, including cell 
proliferation, growth, survival, migration, and anabolic 
biosynthesis [122, 123]. In contrast, phosphatase and ten-
sin homologue (PTEN) catalyzes the dephosphorylation 
of PtdIns(3,4,5)P3 to regenerate PtdIns(4,5)P2, resulting 
in the inactivation of PI3K/AKT signaling [121]. Besides 
growth factor-dependent activation of PI3K/AKT signal-
ing, this signaling frequently activates growth factor inde-
pendently in human cancers [121]. Dysfunction of PI3K/
AKT signaling is also associated with diverse pathological 
settings, including cancers [124]. A plethora of evidence 
indicates that PI3K/AKT signaling promotes oncogenicity 

by directly or indirectly modulating epigenetic modifiers 
for epigenetic reprogramming in cancers [125–127].

Epigenetic silencing of tumor suppressor genes or acti-
vation of oncogenes is frequently observed during tumo-
rigenesis. DNA and histone modifications can lead to the 
epigenetic silencing of genes. Hypermethylation of DNA is 
often associated with gene silencing. For example, promoter 
methylation causes the suppression of the retinoblastoma 
gene (Rb) in retinoblastoma-tumors [128]. On the contrary, 
activated PI3K/AKT signaling stabilizes DNA methyltrans-
ferase 1 (DNMT1) through AKT-mediated phosphorylation, 
resulting in increased DNMT1 methyltransferase activity 
[129]. As such, PI3K/AKT signaling reduces global genomic 
DNA methylation and promotes transcriptional activation of 
specific gene loci in breast cancer cells [125]. It is reported 
that PI3K/AKT signaling regulates DNMT3 activity in both 
GSK3α/β-dependent or independent manner to regulate locus-
specific DNA hypomethylation for specific genes transcription 
[130]. Thus, the frequent imbalance of DNA methylation and 
demethylation during tumorigenesis could be associated with 
the aberrant activation of the PI3K/AKT signaling pathway.

Mounting evidence suggests that PI3K/AKT signaling-
mediated chromatin regulation (histone modifications) 
by chromatin-remodeler complexes induces transcrip-
tional activation to promote tumorigenesis. AKT phos-
phorylates methyltransferase EZH2, a member of PRCs, 
that trimethylates promoter-associated histone H3 Lys27 
(H3K27me3) to suppress transcription [131]. Activated 

Fig. 6   PI3K/AKT signaling 
dependent epigenetic regula-
tion. In response to extracel-
lular stimuli, membrane-bound 
receptor RTKs/GPCRs gets 
activated leading to phosphoryl-
ation of PI3K which catalyzes 
the phosphorylation of PIP2 to 
produce PIP3 resulting in the 
activation of Akt. Activated 
AKT phosphorylates a variety 
of substrates, including chro-
matin remodeler complexes, 
to regulate epigenetic gene 
regulation
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AKT phosphorylates serine 21 of EZH2, resulting in the 
reduction of EZH2 methyltransferase activity and binding 
to histone H3, which reduces H3K27 trimethylation [131], 
hinting that transcription activation may contribute to the 
oncogenesis. Moreover, phosphorylated EZH2 acts as a 
transcriptional coactivator in association with the andro-
gen receptor and other transcription factors to promote 
oncogenesis [132]. AKT phosphorylates H3K4-demethy-
lase-KDM5A and regulates its subcellular localization and 
genome occupancy, resulting in increased H3K4 trimeth-
ylation, prompting upregulation of a set of genes associ-
ated with cell-cycle in breast cancer [133].

PI3K/AKT signaling regulates p300/CBP-mediated his-
tone acetylation of lysine residues to activate transcriptional 
activity has been implicated in tumorigenesis and metastasis 
in different cancer types [134]. Upon activation of PI3K/
AKT signaling, activated AKT phosphorylates histone 
acetyltransferase (HAT) p300/CBP, acetylate hundreds of 
histone/non-histone substrates [135], resulting in the stimu-
lation of acetyltransferase activity of p300/CBP complex, 
leading to recruitment of basal transcriptional machinery 
for gene expression [136]. It has also been reported that the 
activation of the Ras-PI3K-AKT pathway promotes MDM2-
dependent proteasomal degradation of p300/CBP, result-
ing in the reduction of H3K56ac, which is associated with 
tumor cells proliferation and migration [137]. Although high 
H3K56Ac is proportional to tumor grade and tumorigenicity, 
H3K56Ac is not associated with breast cancer-cell prolif-
eration [138]. P300/CBP also acetylates H3K18; however, 
AKT-dependent phosphorylation of CBP at Thr187, but 
not p300, changes its affinity for H3, resulting in reduced 
H3K18ac, which promotes oncogenic activities and tumor 
progression [139].

