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Sequence-based drug design as a concept in
computational drug design

Lifan Chen 1,2,7, Zisheng Fan1,3,4,7, Jie Chang1,3,7, Ruirui Yang1,2,4,7, Hui Hou1,7,
Hao Guo1, Yinghui Zhang1,2, Tianbiao Yang1,2, Chenmao Zhou1,3, Qibang Sui1,2,
Zhengyang Chen1,2, Chen Zheng1, Xinyue Hao1,3, Keke Zhang1,3, Rongrong Cui1,
Zehong Zhang 1,2, Hudson Ma1, Yiluan Ding5, Naixia Zhang5, Xiaojie Lu 1,2,
Xiaomin Luo 1,2, Hualiang Jiang 1,2,3,4,6, Sulin Zhang 1,2 &
Mingyue Zheng 1,2,3,4,6

Drug development based on target proteins has been a successful approach in
recent decades. However, the conventional structure-based drug design
(SBDD) pipeline is a complex, human-engineered process with multiple inde-
pendently optimized steps. Here, we propose a sequence-to-drug concept for
computational drug design based on protein sequence information by end-to-
end differentiable learning. We validate this concept in three stages. First, we
design TransformerCPI2.0 as a core tool for the concept, which demonstrates
generalization ability across proteins and compounds. Second, we interpret
the binding knowledge that TransformerCPI2.0 learned. Finally, we use
TransformerCPI2.0 to discover new hits for challenging drug targets, and
identify new target for an existing drug based on an inverse application of the
concept. Overall, this proof-of-concept study shows that the sequence-to-drug
concept adds a perspective on drug design. It can serve as an alternative
method to SBDD, particularly for proteins that do not yet have high-quality 3D
structures available.

Protein structure-based drug development has been a successful
approach for diseases with well-defined protein targets over the past
few decades1–3. A typical protein structure-based drug design (SBDD)
project starts from the protein sequence and builds a three-
dimensional (3D) structure through structural biology or structure
prediction. It then identifies binding pockets, including orthosteric
sites or allosteric sites, and finally discovers activemodulators through
virtual screening or de novo design4,5 (Fig. 1a). This process involves a
complex, human-engineered pipeline with multiple independently

optimized steps, and each step has its own limitations5. For example,
many proteins do not have high-resolution structures, and while
recent advances in protein structureprediction suchasAlphaFold6 and
RoseTTAFold7 have been successful, not all predicted structures are
suitable for SBDD8,9, given that only 36% of all residues have very high
confidence10. In particular, the precise predicting active sites remains a
challenge as these local structures tend to break the ‘protein-folding
rules’9. Another challenge is defining binding pockets for novel targets
with multiple domains11, and predicting allosteric sites is still difficult12
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Fig. 1 | TransformerCPI2.0: predicting compound protein interaction without
using protein structure. aThe conventional pipeline for target-baseddrug design
and the sequence-to-drug concept. b Three stages of the proof of sequence-to-
drug concept, with each stage is labeled by different colors. First, we examined the
generalization ability across proteins and chemical space. Second, we designed
drug resistance mutation analysis and substitution effect analysis to interpret our
model whether it learns knowledge as expected. Third, we applied a sequence-to-

drug concept to screen new hits for challenging targets and novel targets without
3Dstructures, and conducteddrug repurposing task. cThe computationalpipeline
of TransformerCPI2.0.dAUCcurves of TransformerCPI2.0 and baselinemodels on
the ChEMBL set. e PRC curves of TransformerCPI2.0 and baseline models on the
ChEMBL set. f ROC curves in low-false-positive region. g The arrangement of the
external dataset and ChEMBL27 dataset. h The performance of TransformerCPI2.0
and baseline models on the external set and ChEMBL27 set.
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due to the varied mechanisms of allosteric effects and high compu-
tational costs13. Additionally, structural flexibility allows proteins to
adapt to their individual molecular binders and undergo different
internal motions9,14,15, making pockets more difficult to define. Finally,
virtual screening can generate false positives16 and accumulate errors
from the previous two steps.

Here, we propose a sequence-to-drug concept that discovers
modulators directly from protein sequences without intermediate
steps, using end-to-end differentiable learning (Fig. 1a). End-to-end
differentiable deep learning has revolutionized computer vision and
speech recognition17 by replacing all components of complexpipelines
with differentiable primitives, enabling joint optimization from input
to output18. The success of AlphaFold6 in protein structure prediction
also relies heavily on the idea of end-to-end differentiability. This
concept is appealing because it performs the entire learning process in
a self-consistent and data-efficient manner, potentially avoiding the
error accumulation of complex pipelines.

Several deep learning models have been proposed to use protein
sequences as input19–28. However, none have thoroughly verified the
concept of the sequence-to-drug paradigm. In this work, we address
the issue in three stages (Fig. 1b). First, wedesignedTransformerCPI2.0
as a fundamental tool of the sequence-to-drug paradigm, which
exhibited generalization ability across proteins and chemical space.
Second, we used case studies to interpret our model to verify whether
it learns knowledge as expected, rather than exhibiting only data
bias20. Third, we applied TransformerCPI2.0 to discover new hits for
challenging targets, speckle-type POZ protein (SPOP) and ring finger
protein 130 (RNF130), which lacks existing 3D structures. Additionally,
we identified ADP-ribosylation factor 1 (ARF1) as a new target for
proton pump inhibitors (PPIs). After the proof of concept, the
sequence-to-drug concept appears to be a promising direction for
rational drug design.

Results
TransformerCPI2.0: predicting compound protein interaction
without using protein structure
To build a model that can implement the sequence-to-drug concept,
wedevelopedTransformerCPI2.0basedonour previouswork20 and its
framework is shown in Fig. 1c. As pointed out in our previous work,
there is a common hidden ligand bias issue in existing CPI datasets20.
Therefore, we ensured that each compound in our dataset exists in
positive class and negative class, but pairs with different proteins.
Because the compounds with positive and negative labels are exactly
the same, ligand bias is greatly reduced in our dataset. Under this
criteria, we constructed a ChEMBL dataset containing 217,732 samples
in the training set, 24,193 samples in the validation set, and 10,199 in
the test set. Consequently, we used the label reversal experiment20 to
split the ChEMBL dataset, where some chosen ligands in the training
set appear only in one class of samples (either positive or negative
interaction CPI pairs), but in the opposite class of samples in the test
set. If a model only memorizes the ligand patterns, it is unlikely to
make correct predictions because the ligands it memorizes have the
wrong (opposite) labels in the test set. Within the scheme of label
reversal experiments, the model was forced to utilize protein infor-
mation along with compound information to understand interaction
patterns and thus overcome the ligand bias issue.

TransformerCPI20, CPI-GNN19, GraphDTA(GAT-GCN)21, MolTrans29

and Graph Convolutional Networks (GCN)21 were selected as baseline
models, and all were retrained on the ChEMBL dataset. We trained
TransformerCPI2.0 and baseline models under the same criteria and
compared their performance in terms of area under the Receiver
Operating Characteristic Curve (AUC) and area under the Precision
Recall Curve (PRC) (Fig. 1d–f). TransformerCPI2.0 achieves the best
performance among all models. In addition, we tested Transfor-
merCPI2.0 and the baselinemodels on the other two external datasets:

a large external set containing newproteins andmolecules, and a time-
split test set named the ChEMBL27 dataset containing the new data
that were deposited online after the training set (Fig. 1g). Transfor-
merCPI2.0 also showed the greatest generalization ability among all
models (Fig. 1h and Supplementary Tables 1 and 2). The large external
set supported that TransformerCPI2.0 can generalize to previously
unseen proteins and molecules. Since our training set was generated
from ChEMBL23, this time-split test suggested that our model can
learn from past knowledge and generalize to future data. Overall,
TransformerCPI2.0 isworthwhile to be applied to virtual screening and
target identification tasks.

To confirm the feasibility of sequence-to-drug concept, we com-
pared TransformerCPI2.0 with conventional structure-based drug
design approaches to test its ability to screen active molecules from
compound libraries. We used the benchmark dataset DUD-E set30 and
DEKOIS2.0 set31 and the enrichment factor (EF0.5%, EF1%, EF5%) for the
screen power assessment32, which is calculated from the proportion of
true active compounds in the selection set in relation to theproportion
of true active compounds in the entire dataset (at a sampling ratio of
0.5%, 1% and 5%, respectively).

From Supplementary Table 3, we may find that Transfor-
merCPI2.0 has comparable screening ability to the structure-based
docking models, which is inferior to the commercial program CCDC’s
GOLD33, but slightly higher than the academic program AutoDock
Vina34. From Supplementary Table 4, we may find that the screening
ability of TransformerCPI2.0 is slightly higher than GOLD and Auto-
Dock Vina. This result is encouraging because it demonstrates that
sequence-to-drug models can achieve virtual screening performance
close to structure-based methods (but without relying on any prior
knowledge about the 3D structure of proteins), and it also verifies the
feasibility of applying the concept for drug discovery.

Interpretation of TransformerCPI2.0 by two analysis tools
To investigate whether TransformerCPI2.0 captures correct infor-
mation about binding sites, we proposed an analysis method named
drug resistance mutation analysis that mimics alanine scanning35.
Briefly, we mutated each amino acid of the given protein sequence
one by one and examined whether the prediction score changed
significantly. We input the wild-type protein and drug into Trans-
formerCPI2.0 to calculate the original prediction score, denoted as s.
Then we mutated each amino acid of the protein sequence to all 20
amino acids (including itself) and calculated the prediction score s’.
The activity change score ΔS is defined as the difference between s
and s′ Then the relative activity change score (ΔR) is defined as the
average of ΔS among 20 amino acids at each position, followed by
normalization.

We selectedHIV-1 reverse transcriptase and its inhibitor doravirine
as an example (PDB: 4NCG, Fig. 2a). Doravirine (formerly MK-1439) has
been approvedby the FDA for the treatment ofHIV-infected, treatment-
naive individuals in combination with other antiretroviral drugs36. It is
encouraging that positions with a high ΔR are highly overlapped with
the binding sites of doravirine (Fig. 2a–c), since neither structural nor
binding pocket information is included in the training phase. There is a
region with a high ΔR but irrelevant to binding sites, possibly because
this region is disordered in the 3D structure (PDB: 4NCG). We con-
sidered positions with ΔR above 0.38 as important sites corresponding
to the top 5% sites of the entire sequence. As a result, P225, F227, L234
and P236 have been reported as drug resistance mutation sites37–40 and
are correctly retrieved as important sites by TransformerCPI2.0 (Fig. 2b,
c). Some predictions matched the reported drug resistance mutations,
such as P225H, F227C/L/R andP236L (Fig. 2d). Position 226has not been
reported as a drug resistance mutation site, although it has a high ΔR
predicted by TransformerCPI2.0. Position 226 may be just a false
positive prediction, given that TransformerCPI2.0 still has limitations
and cannot provide completely correct predictions, or that the
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mutation does cause resistance, but it has not been observed to be
abundant in the patient population. Another reasonable concern is that
the model might learn from protein sequence alone rather than
protein–ligand interactions. We selected aspirin as a negative control

(Fig. 2e, f) and found that the pattern of ΔR was significantly different
from that of doravirine.

To interpret whether TransformerCPI2.0 captures activity-related
information from compounds, we designed a substitution effect
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resistant mutations are colored pink. c Relative activity change score (ΔR) calcu-
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activity change score of positions 221–240, where each position ismutated to each
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Article https://doi.org/10.1038/s41467-023-39856-w

Nature Communications |         (2023) 14:4217 4



analysis of the trifluoromethyl group as an example. Activity cliffs are
generally understood as pairs or groups of similar compounds with
large differences in potency41,42. Recently, Abula et al.43. proposed a
dataset including compound pairs and corresponding bioactivity data,
with the only difference that −CH3 is replaced by −CF3, which was not
overlapped with our training set after data cleaning. Only 15.73% of the
substitutions of −CF3 for −CH3 could increase or decrease the biolo-
gical activity by at least one order of magnitude, and an example is
shown (Fig. 3a). We computed the activity change score (Δsc) and
conducted substitution effect analysis on this part of the data. Δsc is
defined as the difference in activity between trifluoromethyl sub-
stituents and methyl substituents, which describes the effects of che-
mical groups.

TransformerCPI2.0 reveals higher consistency with ground truth
than baselinemodels (Fig. 3b and Supplementary Table 5). In addition,
we evaluated the performance of TransformerCPI2.0 and baseline
models on a subset where −CH3 to −CF3 substitution could increase or
decrease biological activity by at least three orders of magnitude.
TransformerCPI2.0 still outperformed the baselines (Fig. 3c and Sup-
plementary Table 6). This test is more challenging than the whole
dataset because the drastic change in biological activity in this range
involves the conversion of an active compound into an inactive one or
vice versa. At last, we showed some illustrative examples (Fig. 3d) that
subtle structural differences produce drastic changes in activity, when
none of the protein targets and compounds were included in the
training set. These results indicated that TransformerCPI2.0 can cap-
ture more useful information about compounds than baselines when
training on the same dataset.

Herewe have introduced two analysis tools to help users interpret
the prediction result of TransformerCPI2.0 and assess the confidence
of predictions based on whether binding sites are retrieved correctly
or structure-activity relations agree with known knowledge. We
emphasize that these two analysis methods serve only as interpreta-
tion tools, and the systematical evaluation of the prediction of binding
sites and activity cliffs is beyond the scope of this work.

Drug design targeting E3 ubiquitin-protein ligases
SPOP functions as an adapter of cullin3-RING ubiquitin ligase, med-
iates substrate protein recognition and ubiquitination44,45. Previous
studies have validated SPOP as an attractive target for the treatment of
clear-cell renal cell carcinoma (ccRCC) and reported the first SPOP
inhibitor, but it is a challenging target in terms of protein–protein
interactions46. In ccRCC cells, SPOP is overexpressed andmisallocated
in the cytoplasm, inducing proliferation and promoting renal
tumorigenesis47. Two substrates of SPOP are phosphatase and tensin
homolog (PTEN) and dual specificity phosphatase 7 (DUSP7)47. PTEN
acts as a negative regulator of phosphoinositide 3-kinase/AKT path-
way, and DUSP7 dephosphorylates extracellular signal-regulated
kinase (ERK)48. The accumulation of cytoplasmic SPOP in ccRCC cells
decreases cellular PTEN and DUSP7 by mediating the degradation of
these two cytoplasmic proteins, leading to an increase in phosphory-
lated AKT and ERK and promoting ccRCC cell proliferation47.

Since SPOP is a challenging target and not included in the training
set of TransformerCPI2.0, SPOP is suitable to test the generalization of
the sequence-to-drug concept to a new target. Here, a virtual screening
with TransformerCPI2.0 was performed to discover new scaffold
compounds that directly target SPOP (Fig. 4a, Supplementary Table 7).
Four compounds were identified as initial hits by a fluorescence
polarization (FP) assay (hit rate ~5%), and 221C7 was the most active
compoundwith an IC50 of 4.51μM(Fig. 4b, c, SupplementaryFig. 1a, b).

Compared with other tools, 221C7 was highly ranked and dis-
covered only by TransformerCPI2.0 (Supplementary Table 8). Fur-
thermore, these four hits revealed low similarity with the scaffold of
known active compounds (Supplementary Table 9), indicating that
TransformerCPI2.0 does not conduct a similarity search. We also

revisited the training set to ensure that 221C7was not screened only by
compound similarity. The compounds in the training set have low
similarity with 221C7 (Supplementary Fig. 1c), and the most similar
compound (containing β-lactam ring) targets a different protein with
very low sequence identity with SPOP (Supplementary Fig. 1d).
Therefore, TransformerCPI2.0 does not replay the training set or rely
on protein sequence similarity, but generalizes across protein and
chemical space. It is interesting to note that 221C7 contains a β-lactam
ring, which may have activity beyond the scope of antibiotics. How-
ever, β-lactam ring compounds have potential side effects and risks
relating to antibiotic resistance. The covalent warhead of β-lactam
rings can bind irreversibly to target proteins, leading to side effects
such as the generation of allergenic modified proteins49. In addition,
the widespread use of β-lactams can increase the risk of antibiotic
resistance, mainly due to the production of β-lactamase50. Although
compounds with β-lactam rings have been reported to exhibit antic-
ancer activity51 and have been used in drug development, such as
cholesterol absorption inhibitors and vasopressin V1a antagonists52,
vigilance is necessary when developing non-antibacterial agents to
avoid these risks.

To further confirm that 221C7 disrupts SPOP-substrate interac-
tions, an in vitro pull-down assay was performed. The results revealed
that the compound 221C7 dose-dependently reduced the binding of
PTEN protein to the SPOP MATH domain (SPOPMATH) (Fig. 4d). A
nuclear magnetic resonance (NMR) experiment was conducted, and
the result indicated direct binding between SPOPMATH and 221C7
(Fig. 4e). To demonstrate that the SPOPMATH-PTEN interaction is not
disrupted by compounds that do not to bind SPOP, we included a
negative control compound, 222A5, which showed no binding to
SPOPMATH (Fig. 4b, Supplementary Fig. 1e). Compound 222A5 com-
peted with peptide substrate binding to SPOPMATH with an IC50

value > 100μM in the FP assay (Fig. 4c), and did not disrupt the protein
interaction between SPOPMATH and PTEN in the in vitro pull-down assay
(Supplementary Fig. 1f). These results verified that 221C7 disrupts
SPOP-substrate interactions by directly binding to SPOPMATH.

The initial hit 221C7 was inactive in cell experiments, possibly due
to poor cell permeability caused by its large topological polar surface
area (TPSA)53 of 214Å2. Therefore, we conducted hit expansion and
obtained 26 structural analogs of 221C7, 19 of which were active in the
FP assay (Fig. 4f). Among them, 230D7 has a smaller TPSA (161Å2) and
the smallest IC50 of the FP assay (Fig. 5a). To determine the cell per-
meability profile of 221C7 and 230D7, a cell permeability assay was
performed. The assay showed that 221C7 displayed poor cell perme-
ability with the extremely low intracellular content that below the
detection limit, while 230D7 showed a much higher intracellular con-
tent (Supplementary Fig. 1g). This suggests that 230D7 overcame the
problem of poor cell permeability. Thus, 230D7 was selected for fur-
ther validation. A protein thermal shift assay (PTS) revealed dose-
dependent Tm shifts (Supplementary Fig. 2a), indicating that 230D7
could bind directly to SPOPMATH. Additionally, NMR experiments con-
firmed the direct binding between SPOPMATH and 230D7 (Supplemen-
tary Fig. 2b). An in vitro pull-down assay was performed to verify that
230D7 dose-dependently reduces PTEN binding to SPOPMATH (Supple-
mentary Fig. 2c, d). After validating the molecular activity, we used
230D7 for the functional study at the cellular level.

We firstly conducted a coimmunoprecipitation and in vivo ubi-
quitination experiment, and the results showed that
230D7 significantly disrupted the binding of PTEN and DUSP7 to SPOP
in a dose-dependent manner (Fig. 5b, c), leading to decreases in PTEN
and DUSP7 ubiquitination (Fig. 5d, e). While the negative control
compound 222A5 neither disrupted the binding of PTEN andDUSP7 to
SPOP, nor decreased the ubiquitination of PTEN and DUSP7 (Supple-
mentary Fig. 2e–h). Due to the inhibition of PTEN and DUSP7 ubiqui-
tination under 230D7 treatment, accumulation of cellular PTEN and
DUSP7 proteins was observed in 786-O cells treated with 230D7,
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causing decreases in phosphorylatedAKT and ERK (Fig. 5f, g). Next, we
tested the cell proliferation of three ccRCC cell lines (786-O, Caki-2,
OS-CR-2) and two non-ccRCC cell lines (4T-1, MDA-MB-231) in the
presence of 230D7 (Fig. 5h). 230D7 specifically inhibited the growth of
ccRCC cell lines with an IC50 of approximately 20μM compared with
non-ccRCC cell lines. To determine if 230D7 is suitable for in vivo
studies, we investigated the pharmacokinetics and acute toxicity
profile of 230D7. 230D7 can be efficiently absorbed into the blood
circulation after intraperitoneal injection and has low acute toxicity

(Supplementary Fig. 2i–l). A dose-dependent reduction in 786-O tumor
growth rate could be observed in NSG mice treated with 230D7
(Fig. 5i), revealing a significant anti-ccRCC therapeutic effect of 230D7
in vivo. Statistically, no body weight loss was observed in NSG mice
throughout the entire pharmacodynamics study of 230D7 (Supple-
mentary Fig. 2m). Finally, we checked the effect of 230D7 on onco-
genic SPOP signaling in ccRCC xenograft tumors. As expected, PTEN
and DUSP7 are elevated in the 230D7 treated groups, and p-AKT and
p-ERK levels are decreased (Fig. 5j). Moreover, we confirmed the high
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selectivity of 230D7 which does not target kinases (Supplementary
Fig. 3). In conclusion, our sequence-to-drug concept has successfully
identified new scaffolds targeting the protein of interest SPOP, among
which 230D7 showed therapeutic potential for blocking SPOP activity
to treat ccRCC.

After discovering inhibitors for SPOP, we applied this concept to
discover hits for a more challenging target RNF130 whose crystal
structure is unknown. RNF130 is an E3 ubiquitin-protein ligase without
structural information, and no chemical binders have been reported.