AKT promotes PRC1 complex-mediated H2A ubiqui-
tination to repress chromatin at specific genomic loci for 
transcriptional inactivation. Specifically, E3 ubiquitin ligase 
RING1A containing PRC1 complex monoubiquitinates 
nucleosomal histone H2A at lysine 119 and subsequently 
recruits PRC2, which catalyzes the addition of methyl 
groups to histone H3 at lysine 27 (H3K27me3). This contrib-
utes to polycomb-complex dependent epigenetic gene silenc-
ing [140]. AKT-mediated phosphorylation of Bmi1, a tran-
scriptional silencer of PRC1 complex, triggers its removal 
from the Ink4a-Arf locus that encodes the p16INK4A and 
p19ARF tumor suppressors resulting in decreased H2A 
ubiquitylation, leading to accumulation of p16 and p19 result 
in inhibition of cell proliferation and induction of cellular 
senescence of cancer cells [141]. Although p16 and p19 
are antiproliferation proteins that are typically incompat-
ible with the oncogenic growth yet enriched in PI3K/AKT 
signaling-driven cancer cells. Oncogenic signaling-induced 
senescence observed in cancer cells may be driven by the 
aberrant activation of PI3K/AKT signaling and subsequent 

phosphorylation of Bmi1, a transcriptional silencer of PRC1 
complex.

Overall, the PI3K/AKT signal transduction pathway has 
emerged as a critical signal transducer that is most frequently 
dysregulated in virtually all solid tumors and hematological 
malignancies. The downstream effector of this signaling 
pathway, AKT, phosphorylates over 200 substrates [122, 
142] and modulates epigenetic reprogramming, which most 
likely contributes to the diverse cellular functions of PI3K/
AKT signaling.

8 � Future perspectives and concluding 
remark

Signal transduction pathways are a critical means of cellu-
lar communication; these pathways allow cells to perceive 
extracellular signals/stimuli and transmit those signals into 
precise cellular functions, thus maintaining cellular and 
organismal homeostasis. Understanding the detailed molecu-
lar mechanisms that contribute to cell signal transmission 
from the cell membrane to the nucleus and that regulate 
chromatin-remodeler complexes, transcriptions activators, 
and cofactors to control gene expression is critical if we hope 
to understand disease mechanisms. For example, HDAC1 
and HDAC2 deacetylate over 50% of global histones acety-
lation marks and take part in 3 different histone deacety-
lase complexes: SIN3/HDAC, NuRD, and CoREST. How 
stimuli-dependent and context-dependent cellular signaling 
contributes to the distribution of HDAC1 and HDAC2 in 
those chromatin-remodeler complexes in normal and dis-
eased conditions is critical to devise therapeutic interven-
tions in human cancers.

A subgroup of tyrosine kinases, known as non-receptor 
tyrosine kinases, relay intracellular signals and is indispensa-
ble in cell signaling [143]. Elevated expression and aberrant 
activation of nRTKs often dysregulate signaling pathways to 
promote human pathogenesis, including cancer. For exam-
ple, SRC promotes TGF-β signal-mediated tumor growth 
and metastasis [144] and PEAK1-mediated dysregulation 
of TGF-β signaling induces EMT and metastasis in breast 
cancer cells [18]. A recent study from the Washburn lab 
reported that PTK6, a nRTK, catalyzes the phosphorylation 
of tyrosine 352 and 412 of SMAD4 [19] and alters TGF-β/
SMAD signaling, thereby enhancing the metastatic potential 
of breast cancer cells. The extensive proteomics data from 
the same study revealed that PTK6/phosphorylated-SMAD4 
interacts with the core subunits of chromatin remodeling 
and histone deacetylase NuRD complex and forms a PTK6-
phosSMAD4-NuRD complex. The above-mentioned evi-
dence suggests that nRTKs-mediated dysregulation of sig-
nal transduction pathways is associated with tumorigenesis 
and metastasis. Thus, a comprehensive profiling of nRTK is 
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urgently needed to identify the members of the nRTK family 
that change signaling pathways, as these proteins will be key 
targets for drug discovery.

In conclusion, chromatin-modifying complexes and asso-
ciated proteins are at the core of chromatin regulation cor-
responding to gene expression for organismal homeostasis. 
Aberrant activation or dysregulation of signal transduction 
pathways causes miscommunication that alters epigenetic 
modulators, resulting in unsubstantiated gene expression that 
contributes to cancer development, progression, and metasta-
sis. In this review, we discussed several main signal transduc-
tion pathways: (1) TGF-β signaling, (2) Hippo signaling, (3) 
Wnt signaling, (4) Notch signaling, and (5) PI3K-AKT sign-
aling. Those pathways are frequently dysregulated, and this 
dysregulation modulates chromatin-modifying complexes, 
leading to oncogenic genes regulation, and the promotion 
of tumorigenesis and metastasis. A comprehensive under-
standing of signaling pathways and their communication with 
chromatin modulators in healthy and diseased conditions is 
essential for the therapeutic intervention of human cancer.
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