Therefore, the discovery of novel hits for RNF130 supports the gen-
eralization of this concept. Our recent study revealed that RNF130
plays an important role in autoimmune inflammation, suggesting that
its inhibition could be of potential therapeutic value. We utilized
TransformerCPI2.0 to screen compounds that bind directly to RNF130
(Supplementary Fig. 4a, Supplementary Table 10) and discovered that
iRNF130-63 is a binder of RNF130 (Supplementary Fig. 4b–e). Direct
binding between iRNF130-63 and RNF130 protein was confirmed
through surfaceplasmon resonance (SPR), and this binding exhibited a
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fast-on, fast-off kinetic pattern with a KD of 9.36 μM (Supplementary
Fig. 4c). We also performed a cellular thermal shift assay (CETSA), and
the results supported that iRNF130-63 directly binds to and thermally
stabilizes the RNF130 proteins (Supplementary Fig. 4d). To further
validate the binding of iRNF130-63 with RNF130 and exclude the pos-
sibility of the pan-assay interference compounds, the binding affinity
was measured by isothermal titration calorimetry (ITC), widely known
as a gold standard method used to determine the thermodynamic
parameters of target-ligand interactions. As shown in Supplementary
Fig. 4e, KD of iRNF130-63 binding with RNF130was 1.23 μM,ΔG andΔH
were −33.80 kJ/mol and −7.31 kJ/mol respectively, the stoichiometry of
binding (N) is 1.01. Compared with other tools, iRNF130-63 was highly
ranked and discovered only by TransformerCPI2.0 (Supplementary
Table 11). Also, the compounds in the training set have low similarity
with iRNF130-63 (Supplementary Fig. 4f), and the most similar com-
pound targets another protein which shares very low sequence iden-
tity with RNF130 (Supplementary Fig. 4g). Success in discovering hits
for SPOP and RNF130 demonstrated that the sequence-to-drug con-
cept is practicable for virtual screening with encouraging prospects.

Repositioning proton pump inhibitors as anticancer drugs by
targeting ARF1
Benefiting from the end-to-end nature, the sequence-to-drug workflow
can be inversely used to enable drug target identification or drug
repurposing. This means that we can perform proteome-wide target
screening, as only protein sequence information is required except for a
givendrugmolecule as themodel input. Herewe selectedprotonpump
inhibitors (PPIs) as a drug repurposing case study. To date, preclinical
and clinical data support the use of PPIs in cancer treatment54, but few
new targets have been identified. TransformerCPI2.0 was applied to
score 2204 human proteins from the DrugBank database55 against four
classic PPIs (rabeprazole, lansoprazole, omeprazole and pantoprazole,
Fig. 6a, b, Supplementary Tables 12–15), and the results were sorted by
predicted interaction probability. After analyzing the top 20 proteins,
ARF1 attracted our attention due to its oncogenic effect on cancer stem
cells (CSCs) via the lipolysis pathway56,57. ARF1 is a small G protein and
belongs to the RAS superfamily, which switches between an active GTP-
bound and an inactive GDP-bound conformation58. Recent studies have
shown that the ARF1-regulated lipid metabolism selectively maintains
cancer stem cells (CSCs) and ARF1 inhibition or knockdown in CSCs
leads to accumulation of lipid droplets, further leading to metabolic
stress that not only can kill CSCs selectively, but also stimulate an
anticancer immune response and achieve lasting therapeutic effects56,57.
Inhibition of ARF1 activity is a promising direction for cancer immu-
notherapy, therefore, we selected ARF1 for investigation.

The PTS assay revealed dose-dependent Tm shifts (Fig. 6c, Sup-
plementary Fig. 5a–c), indicating that PPIs could bind directly to wild-
type ARF1 (ARF1WT) and destabilize the protein. Drug resistance
mutation analysis was then applied to interpret the prediction of
TransformerCPI2.0. The results indicated that amino acids 150 to 165, a
region that containing a cysteine (C159), contributed greatly to com-
pound protein binding (Fig. 6d, Supplementary Fig. 5d). Given that
PPIs covalently bind to the cysteine of H+/K+-ATPase59, we conducted
different assays to determine whether PPIs covalently bind to ARF1.
Therefore, two more PTS assays were conducted: (1) PPIs with ARF1WT

and the reducing agent dithiothreitol (DTT), which can break disulfide
bonds; and (2) PPIs with ARF1C159A where C159 was mutated to alanine.
No Tm shifts were observed in either assay (Fig. 6e, Supplementary
Fig. 5a–c). Mass spectrometry (MS) further validated that PPIs can
covalently bind to ARF1WT but not to ARF1C159A (Fig. 6f, Supplementary
Fig. 5e, f), and two-dimensional mass spectrometry determined that
covalent binding site is C159 (Supplementary Fig. 6a–d). Among the
four PPIs, rabeprazole had the greatest effect on the thermal stability
of ARF1 (Fig. 6g), thus we selected rabeprazole for further functional
studies. According to the covalent binding site, we provided a possible

docking pose of rabeprazole (Fig. 6h). Activation of ARF1 requires the
release of GDP followed by the binding of GTP, a process catalyzed by
guanine nucleotide exchange factor (GEF)58. Therefore, we performed
GDP/MANT-GTP nucleotide exchange catalyzed by ARNO (a type of
GEF) and found that rabeprazole suppressed the nucleotide exchange
process in a concentration-dependent manner (Fig. 6i), verifying its
inhibition of ARF1 activity. After validating the physical binding and
function of PPIs, we found that PPIs share low similarity with three
known ARF1 inhibitors (Supplementary Table 16) and other baseline
tools provide lower prediction scores of PPIs-ARF1 pairs (Supplemen-
tary Table 17), proving that TransformerCPI2.0 are not doing similarity
search against known inhibitors.

According to previous works56,57, we first detected the inhibitory
effect of rabeprazole on the activity level of ARF1 in CT26 cells (colon
carcinoma cells) using a G-LISA assay. The results showed that rabe-
prazole effectively inhibited ARF1 activity in CT26 cells in a
concentration-dependent manner (Fig. 7a). In addition, a significant
accumulation of lipid droplets was observed in rabeprazole-treated
CT26 cells (Fig. 7b). To evaluate the antitumor effect of rabeprazole
in vivo, we established colon cancer transplanted tumor models by
injecting CT26 cells into BALB/c mice. Rabeprazole treatment sig-
nificantly suppressed the tumor growth inmice asmeasured by tumor
volume (Fig. 7c). To verify that rabeprazole induces an antitumor
immune response, we analyzed the immune cell subsets of colon
cancer transplanted tumors by fluorescence-activated cell sorting
(FACS) and found a significant increase in CD3+ CD8+ T cells and a
significant decrease in CD3+ CD8+ PD1+ T cells, CD3+ CD8+ TIM3+ T cells
and CD3+ CD8+ PD1+ TIM3+ T cells (Fig. 7d). Additionally, upregulation
of CD8 and downregulation of PD1 was detected by immunohisto-
chemical staining (Fig. 7e), confirming that an antitumor immune
responsewas stimulatedby rabeprazole. Furthermore,we investigated
the effect of rabeprazole on lipid droplet accumulation and tumor
growth after ARF1 knockdown to prove that the anti-tumor effect of
rabeprazole is ARF1 dependent. ARF1 was successfully knocked down
in CT26 cells (Fig. 7f). ARF1 depletion apparently caused lipid droplet
accumulation, consistent with the reported data56,57, and the addition
of rabeprazole had little effect on lipid droplet formation on this basis
(Fig. 7g). In addition, rabeprazole failed to suppress tumor growth or
affect the immune response in ARF1-knockdown CT26 transplanted
tumor model (Fig. 7h, i). Taken together, these data suggested that
rabeprazole induced an antitumor immune response through lipid
metabolism, which is dependent on ARF1. All of this data suggests that
rabeprazole inhibits the growth of colon cancer by inducing an anti-
tumor immune response. In summary, the success of repurposing PPIs
to ARF1 demonstrated that the inverse application of the sequence-to-
drug concept for drug repositioning is also practicable with encoura-
ging prospects.

Discussion
The conventional structure-based drug design pipeline is a complex,
human-engineered process with multiple independently optimized
steps. However, the multistep operation is error-prone due to factors
such as inaccurate protein structures, themultiplicity and dynamics of
binding pockets, incorrect pocket definition, inappropriate selection
of the scoring function, etc. The errors or intrinsic accuracy limitations
of each step accumulate rapidly and significantly lower the success
rate. When little information about target proteins is available, this
issue becomes more serious and constitutes a long-lasting obstacle to
rational drug design.

To address this issue, we proposed a sequence-to-drug concept
and developed TransformerCPI2.0 to validate this concept on three
targets. These targets are challenging and only a few active molecules
have been reported. Apart from methodology, the sequence-to-drug
concept successfully discovered a inhibitor for SPOP, for which only
one active scaffold was reported before, and discovered the first
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binder of RNF130. Given that SPOP is an adapter of E3 ligase and
RNF130 is an E3 ligase, the hits we found have the potential to serve as
novel warheads for proteolysis-targeting chimaeras (PROTACs). PRO-
TACs have been successfully developed for harnessing the
ubiquitin–proteasome system to degrade a protein of interest,

receiving tremendous attention as a new and exciting class of ther-
apeutic agents that promise to significantly impact drug discovery.
Furthermore, through an inverse application of the sequence-to-drug
concept, the FDA-approved drug rabeprazole showed promise for
expanding its indications to colon cancer treatment by regulating lipid
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metabolism and inducing an antitumour immune response. Addi-
tionally, these targets and their corresponding active molecules are
not seen in the training phase, and the hits we reported share low
similarity with the known activemolecules and fail to be discovered by
other tools, which supports that our concept is not replaying the
training set but can generalize across protein and chemical space.
Overall, our findings provide a proof of sequence-to-drug concept,

which we believe will become an essential component of future
rational drug design pipelines.

However, our work does not guarantee the success to any novel
targets. We appreciate and respect other drug discovery tools, and
our aim is to add a new perspective to drug design. The rigorous
conclusion we draw is that our work can serve as an alternative
method to SBDD, and it can be used in combination with other in
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silico or in vivo tools, to help the community accelerate the drug
discovery progress.

Recently, due to the rapid growth of virtual chemical libraries,
such as GDBChEMBL60, SCUBIDOO61, ZINClick62, GDB-1763, FDB-1764,
DrugSpaceX65 and synthesis (REAL) combinatorial libraries66, which
cover spaces of 100million to multiple billions of chemicals, there is a
high demand for developing computationally efficient virtual screen-
ing approaches. The sequence-to-drug concept and Transfor-
merCPI2.0 can be combined with these large virtual libraries to rapidly
discover active scaffolds from the unexplored chemical space.

Methods
TransformerCPI2.0 model and training details
Compared with TransformerCPI, TransformerCPI2.0 has been updated
in the following four aspects: (1) removing 3-gram protein word
embedding calculated by the Word2Vec algorithm, (2) computing
protein sequence representation by a pretrained protein language
model named TAPE-BERT, (3) replacing 1D convolutional neural net-
works and gated linear units with a self-attention-based transformer
encoder, and (4) introducing anewatomvector into the atomsequence
that carries the interaction information at the molecular level.

Pretraining the protein language model
Word2vec is an unsupervised technique to learn high-quality dis-
tributed vector representations that describe sophisticated syntactic
and semantic word relationships and maps discrete words to low-
dimensional real-valued vectors. However, the final embedding table
ofWord2vec is stationary, regardless of the upstreamanddownstream
context information of the given word, which may lead to errors
regarding the true meaning of the word in its local context. Since
BERT67 achieved great success in natural language processing (NLP),
many efforts have been devoted to protein sequence representation
learning. Many pretraining models based on long short-term memory
(LSTM) or transformer architectures have been proposed, such as
UniRep68 and TAPE69. To maintain the model consistency and gain
parallel computing efficiency,we chose the transformermodel in TAPE
(TAPE-BERT) to calculate protein sequence embedding. The TAPE-
BERT model contains 12 self-attention encoder layers, 12 attention
heads for each layer, 768 dimensions for the hidden state, and 3072
dimensions for feedforward layers. We first utilized the TAPE Tokeni-
zer from TAPE-BERT to encode the protein amino acid sequence into
real values, where numbers 1–23 represent 23 common amino acids, 0
represents the token ‘<pad>’, 24 represents the token ‘<cls>’, and 25
represents the token ‘<sep>’. Then, we input this encoded real value
sequence into the pretrained TAPE-BERT model and finally obtained
protein embeddings with 768 dimensions. In TransformerCPI2.0,
protein embedding from the TAPE-BERT model serves as the input to

the encoder of TransformerCPI2.0, replacing the embedding calcu-
lated from the Word2Vec model.

Encoder of TransformerCPI2.0
Since protein embedding was calculated by the TAPE-BERTmodel, we
replaced 1D convolutional neural networks and gated linear units with
the original self-attention-based transformer encoder. Given that the
position information of the amino acid sequence has been taken into
consideration when computing protein embeddings, position
embedding was removed from the transformer encoder. The encoder
consists of 3 encoder layers, 8 attention heads for each layer, 768
dimensions for the hidden state, and 3072 dimensions for feedforward
layers. To maintain the maximal performance of TAPE-BERT, the hid-
den state dimension of the encoder was exactly the same as that of
TAPE-BERT, ensuring no information loss in this process. After the
hyperparameter search, 12 attention heads showed little performance
improvement compared to 8 attentionheads butmuchhigher training
and inference time; therefore, only 8 attention heads were used in
TransformerCPI2.0.

Atom embedding calculation
Each of the atom features was initially represented as a vector of size
34using theRDKit pythonpackage, and the list of atom features canbe
found in our previous work. In TransformerCPI2.0, we additionally
introduced a new virtual atom that carries the information at the
molecular level and does not exist in the given compound. This virtual
atom was initialized as the average of atom features across the whole
compound and was linked to all atoms. All the atom vectors together
with the virtual atom vector were put into GCNs70 to learn the repre-
sentation by integrating their own neighborhood information. Nota-
bly, only one GCN layer was used and recommended in this process,
and more than two GCN layers harmed the performance of Transfor-
merCPI2.0 to a great deal. Too many GCN layersmay over smooth the
atom features, causing different atom features to tend to be similar to
each other. TransformerCPI2.0 then fails to learn compound-protein
interaction features when the atom embedding carries excessively
similar features. A table of atomic embedding features is shown in the
Supplementary Table 18.

Decoder of TransformerCPI2.0
Protein embedding and atom embedding serve as the target sequence
and memory sequence of the transformer decoder, respectively.
Consistent with the encoder, the decoder consists of 3 decoder layers,
8 attention heads for each layer, 768 dimensions for the hidden state,
and 3072 dimensions for feedforward layers. In addition, the original
transformer was designed to solve seq2seq tasks and utilize a causal
mask operation to cover the downstream context of each word in the

Fig. 7 | Rabeprazole induces antitumor immune response through lipid meta-
bolism. a The activity level of ARF1 in CT26 cells treated with rabeprazole for 48h
was measured by using G-LISA assay. Error bars represent mean ± SEM of three
independent experiments. (12.5μM Rabeprazole vs. DMSO, P =0.1497; 25μM
Rabeprazole vs. DMSO, P =0.0070; 50μM Rabeprazole vs. DMSO, P =0.0017.)
b Fluorescent images of CT26 cells stained with DAPI (for nucleus) or Nile red
(for lipid droplets) after treatment with rabeprazole (20 μM) or DMSO. Scale bars:
100μm.This experiment is repeated three times independentlywith similar results.
c In vivo efficacy of rabeprazole in CT26 transplanted tumormodel in BALB/cmice.
Mice were administrated rabeprazole 40mg/kg daily for 10 days by intraperitoneal
dosing. Error bars represent mean ± SEM of six biologically independent animals.
(40mg/kg Rabeprazole vs. Vehicle, P =0.0001.) d Impact of rabeprazole delivery
on immune cell subsets in CT26 transplanted tumor model, assessed by flow
cytometry analysis. Error bars represent mean ± SEM of five biologically indepen-
dent animals. (In CD3+ CD8+ T cells: Rabeprazole vs. Vehicle, P =0.0238; in PD1+

T cells: Rabeprazole vs. Vehicle, P =0.0060; in TIM3+ T cells: Rabeprazole vs.
Vehicle, P =0.0054; in PD1+ TIM3+ T cells: Rabeprazole vs. Vehicle, P =0.0037).

e Immunohistochemical staining for cell surface markers (CD8, PD1) of tumor tis-
sues in the indicated groups. This experiment is repeated three times indepen-
dently with similar results. f Successful knockdown of ARF1 in CT26 cells. This
experiment is repeated three times independently with similar results.
g Fluorescent images ofWT andARF1-knockdownCT26 cells stainedwith DAPI (for
nucleus) or Nile red (for lipid droplets) after treatment with rabeprazole (20μM) or
DMSO. Scale bars: 20 μm. This experiment is repeated three times independently
with similar results. h In vivo efficacy of rabeprazole in ARF1-knockdown CT26
transplanted tumor model in BALB/c mice. Mice were administrated rabeprazole
40mg/kg daily by intraperitoneal dosing. Error bars represent mean± SEM of six
biologically independent animals. i Impact of rabeprazole delivery on immune cell
subsets in ARF1-knockdown CT26 transplanted tumor model, assessed by flow
cytometry analysis. Error bars represent mean ± SEM of six biologically indepen-
dent animals. P values were evaluated using 2-tailed unpaired t-test. *P <0.05,
**P <0.01, ***P <0.001; ns, not significant, P >0.05. Source data are provided as a
Source Data file.
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decoder. We removed the mask operation of the decoder to ensure
that our model accesses the whole target sequence. Since we intro-
duced a new virtual atom, as described above, we used the last layer
representation of this virtual atom rather than theweighted sumof the
last layer atom representation to predict the compound protein
interaction probability. The last layer presentation of virtual atomswas
fed into fully connected layers and finally returned the compound
protein interaction probability.

Training details
The TransformerCPI2.0 model was trained by the RAdam71 optimizer
with a learning rate of 1e-5 and aweight decay of 1e-3. The batch size of
1 was selected to ensure that the longest protein sequence fit into the
GPU memory. We employed the gradient accumulation technique to
expand the actual batch size to 64. Training was performed on one
NVIDIA Tesla V100 (16G) GPU. The TransformerCPI2.0 model was
trained for ~50 epochs or ~1.5 weeks of wall clock time.

ChEMBL dataset construction
Inheriting our previous work, we followed two rules to construct a
dataset: (i) CPI data was collected from an experimentally validated
database and (ii) each ligand should exist in both positive and negative
classes. To build a universal deep learning model for all types of pro-
teins, we selected the ChEMBL_2372 database to construct a universal
dataset to train TransformerCPI2.0.

Data cleaning
The ChEMBL_23 database was released on 1 May 2017 and contains
2,101,843 compound records, 1,735,442 compounds, 14,675,320
activities, 1,302,147 assays, 11,538 targets and 67,722 source docu-
ments.We downloaded thewhole database and cleaned the data using
the following procedure:
(1) The target type was set to ‘SINGLE PROTEIN’, and the molecule

type was set to ‘Small molecule’;
(2) Data with a confidence score of 9 and assay type of ‘B’ were

reserved;
(3) Activity data with activity metrics of IC50, EC50, Ki in units of nM

were selected.

Dataset process
After cleaning the data, we transformed IC50, EC50, and Ki to pIC50,
pEC50, and pKi and then split the dataset into a positive set and a
negative set at the threshold of 6.5. Samples with different labels were
removed from the dataset. In the early stage of drug discovery, only hit
compounds whose IC50, Ki or EC50 are at the μM or even nM level will
be further optimized. Additionally, public data are prone to a certain
experimental error, i.e., on average 0.5 log units for IC50 data73,74. The
threshold of 6 considers those CPI pairs whose IC50, Ki or EC50 are
smaller than 1μM as positive samples, which causes the models to
select CPI pairs with high activity. To decrease the risk of experimental
error in public data, a stricter threshold of 6.5 was used in a previous
work75. Therefore, we selected the threshold of 6.5 to define positive
data and negative data. Data whose atom number was more than
60 or whose protein sequence length exceeded 4000 were filtered
out, guaranteeing that all the data fit into GPU memory. Finally, we
constructed a ChEMBL dataset including 3348 proteins, 69,616 com-
pounds, 117,513 positive CPIs, 134,611 negative CPIs and 252,124 sam-
ples in total.

Dataset split and label reversal experiment
We selected ligands that exist in both the positive and negative classes
to make the compound distribution in positive samples and negative
samples exactly the same, trying to eliminate thepotential ligandbias as
much as possible. Consequently, we used a label reversal experiment to
split the ChEMBL dataset. The mechanism of label reversal experiment

is that some ligands in the training set appear only in one class of
samples (either positive or negative interaction CPI pairs), while have
the opposite labels with other proteins in the test set. In this way, the
model was forced to utilize protein information to understand inter-
action modes andmake opposite predictions for those chosen ligands.
If a model only memorizes the ligand patterns, it is unlikely to make
correct predictions because the ligands it memorizes have the wrong
(opposite) labels in test set. Therefore, this label reversal experiment is
specifically designed to evaluateCPImodels and is capable of indicating
howmuch influence the hidden variables have exerted. For theChEMBL
dataset, we randomly selected 2941 ligands and pooled all the negative
CPI samples containing these ligands into the test set. Additionally, we
selected another 2900 ligands and pooled all their associated positive
samples into the test set. The remaining datasets were split randomly
into a training set and a validation set at a ratio of 10:1. The validation set
was used to determine the hyperparameters, and the best model was
evaluated on the test set. Under this experimental design, we finally
established aChEMBL set containing 217,732 samples in the training set,
24,193 samples in the validation set and 10,199 in the test set.

External evaluation on external datasets
All the baseline models and TransformerCPI2.0 were tested on the
external test set and time-split ChEMBL27 set. This external set con-
tains compounds that were not previously observed and 1192 new
protein targets that were not included in the training set. The total
number of CPI pairs is 342,447, and the ratio of positive samples to
negative samples is 1:3. This external set can evaluate the general-
ization ability of TransformerCPI2.0 and baseline models to the new
compounds and new proteins. Another time-split dataset named the
ChEMBL27 dataset contains compounds that were not previously
observed and 637 new protein targets that are not included in the
training set, and all the data were collected from the ChEMBL_27
database. The total number of CPI pairs is 92,919, and the ratio of
positive samples to negative samples is 1:1.

Baseline models
All the baseline models, including TransformerCPI, CPI-GNN,
GraphDTA(GAT-GCN), MolTrans and GCN, were trained on the
ChEMBL dataset with their own hyperparameters. Only the learning
rate, weight decay rate and dropout rate were subjected to a hyper-
parameter search.

Drug resistance mutation analysis
Activity change score calculation. First, we input the wild-type pro-
tein and drug into TransformerCPI2.0 to calculate the original pre-
diction score, denoted as s. Then, wemutated each amino acid of the
protein sequence to all 20 amino acids (including itself) and calcu-
lated the prediction score s’. Finally, we defined the activity change
score ΔS 2 Rl × 20 as

ΔSi,j = ∣ s � s0i,j ∣, i= 1,2, . . . ,l, j = 1,2, . . . ,20: ð1Þ

Here, i corresponds to the position of the protein sequence, l
corresponds to the length of the protein sequence, and j corresponds
to 20 types of amino acids. Since an amino acid mutation will increase
or decrease the prediction score s’ and TransformerCPI2.0may not be
able to predict the trend of activity changes correctly, we calculated
the absolute value of ΔS here. We analyzed ΔS and found that Trans-
formerCPI2.0 actually learns the key features of compound protein
interactions because the pattern ofΔS revealed by heatmap analysis is
consistent with that of drug resistance mutation.

Relative activity change score
After calculating the activity change score, we can evaluate whether a
mutation at a specific position plays an important role in compound
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protein interactions. However, ΔS cannot quantify the contribution of
eachposition on a protein sequence and rank themost important sites
from the whole sequence. To quantify the contribution of each amino
acid site to drug-protein interactions, we first computed the average
score of each position Δ�S 2 Rl as

Δ�Si =

P20
j = 1 s

0
i,j

20
: ð2Þ

Furthermore, the value ofΔ�Swas normalized to between 0–1, and
the relative activity change score ΔR 2 Rl was defined as

ΔRi =
Δ�Si

maxðΔ�SiÞ
, i= 1,2, . . . ,l: ð3Þ

The relative activity change score ΔR can then characterize the
contribution of each amino acid position to TransformerCPI2.0 pre-
diction and help researchers discover novel and potential drug resis-
tance mutation sites. On the other hand, ΔR can reflect the
compound–protein interactions in TransformerCPI2.0. An amino acid
site whose contribution to compound–protein binding is large can be
revealed quantitativelyby the relative activity change scoreΔR. Finally,
we used the activity change score ΔS to plot a heatmap to study the
concrete pattern of drug resistance mutations and the relative activity
change score ΔR to rank the most important sites for compound
protein binding.

Analysis of the substitution effect of the trifluoromethyl group
The replacement of methyl (Me or −CH3) with trifluoromethyl (TFM
or −CF3) is frequently employed in compound optimization. How-
ever, the exact effect of −CH3/–CF3 substitution on bioactivity is still
controversial. To further investigate whether TransformerCPI2.0
captures the key features of the compound and comprehensively
understands compound–protein interaction, we employed Trans-
formerCPI2.0 to predict the substitution effect of the tri-
fluoromethyl group. We utilized a previously reported dataset,
removed the redundancy data and finally got a dataset containing
18,217 pairs of compounds and corresponding bioactivity data with
the only difference being that −CH3 is substituted by −CF3 to study
this problem. We checked this dataset with our training set and
found only 1,062 pairs (5.8%) were overlapped. The majority of this
dataset are not seen by TransformerCPI2.0 and baseline models
during the training phase, so it can measure the generalization of
these models to some extent. However, this analysis does not prove
that TranformerCPI2.0 can solve activity cliff prediction problems.
We stress that this analysis is aim to show that TransformerCPI2.0
can capture activity-related information of compounds, and can
served as interpretation tools. The interpretation results should be
taken with caution.

Dataset analysis and data cleaning
The statistical results showed that the replacement of −CH3 with −CF3
does not improve bioactivity on average. However, in 15.73% of cases,
substituting −CF3 for −CH3 increased or decreased the biological
activity by at least an order of magnitude, and we called this part of
data as the whole dataset. Only 4.6% data in the whole dataset are
overlapped with the training set. Besides, we designed a subset con-
sists of 188 data point where substitution of −CH3 by −CF3 could
increase or decrease the biological activity by at least three orders of
magnitude.Only 3 data points areoverlappedwith the training set. The
overlapped data points were removed from our analysis. The actual
bioactivity change ΔpAct was defined as

ΔpAct =pAct �CF3ð Þ � pAct �CH3ð Þ: ð4Þ

Activity change score
First, we used TransformerCPI2.0 to calculate the prediction scores of
compounds with trifluoromethyl substituents and denoted this score
as score�CF3. Then, we calculated the prediction scores of compounds
with methyl substituents and denoted this score as score�CH3. The
activity change score Δsc was defined as

Δsc = score�CF3 � score�CH3: ð5Þ

Considering that the distributions of ΔpAct and Δsc were dif-
ferent fromeach other, we defined a correct prediction by amodel as
ΔpAct and Δsc sharing the same sign. In other words, when the
activity change trend predicted by the model matches the actual
bioactivity change, the prediction is considered correct. After
defining the evaluation metrics, we analyzed the performance of
TransformerCPI2.0 on the whole dataset. Furthermore, we investi-
gated the prediction performance on the cases where the corre-
sponding biological activities increasedor decreasedby at least three
orders of magnitude because these cases are relevant to the activity
cliff phenomenon in medicinal chemistry. Finally, we selected four
cases that were not observed in the training set to show the power of
TransformerCPI2.0.

Virtual screening of SPOP
First, after filtering non-drug-like compounds from the ChemDiv
Library (SanDiego, CA, USA),which contains approximately 1.6million
in-stock compounds, TransformerCPI2.0 was applied to score the
compounds, and the top 35,000 molecules (~top 2%, ensuring com-
pound diversity) were selected by screening. Second, we filtered pan
assay interference compounds (PAINS) and clustered these molecules
automatically based on their extended-connectivity fingerprints
(ECFP), obtaining approximately 800 clusters. Third, we filtered these
compounds by the Lipinski rules and selected representative com-
pounds from top ranked clusters. Finally, a total of 82 candidates were
purchased for further experimental evaluation.

Virtual screening of RNF130
First, after filtering non-drug-like compounds from the Chemspace
Library (Monmouth Junction, NJ 08852, USA), which contains
approximately 2 million in-stock compounds, TransformerCPI2.0 was
applied to score the compounds, and the top 10,000 molecules (~top
0.5%, ensuring compound diversity) were selected. Second, we filtered
pan assay interference compounds (PAINS) and clustered these
molecules automatically based on their extended-connectivity finger-
prints (ECFP), obtaining approximately 200 clusters. Third, we filtered
these compounds by the Lipinski rules and selected representative
compounds from top ranked clusters. Finally, a total of 87 candidates
were purchased for further experimental evaluation.

Target identification of PPIs
We collected potential proteins from the DrugBank database and
selected proteins that already have active modulators. Then,
TransformerCPI2.0 was applied to score proteins against four
classical PPIs (omeprazole, rabeprazole, lansoprazole and panto-
prazole), and the results were sorted by predicted interaction
probability. Next, we analyzed the top 20 proteins by evaluating
their novelty, importance and feasibility, and finally chose ARF1 for
experimental validation.

Compounds
SPOP inhibitorswere purchased fromChemDivLibrary (SanDiego, CA,
USA): 221C7, Y502-3210; 231A10, 5282-0816; 231D8, 8017-3040. 230D7
was synthesized in our laboratory. RNF130 inhibitor was purchased
from Chemspace Library (Monmouth Junction, NJ 08852, USA):
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iRNF130-63, CSC138461036. PPIs were purchased from MedChemEx-
press (Monmouth Junction, NJ, USA): rabeprazole, HY-B0656; lanso-
prazole, HY-13662; Omeprazole, HY-B0113; pantoprazole, HY-17507.

Plasmid construction
Wild-type, truncated or mutant versions of the human proteins were
used in this study: SPOP (UniProt accession code: O43791-1), PTEN
(P60484-1), DUSP7 (Q16829-1), RNF130 (Q86XS8-1), ARF1 (P84077-1)
and ARNO (Q99418-1). For plasmid construction, SPOPWT and SPOPcyto

(residues 1-366) were subcloned into the pcDNA 3.1 vector with a Flag-
tag, SPOPMATH (residues 28–166) and ARNOSec7 (residues 50–250) was
subcloned into the pGEX 6p-1 vector with a GST-tag, PTEN and DUSP7
were subcloned into the pcDNA 3.1 vector with a Myc-tag, RNF130
(residues 1–304) was subcloned into the pcDNA3.1 vector with a
C-terminal His8-Flag-tag. N-terminally truncated human Δ17ARF1 and
C159A-mutant Δ17ARF1 were subcloned into pProEX HTb with a His6-
tag. All of the above plasmids were synthesized by Sangon Biotech
(Shanghai) Co., Ltd. pCMV-HA-Ub plasmid (CAT#. kl-zl-0513) was
purchased from Shanghai Kelei Biological Technology Co., Ltd.

Recombinant protein expression and purification
For expression of SPOPMATH, GST-tagged SPOPMATH plasmid was trans-
formed into BL21-CodonPlus (DE3)-RIPL Cells (CAT#. EC1007, Shanghai
Weidi Biotechnology Co., Ltd), and then the cells were grown in
lysogeny broth (LB) medium and induced by isopropyl β-D-1-
thiogalactopyranoside (IPTG) at a final concentration of 0.5mM at
16 °C overnight. Cells were harvested and lysed in solution (20mM
HEPES pH 7.4, 200mM NaCl, 1mM dithiothreitol) by sonication and
then centrifuged at 32,914 × g for 1 h at 4 °C. The supernatants were
filtered by0.22μMsyringefilters andpurifiedonGSTTrap columns (GE
Healthcare) by elution with 10mM reduced glutathione. The eluted
components were loaded onto desalting columns (GE Healthcare) to
remove reduced glutathione and incubated with PreScission Protease
for 6–8h at 4 °C. The components were reloaded onto GST Trap col-
umns to remove the GST tags and further purified by a Superdex 75 10/
300 GL column. The purified SPOPMATH protein was concentrated and
stored in buffer (20mM HEPES pH 7.4, 200mM NaCl) at −80 °C.

RNF130 protein was expressed in Expi-293F (Invitrogen) using
Expifectamine transfection reagent according to the manufacturer’s
instructions. Cells were collected 3 days after transfection. Proteins
were first captured by Ni2+-Sepharose 6 Fast Flow resin (GE healthcare)
and then further purified by gel filtration chromatography with a
Superdex S200 column (GE Healthcare). The purified protein was
concentrated and stored in buffer (20mMHEPES pH 7.5, 150mMNaCl
and 1mM TCEP) at −80 °C.

For expression of Δ17ARF1 and Δ17ARF1C159A, the His-tagged
recombinant plasmid was transformed into BL21-CodonPlus (DE3)-
RIPL cells, and then the cellswere grown in LBmedium and induced by
IPTG at a final concentration of 0.1mM at 25 °C for 6 h. The cells were
harvested and lysed in solution (20mM Tris, 100mM NaCl, 5mM
MgCl2, 10mM imidazole, pH8.0) by sonication and then centrifuged at
32,914 × g for 1 h at 4 °C. The supernatants were filtered by 0.22μM
syringe filters and purified on HiTrap column (GE Healthcare) by elu-
tion with 300mM imidazole. Protein sample was then purified by a
Superdex 75 10/300 GL column. Finally, the purified Δ17ARF1 and
Δ17ARF1C159A proteins were concentrated and stored in buffer (20mM
Tris, 100mM NaCl, pH 8.0) at −80 °C.

The purification process ARNOSec7 protein was the same as that of
the SPOPMATH protein except the cells were induced by 0.1mM IPTG at
37 °C for 3 h.

Fluorescence polarization (FP)
Fluorescence polarization experiments were conducted in a 384-well
black plate (Corning, 3575) using a 42μL reaction system. FITC-labeled
SPOP substrate puc_SBC1 (FITC-LACDEVTSTTSSSTA) (synthesized by

GL Biochem (Shanghai) Ltd) was used for the probe. Then, 20μL of
reaction buffer (20mM HEPES, pH 7.4) containing 200 nM SPOPMATH

protein was incubated with 2μL of compound for 30min at room
temperature, and 20μL of reaction buffer containing 200 nM probe
was added. Fluorescencepolarization (mP) signals weremeasured by a
fluorescencemode (excitation filter 480 nm, emission filter 535 nm) in
Spark microplate reader (Tecan).

Protein thermal shift (PTS)
The Bio–Rad CFX96 RealTime PCR Detection System was utilized to
monitor the thermal stability of ARF1 and SPOPMATH protein. PTS
experimentswere performed in a 96-well PCRplate (DNBiotech (Hong
Kong) Co., Ltd.) with a 20 μL reaction system. A total of 20 μL of
reaction buffer containing protein (5μM for SPOPMATH or 2.5μM for
ARF1), 5 × SYPRO Orange Protein Gel Stain (Sigma, S5692) and indi-
cated concentration of compound. The signals of all reaction systems
were continuously monitored and recorded from 25 °C to 90 °C for
approximately 45min. The Tm values of SPOPMATH and ARF1 were
measured using CFX manager software version 3.1.

Nuclear magnetic resonance (NMR)
NMR spectroscopy experiments were performed using a 600MHz
spectrometer (AVANCE III, Bruker) to validate protein–ligand interac-
tions. In Carr-Purcell-Meiboom-Gill (CPMG) and saturation transfer
difference (STD)NMRexperiments, compoundwas dissolved to a final
concentration of 200μM in a solution of PBS formed with D2O con-
taining 5μM SPOPMATH protein and 5% DMSO‑d6.

Mass spectrometry analysis
The experiment was performed on the mass spectrometry service
platform of Shanghai Institute of MateriaMedica, Chinese Academy of
Sciences. Theprotein (100μM)was incubatedwith compounds (1mM)
or solvent control overnight at 4 °C, and then the protein molecular
weights were determined by Q Exactive (Thermo) and 6545 XT (Agli-
ent)mass spectrometer. For compound binding site identification, the
proteins were digested with trypsin (10 ng/μL) at 37 °C for 17 h. The
next day, after centrifugation, the supernatant was lyophilized, desal-
ted, and lyophilized again, followed by the addition of 0.1% FA solution
to dissolve peptide lyophilized powder. After centrifugation, the
supernatant was detected by mass spectrometry (Q-Exactive). The MS
data was analyzed via software MaxQuant (version 1.6.5.0). The false
discovery rate (FDR) for peptides and proteins was controlled <1% by
Andromeda search engine.

Surface plasmon resonance (SPR)
The SPR binding assay was performed using a Biacore T200 instrument
(GE Healthcare). The purified RNF130 protein was covalently immobi-
lized onto a CM5 sensor chip (Cytiva) by a standard amine-coupling
procedure in 10mM sodium acetate (pH 4.5) with running buffer HBS
(50mM HEPES pH 7.4, 150mM NaCl). iRNF130-63 was serially diluted
and injected onto the sensor chip at a flow rate of 30μL/min for 120 s
(contact phase), followed by 120 s of buffer flow (dissociation phase).
The equilibrium dissociation constant (KD) value was derived using
Biacore T200 Evaluation software (version 1.0, GE Healthcare).

Isothermal titration calorimetry (ITC)
The binding parameters of the compound iRNF130-63 to RNF130 were
measured with a MicroCal PEAQ-ITC calorimeter. The RNF130 protein
was diluted to 25 µM. Then, 2 µL of iRNF130-63 (300μM)was added to
the RNF130 protein. The data were analyzed using MicroCal PEAQ-ITC
software.

Guanine nucleotide exchange assay
First, with the participation of EDTA (a metal chelating agent capable
of chelatingmagnesium ions, which are critical for the binding of GDP/
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GTP to ARF1), GDP was loaded onto the ARF1 protein by incubating
ARF1 with a 20-fold molar concentration of GDP. Excess magnesium
chloride was used to terminate the loading reaction, followed by the
removal of excess GDP by a NAP-5 column to produce ARF1GDP protein.
Next, ARF1GDP protein (20μM) was mixed with compounds and Mant-
GTP (10μM) in reaction buffer and incubated in the dark for 15min.
Exchange reactions were initiated by the injection of ARNOSec7 (1μM).

Cell lines
293T (CRL-3216), MDA-MB-231 (HTB-26), 4T-1 (CRL-2539) and CT26
(CRL-2638) cells were obtained from the American Type Culture Col-
lection (ATCC). OS-RC-2 (1101HUM-PUMC000292) and Caki-2
(1101HUM-PUMC000337) cells were purchased from the National
Biomedical Laboratory Cell Resource Bank. 786-O (TCHu186) cells
were kindly provided by the Cell Bank/Stem Cell Bank, Chinese Acad-
emy of Sciences. 293T and MDA-MB-231 cells were cultured in DMEM
medium (BasalMedia, L110KJ) supplemented with 10% fetal bovine
serum (FBS, Gibco, 10099141C) and 1% Penicillin-Streptomycin (PS,
Gibco, 2321118). 786-O, OS-RC-2, 4T-1 and CT26 cells were cultured in
RPMI-1640 medium (BasalMedia, L210KJ) supplemented with 10% FBS
and 1% PS. Caki-2 cells were cultured in McCoy’s 5A medium (Gibco,
2193071) supplemented with 10% FBS and 1% PS. All cells were incu-
bated at 37 °C under a 5% (v/v) CO2 atmosphere.

G-LISA
ARF1 activity was measured using corresponding G-LISA Activation
Assay Kits (Cytoskeleton, Denver, CO, USA). Briefly, CT-26 cells were
treated with different concentrations of rabeprazole and lysed using
the provided cell lysis buffer, then lysates were collected by cen-
trifugation at 16,260 × g at 4 °C for 1min. Protein concentrations from
each sample were quantified and adjusted to identical concentration
for the assay. ARF1 activity was assessed according to the manu-
facturer’s instructions.

Western blot
Total proteins from cells were lysed in RIPA lysis buffer (Beyotime,
P0013C) containing phosphatase inhibitor (Bimake, B15001) and pro-
tease inhibitor (Bimake, B14001) on ice. Cell lysates were centrifuged
at 13,000 × g for 15min at 4 °C. The BCA protein assay kit (Thermo
Scientific, 23225)was used toquantify theprotein concentration. Equal
amounts of total proteins were separated by 10% SDS–PAGE and then
transferred onto nitrocellulose membranes. The membranes were
blocked with 5% skim milk in TBST for 1 h at room temperature and
then incubated with primary antibodies overnight at 4 °C. Then
membranes were incubated with HRP-conjugated anti-rabbit antibody
(secondary antibody, Promega, W4011, 1:1000) for 1 h at room tem-
perature. Finally, the immune complexesweredetectedwith anECL kit
(Meilun,MA0186) and visualized aswell as quantifiedusingGenGnome
XRQ NPC. The following primary antibodies were used: anti-Flag (Cell
Signaling Technology, 14793, 1:1000), anti-myc (Cell Signaling Tech-
nology, 2278, 1:1000), anti-GAPDH (Cell Signaling Technology, 5174,
1:1000), anti-PTEN (Cell Signaling Technology, 9559, 1:1000), anti-HA
(Cell Signaling Technology, 3724, 1:1000), anti-p-ERKT202/Y204 (Cell Sig-
naling Technology, 4376, 1:1000), anti-p-AKTThr308 (Cell Signaling
Technology, 4056, 1:1000), anti-ERK (Cell Signaling Technology, 9102,
1:1000), anti-AKT (Cell Signaling Technology, 9272, 1:1000), anti-
DUSP7 (ABGENT, AP8450a, 1:1000), anti-SPOP (Abcam, ab192233,
1:1000), anti-GST (Absin, abs830010, 1:1000) and anti-β-Tubulin (Cell
Signaling Technology, 15115, 1:1000).

In vitro GST pull-down
The plasmids (Myc-PTEN or Myc-DUSP7) were transiently transfected
into 293T cells. After transfection for 24 h, the cells were harvested and
lysed in cell lysis buffer for Western and IP (Beyotime, P0013) con-
taining protease inhibitor on ice. GST or GST-SPOPMATH proteins bound

to GST magnetic beads (GenScript, L00327) were incubated with the
cell lysates (Myc-PTEN or Myc-DUSP7) in the presence of different
doses of compound for 2 h at room temperature. The beads were
washed 3 times with PBST, and the precipitated proteins were eluted
with 1 × SDS loading buffer (Beyotime, L00327) at 100 °C for 5min and
analyzed by Western Blot.

Cellular thermal shift assay (CETSA)
293T cells transfected with Flag-RNF130 for 48 h were collected and
lysed in 20mM Tris pH 7.5, 150mM NaCl and 1% Triton X-100. Then,
50μM iRNF130-63 or DMSO was added to the supernatant and incu-
bated at 25 °C for 30min. After denaturing at various temperatures for
3min on a temperature gradient PCR instrument (Eppendorf), the
samples were centrifuged at 20,000 × g for 30min at 4 °C, and the
supernatants were analyzed by western blot.

Coimmunoprecipitation (Co-IP)
The plasmids (Flag-SPOPcyto, Myc-PTEN or Myc-DUSP7) were tran-
siently cotransfected into 293T cells. After transfection for 24 h,
293T cells were treated with different doses of compound for another
24 h. The cells were harvested and lysed in cell lysis buffer forWestern
and IP containing protease inhibitor on ice. Approximately 80% of the
total lysates were immunoprecipitated with anti-Flag-conjugated
magnetic beads (Bimake, B26102) for 2 h at room temperature, and
other lysates were used as input. The magnetic beads were then
washed 3 times with PBST, and the immunoprecipitated proteins were
elutedwith 1 × SDS loading buffer at 100 °C for 5min. The IP and lysate
samples were analyzed by western blot.

In vivo ubiquitination
The plasmids (Myc-PTEN or Myc-DUSP7, Flag-SPOPcyto, HA-Ub) were
transiently cotransfected into 293T cells. After transfection for 24 h,
293T cellswere treatedwith different doses of compound for 24 h. The
cells were then treated with 10μM protease inhibitor MG132 (Med-
ChemExpress (Monmouth Junction, NJ, USA), HY-13259) for another
4 h before harvesting. Next, the cells were lysed in denaturing buffer
(1% SDS, 50mMTris-HCl, 0.5mMEDTA, 1mMDTT, pH 7.5). The lysates
were incubated for 5min at 100 °C immediately, and then sonicated
and diluted with cell lysis buffer for Western and IP. Approximately
80% of the total lysates were immunoprecipitated with anti-Myc-
conjugated magnetic beads (Bimake, B26302) for 2 h at room tem-
perature, and the other lysateswereused as input. Themagnetic beads
were then washed 3 times with PBST, and the immunoprecipitated
proteins were eluted with 1 × SDS loading buffer at 100 °C for 5min.
The ubiquitination levels were detected using a Western Blot assay.

Cell permeability experiments
786-O cells were seeded in 10 cm dish for 70–80% confluency and
incubated with 20 µM 230D7 or 221C7 for 6 h. After washing 3 times
with PBS, the cells were digested with 0.25% trypsin and lysed by
400 µL methanol. The cell lysates were vortexed and centrifuged at
16,260 × g for 30min at 4 °C, and the supernatants were then pro-
cessed and analyzed by LC-MS/MS system.

Cell proliferation
Cells were seeded in 96-well plates and incubated with serially diluted
compounds for 72 h. Cell viability was determined using the CellTiter-
Glo® Luminescent Cell Viability Assay kit (Promega, G7573) following
the manufacturer’s instructions. IC50 values were determined by non-
linear regression (curve fit) using a variable slope (four parameters) in
GraphPad Prism (9.0).

Animals
All procedures performed on animals were in accordance with reg-
ulations and established guidelines and were reviewed and approved
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by the Institutional Animal Care and Use Committee at the Shanghai
Institute of Materia Medica, Chinese Academy of Sciences (IACUC
Issue NO. 2022-01-JHL-27 for NSGmice; IACUC Issue NO. 2021-03-JHL-
22 for BALB/c mice). NSG mice were obtained from Shanghai Model
Organisms Center, Inc; BALB/c mice were obtained from Beijing Hua-
fukang Biotechnology Co. Ltd (Beijing, China). Six- to eight-week-old
micewere used for the studies andweremaintainedwith free access to
pellet food and water in plastic cages at 21 ± 2 °C and humidity
(50± 10%) conditions and kept on a 12 h light/dark cycle. The tumor
size toleratedby thexenograft tumormodelmicedidnot exceed2000
mm3, themaximal tumor burden permitted by the Institutional Animal
Care and Use Committee at the Shanghai Institute of Materia Medica,
Chinese Academy of Sciences.

Pharmacokinetics
Thepharmacokinetic profiles of compound 230D7were determined in
male BALB/c mice. The test compound 230D7 was dissolved in solu-
tion containingDMSO, PEG400, PBS (5/5/90, v/v) and administered via
intraperitoneal administration (i.p.) at 10mg/kg. Serial blood samples
(50–100 µL) were collected at 0.25, 0.5, 1, 2, 4, 8, 24 h after dosing and
centrifuged at 7227 × g for 5min to obtain the plasma fraction. A 10μL
aliquot of plasmawasdeproteinizedwith 100μL acetonitrile/methanol
(1/1, v/v) containing internal standard. After centrifugation, the
supernatantwasdilutedwith a certain proportion of acetonitrile/water
(1/1, v/v), mixed and centrifuged at 1807 × g for 10min. Finally, the
aliquots of the diluted supernatant were injected into LC–MS/MS
system.

Acute toxicity
BALB/c mice were used to evaluate the toxicity of compound 230D7.
Themicewere randomly divided into 3 groups (n = 3) and treatedwith
different doses of compound 230D7 (0, 50, 100mg/kg) by intraper-
itoneal administration daily for a week. The body weights ofmice were
measured every day and the significant organs (heart, kidney, lung,
liver and spleen) were harvested, weighted and used for histological
analysis at the last day.

H&E staining
For histological analysis of BALB/c mice in 230D7-treated or vehicle
control groups, H&E staining were performed using standard histolo-
gical techniques. According to the manufacturer’s protocol (Service-
bio, Inc.), isolated organ tissues were fixed in 4% neutral
paraformaldehyde for 24 h and embedded in paraffin wax. Paraffin
slides (4 μm) were then dewaxed and hydrated. Subsequently, the
slideswere sequentially stainedwith hematoxylin and eosin. Lastly, the
slides were sealed with neutral resin and images were captured by
microscopy (Eclipse E100, DS-U3, Nikon).

786-O cells xenograft tumor growth
NSGmicewere used to evaluate the pharmacodynamics of 230D7. The
786-O cells xenograft tumor model was established by the sub-
cutaneous injectionof 786-Ocells (1 × 107) into theNSGmice.When the
tumor reached the volume of approximately 100 mm3, the mice were
randomly divided into three groups (n = 7) and intraperitoneally trea-
ted with different dosages of 230D7 (0, 25, 50mg/kg, 230D7 was
synthesized inour laboratory) in solution containingDMSO, PBS (5/90,
v/v) once a day for 16 days. Bodyweight and tumor sizeweremeasured
every 2 or 3 days, and tumor volumewas calculated using the formula:
V = (L × W2)/2 (L, length; W, width). At the end of the experiment, the
mice were euthanized and the tumorswere harvested forWestern Blot
and other studies.

CT26 cells transplanted tumor growth
BALB/c mice were used to evaluate the pharmacodynamics of rabe-
prazole (purchased from MedChemExpress, HY-B0656). The CT26

cells transplanted tumor model was established by the subcutaneous
injection of CT26 cells (2.5 × 105) into mice. When the tumor reached
the volume of approximately 100 mm3, the mice were randomly divi-
ded into two groups (n = 5) and intraperitoneally treated with rabe-
prazole (0, 40mg/kg) in solution containing DMSO, PEG300, PBS, (1/
10/89, v/v/v) once a day for 10 days. The tumor sizewas recordedusing
callipers, and tumor volume was calculated using the formula: V = (L ×
R2)/2. At the end of the experiment, the mice were euthanized and the
tumors were harvested for immunohistochemistry and fluorescence-
activated cell sorting.

Nile red staining
CT26 cells were seeded into Lab-TekTM II Chamber Slide systems
(Thermo) and incubated with rabeprazole or vehicle. Then, the cells
were washed with PBS for 15min, fixed with Immunol Staining Fix
Solution (Beyotime, P0098) for 30min and washed with PBS again,
followed by treatment with Immunostaining Permeabilization Buffer
with Triton X-100 (Beyotime, P0098) for 30min andwashing with PBS
again. To stain the lipiddroplets, the cellswere incubatedwithNile Red
(2 µM) in the dark for 10–30min and then washed with PBS before the
nuclei were stained with Antifade Mounting Medium with DAPI
(Beyotime, P0131). Fluorescence images were captured using an
OLYMPUS IX73 fluorescence microscope and Lecia two-photon con-
focal microscope.

Immunohistochemistry (IHC)
The isolated CT26 tumor tissue was fixed with neutral paraformalde-
hyde, and subsequent staining of cell surface markers was performed
by Servicebio Company (Wuhan, China). In brief, the tumor tissue
embedded in paraffin was processed through sectioning, dewaxing,
rehydration, and antigen retrieval. Following peroxidase inactivation
and blocking with goat serum, the tissue was incubated overnight with
the corresponding primary monoclonal antibody overnight at 4 °C.
The next day, slides were washed three times and incubated with
horseradish peroxidase (HRP)-linked secondary antibodies for 1 h at
room temperature. Specimens were washed three times then devel-
oped with the DAB substrate kit and counterstained with
haematoxylin.

Fluorescence-activated cell sorting (FACS)
We analyzed the infiltration of immune cell subsets in CT26 trans-
planted tumor tissue by fluorescence-activated cell sorting (FACS)
analysis. After the mice were euthanized, the tumor tissues were strip-
ped and cut into pieces, then digested at 37 °C for 60min with tumor
tissuedigestive buffer (0.1% collagenase, 0.001%hyaluronidase, 0.002%
DNA enzyme, 120μM CaCl2 and 120μM MgCl2 in RPMI1640 medium).
Thedigested tumor tissueswerefilteredwith 200meshgauze, followed
by the lysis of red blood cells with ammonium chloride solution, and
filtered again to obtain single-cell suspensions in PBS. For discriminat-
ing the living anddead cells, 1 × 106 cellswere stainedon icewith Fixable
Viability Stain 700 (BDHorizan, 564997) for 10min and then terminated
with cell staining buffer (PBS containing 2% FBS). Fc receptors on the
cell surface are blocked by 1μg anti-Mouse CD16/32 antibody (10min
on ice). Then, appropriately conjugated fluorescent primary antibodies
were added to stain cell surface markers. Finally, cells were suspended
with cell staining buffer for flow cytometry analysis using Beckman
CytoFelx. The following antibodies were used: anti-CD3 (Invitrogen, 11-
0032-82, 1:1000), anti-CD8 (Biolegend, 100738, 1:1000), anti-PD1 (Bio-
legend, 135219, 1:1000), anti-TIM3 (Invitrogen, 12-5870-82, 1:1000). The
data were analyzed by Flowjo software and cell populations were
defined as shown in Supplementary Fig. 7.

Statistical analysis and reproducibility
GraphPad Prism 9.0 software was used to perform statistical analysis.
Differences of quantitative data between groups were calculated using
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2-tailed unpaired t-test. The significance level was set as *P <0.05,
**P <0.01, ***P <0.001, ****P <0.0001.

Synthesis of 230D7 and 222A5
All reagents and solvents, unless otherwise specified, were purchased
fromcommercial sources andusedwithout furtherpurification. 1HNMR
and 13C NMR spectra were recorded on Mercury-600 spectrometers at
room temperature. Chemical shifts are referenced to the residual sol-
vent peak and reported in ppm (δ scale), and all coupling constant (J)
values are given in Hz. ESI-HRMS and ESI-LRMS data were measured on
Thermo Exactive Orbitrap plus spectrometer. Flash column chromato-
graphy was performed on Flash 300 Isolera one. Analytical HPLC con-
ditions were as follows: Agilent 1260 Infinity II variable wavelength
detector;WatersXBridgeC18, 4.6mm×150mm, 3.5μmparticles. Phase
A was water with 0.1% TFA, and phase B was MeCN. The entire eluting
time was 10min with a gradient from 10% phase B to 90% phase B in
3.5min, followed by a 4.5min hold at 90% phase B, and then a gradient
from 90% phase B to 10% phase B in the next 2min. The flow rate was
1mL/min. The synthetic routes of the compounds are shown in Sup-
plementary Fig. 8. 1H NMR, 13C NMR, HRMS and HPLC data of inter-
mediates and final products are reported in Supplementary Figs. 9–24.

Ethyl 5-((4-bromo-2-chlorophenoxy)methyl)furan-2-carboxylate
(1). To a solution of 4-bromo-2-chlorophenol (1.0 g, 4.9mmol, 1.0 eq),
ethyl 5-(chloromethyl)furan-2-carboxylate (0.92 g, 4.9mmol, 1.0 eq) in
DMF (7mL) was added K2CO3 (1.1 g, 8.0mmol, 1.6 eq), themixture was
stirred at 60 °C for 5 h. After completion of the reaction, H2O (50mL)
was added and the mixture was extracted with EtOAc (50mL × 3). The
combined organic phases were washed with brine (30mL × 3), dried
over Na2SO4, and concentrated in vacuum. The residuewas purified by
column chromatography using 20% EtOAc in hexane to obtain the title
compound 1 (1.2 g, 69%) as a white solid. 1H NMR (600MHz, DMSO-d6)
δ 7.70 (d, J = 2.4Hz, 1H), 7.53 (dd, J = 9.0, 2.4 Hz, 1H), 7.32-7.27 (m, 2H),
6.82 (d, J = 3.6 Hz, 1H), 5.28 (s, 2H), 4.29 (q, J = 7.2 Hz, 2H), 1.29 (t,
J = 7.2Hz, 3H); 13C NMR (151MHz, DMSO-d6) δ 158.23, 154.02, 153.04,
144.79, 132.59, 131.47, 123.40, 119.38, 116.67, 113.47, 113.09, 63.13, 61.24,
14.63; HRMS (m/z): [M +H]+ calcd. for C14H13BrClO4, 358.9680; found,
358.9680; HPLC: purity 98.9%, retention time 9.221min.

5-((4-bromo-2-chlorophenoxy)methyl)furan-2-carboxylic acid (2).
To a solution of 1 (1.2 g, 3.4mmol, 1.0 eq) in MeOH (15mL) was added
2MaqueousNaOH(15mL, 30mmol, 8.8 eq), and themixturewas stirred
at 50 °C for 2 h. After completion of the reaction, the mixture was con-
centrated under reduced pressure, then the residue was acidified to pH
4by thedropwise additionof concentratedHCl at0 °C. Theprecipitated
solid was filtered to afford the title compound 2 (1.09 g, 97%) as a white
solid. 1HNMR (600MHz,DMSO-d6)δ 13.23 (s, 1H), 7.70 (d, J=2.4Hz, 1H),
7.53 (dd, J=9.0, 2.4Hz, 1H), 7.30 (d, J=9.0Hz, 1H), 7.22 (d, J=3.6Hz, 1H),
6.79 (d, J=3.6Hz, 1H), 5.26 (s, 2H); 13C NMR (151MHz, DMSO-d6) δ
159.64, 153.54, 153.07, 145.82, 132.59, 131.47, 123.39, 118.82, 116.65, 113.36,
113.04, 63.18; HRMS (m/z): [M-H]- calcd. for C12H7BrClO4, 328.9222;
found, 328.9223; HPLC: purity 99.3%. retention time 8.061min.

5-((4-bromo-2-chlorophenoxy)methyl)furan-2-carbonyl chloride
(3). A solution of 2 (0.20 g, 0.61mmol, 1.0 eq) in SOCl2 (3.0mL,
41.3mmol, 67.8 eq) was stirred under reflux for 2 h. After being cooled
to rt, the solutionwas concentratedunder reducedpressure to remove
the excess SOCl2. The residue was then dried under high vacuo for 1 h,
and the crude product 3 (0.21 g) as a white solid was used directly for
the next step without further purification.

(6R,7R)−3-(acetoxymethyl)−7-(5-((4-bromo-2-chlorophenoxy)
methyl)furan-2-carboxamido)−8-oxo-5-thia-1-azabicyclo[4.2.0]
oct-2-ene-2-carboxylic acid (230D7). To a solution of (6R,7R)−3-
(acetoxymethyl)−7-amino-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-

ene-2-carboxylic acid (0.21 g, 0.77 mmol, 1.0 eq) in acetone (7mL)
was added saturated aqueous NaHCO3 (14mL), and then 3 (0.32 g,
0.91 mmol, 1.2 eq) in acetone (5 mL) was added dropwise at 0 °C
over 15 min. The reaction mixture was allowed to warm to rt and
stirred for 4 h. After completion of the reaction, the pH was
adjusted to 4 with 1 M aqueous HCl. The precipitated solid was
filtered to obtain a crude product. The crude product was purified
by column chromatography using 5% MeOH in DCM, to afford the
title compound 230D7 (0.30 g, 66%) as a white solid. 1H NMR
(600MHz, DMSO-d6) δ 13.71 (s, 1H), 9.36 (d, J = 8.4 Hz, 1H), 7.70 (d,
J = 2.4 Hz, 1H), 7.52 (dd, J = 9.0, 2.4 Hz, 1H), 7.38 (d, J = 3.6 Hz, 1H),
7.31 (d, J = 9.0 Hz, 1H), 6.78 (d, J = 3.6 Hz, 1H), 5.82 (dd, J = 7.8, 4.8 Hz,
1H), 5.24 (s, 2H), 5.18 (d, J = 4.8 Hz, 1H), 4.99 (d, J = 12.8 Hz, 1H), 4.71
(d, J = 12.8 Hz, 1H), 3.65 (d, J = 18.0 Hz, 1H), 3.51 (d, J = 18.0 Hz, 1H),
2.04 (s, 3H); 13C NMR (151 MHz, DMSO-d6) δ 170.67, 164.27, 163.31,
158.22, 153.11, 152.64, 147.15, 132.58, 131.47, 127.03, 123.76, 123.44,
116.71, 116.06, 113.30, 113.03, 63.20, 63.14, 59.67, 58.05, 26.04,
21.03; HRMS (m/z): [M+Na]+ calcd. for C22H18BrClN2NaO8S,
606.9548; found, 606.9565; HPLC: purity 98.6%, retention time
8.023min.

(6R,7R)−7-(3-cyclopentylpropanamido)−8-oxo-3-vinyl-5-thia-1-aza-
bicyclo[4.2.0]oct-2-ene-2-carboxylic acid (222A5). To a solution of
(6R,7R)−7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-
carboxylic acid (0.20 g, 0.88mmol, 1.0 eq) in acetone (5mL) was added
saturated aqueous NaHCO3 (10mL), followed by dropwise addition of
3-cyclopentylpropanoyl chloride (0.15μL, 0.97mmol, 1.1 eq) in acetone
(5mL) at 0 °C over 15min. The reactionmixturewas allowed towarm to
rt and stirred for 4 h. After completion of the reaction, the pH was
adjusted to4with 1MaqueousHCl, theprecipitated solidwasfiltered to
afford a crude product. The crude product was purified by column
chromatography using 5% MeOH in DCM to afford the title compound
222A5 (0.15 g, 44%) as awhite solid. 1HNMR (600MHz,DMSO-d6)δ8.85
(d, J= 8.4Hz, 1H), 6.90 (dd, J= 17.4, 11.4Hz, 1H), 5.66 (dd, J =8.4, 4.8Hz,
1H), 5.59 (d, J= 17.4Hz, 1H), 5.31 (d, J= 11.4Hz, 1H), 5.12 (d, J=4.8Hz, 1H),
3.86 (d, J= 17.7Hz, 1H), 3.56 (d, J= 17.6Hz, 1H), 2.26-2.13 (m, 2H), 1.76-
1.67 (m, 3H), 1.60-1.40 (m, 6H), 1.10-1.00 (m, 2H); 13C NMR (151MHz,
DMSO-d6) δ 173.64, 165.23, 163.72, 132.46, 125.93, 124.49, 117.69, 59.55,
58.25, 39.58, 34.56, 32.53, 32.37, 31.98, 25.19, 25.14, 23.51; HRMS (m/z):
[M+Na]+ calcd. for C17H22N2NaO4S, 373.1192; found, 373.1196; HPLC:
purity 97.5%, retention time 7.662min.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The biological data generated in this study have been deposited in the
Figshare database under accession code https://doi.org/10.6084/m9.
figshare.23567292. The raw data in this study are provided in the
SourceData file. The virtual screening results and spectral data for new
compounds are available in the Supplementary Information. ChEMBL
database is available at https://www.ebi.ac.uk/chembl/, and DrugBank
dataset is available at https://go.drugbank.com/. The commercial
Chemspace Library is available at https://chem-space.com/, and
ChemDiv Library is available at https://www.chemdiv.com/. All data are
available from the corresponding author upon request. Source data
are provided with this paper.

Code availability
The inference and interpretation codes of TransformerCPI2.0 are
available at https://github.com/lifanchen-simm/transformerCPI2.0/.
The inference and interpretation codes of TransformerCPI2.0 have
been deposited in the Zenodo under accession code https://doi.org/
10.5281/zenodo.7993486.
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