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Increased body mass index is linked to
systemic inflammation through altered
chromatin co-accessibility in human
preadipocytes

Kristina M. Garske 1, Asha Kar 1, Caroline Comenho1, Brunilda Balliu 2,
David Z. Pan1,3, Yash V. Bhagat 1, Gregory Rosenberg 1, Amogha Koka1,
Sankha Subhra Das1, Zong Miao 1,3, Janet S. Sinsheimer1,2,3, Jaakko Kaprio 4,
Kirsi H. Pietiläinen 5,6 & Päivi Pajukanta 1,2,7

Obesity-induced adipose tissue dysfunction can cause low-grade inflammation
and downstream obesity comorbidities. Although preadipocytes may con-
tribute to this pro-inflammatory environment, the underlyingmechanisms are
unclear. We used human primary preadipocytes from body mass index (BMI)
-discordant monozygotic (MZ) twin pairs to generate epigenetic (ATAC-
sequence) and transcriptomic (RNA-sequence) data for testing whether
increased BMI alters the subnuclear compartmentalization of open chromatin
in the twins’ preadipocytes, causing downstream inflammation. Here we show
that the co-accessibility of open chromatin, i.e. compartmentalization of
chromatin activity, is altered in the higher vs lower BMI MZ siblings for a large
subset ( ~ 88.5Mb) of the active subnuclear compartments. Using the UK
Biobank we show that variants within these regions contribute to systemic
inflammation through interactions with BMI on C-reactive protein. In sum-
mary, open chromatin co-accessibility in human preadipocytes is disrupted
among the higher BMI siblings, suggesting amechanism how obesitymay lead
to inflammation via gene-environment interactions.

The obesity epidemic is driving concomitant alarming increases in
obesity comorbidities, such as type 2 diabetes (T2D), coronary artery
disease (CAD), and nonalcoholic fatty liver disease (NAFLD)1–3. Obesity
is also one of the key risk factors for severe COVID-19 outcomes4,5,
most likely not only due to the altered mechanics of lung ventilation
but also due to the low-grade inflammation induced by obesity6.
Recent assessment of polygenic risk scores (PRSs) for the obesity
surrogate trait, body mass index (BMI), highlights how accumulation

of risk variants is associated with the level of BMI and higher odds of
having obesity comorbidities, T2D or CAD, in the UK Biobank (UKB)7.
However, not all individuals with obesity exhibit metabolic profiles
associated with poor cardiometabolic health outcomes, and this var-
iation can be due to genetics, environmental factors, and interactions
between them7,8. Therefore, understanding the pathophysiological
mechanisms in obesity that contribute to metabolically and immuno-
logically unhealthyphenotypes can improve risk assessmentof genetic
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and environmental contributions to these clinically important traits.
This will ultimately inform treatment strategies to decrease morbidity
and mortality due to the obesity epidemic.

Chronic low-grade inflammation is a hallmark of obesity that
contributes to the development of obesity comorbidities, such as
insulin resistance and atherosclerosis1. In addition to the known role of
adiposemacrophages in this process1,9, there is increasing evidence for
the role of preadipocytes in the development of dysfunctional adipose
tissue and the pro-inflammatory state seen in obesity10. Preadipocytes
are capable of secreting pro-inflammatory cytokines at appreciable
levels, and can exhibit gene expression profiles similar to
macrophages10,11. However, this has been predominantly shown
in vitro, in response to treating preadipocytes with media containing
pro-inflammatory molecules12–15. The underlying biological mechan-
isms throughwhich preadipocytes contribute to the pro-inflammatory
signals within the adipose tissue of individuals with obesity remain
unclear.

We hypothesized that the obesogenic environment disrupts the
proper function of preadipocytes through altered co-accessibility of
open chromatin, the identification ofwhichmay pinpointmechanisms
driving obesity-related inflammation. To discover novel epigenetic co-
accessibility changes that would link increased BMI to systemic
inflammation in the key adipose cell-type, human primary pre-
adipocytes, we investigated monozygotic (MZ) twins discordant for
BMI (ΔBMI ≥3 kg/m2), and thus, in each MZ twin pair, the lower-BMI
twin provides the control individual and the higher-BMI twin provides
the case individual, controlled for the same genetic variants. This
design allows us to separate observed epigenetic changes from the
effects of genetic variants, given that theMZ twin pairs have a different
BMI but the same genome. Thus, our unique BMI-discordant MZ twin
design provides individual-level genetic control to our study, rather
than the currently used BMI cut points for lean and obese that are
based on health-related outcomes at the population level. Therefore,
any differences we observe between theseMZ twin siblings discordant
for BMI will likely be due to environmental differences in the indivi-
dual’s history.

We first generated an assay for transposase-accessible chromatin
(ATAC) -sequencing and RNA-seq data in the twins’ preadipocytes, and
promoter Capture Hi-C (pCHi-C) data in an independent source of
human primary preadipocytes from one individual16. By integrating
these data and leveraging co-accessibility information across all pre-
adipocyte samples from the twins, we identified subnuclear compart-
ments of chromatin activity, previously defined as active (A) and
inactive (B) compartments17. The active A compartments exhibited
significant differences in compartmentalization of chromatin activity,
defined by the A compartment level of co-accessibility, between the
lower and higher BMI MZ sibling groups. We show that these active A
compartment regions with altered open chromatin co-accessibility
may contribute to inflammation through gene–BMI interactions in the
UK Biobank (UKB), indicating that we have identified preadipocyte-
origin genomic mechanisms underlying the pro-inflammatory envir-
onment seen in obesity.

Results
Identification of A/B compartments in human primary
preadipocytes
We have an ongoing collection of a unique, deeply phenotyped
cohort of 50 Finnish monozygotic (MZ) twin pairs who are dis-
cordant for BMI (ΔBMI ≥3 kg/m2)18,19 (see Methods). The phenotypic
and metabolic characteristics of these twins are summarized in
Supplementary Data 1. A paired t-test of phenotypic measurements
indicates that many traits are significantly different between the
lower and higher BMI groups of siblings, including C-reactive protein
(CRP), which is a measure of systemic inflammation, important
comorbidity of obesity (Supplementary Data 1). We hypothesized

that there are changes in the co-accessibility of open chromatin in
the preadipocytes (PAd) under conditions of increased BMI, which
could lead to adipose tissue dysregulation and contribute to the
difference in inflammatory profiles. We, therefore, isolated the pri-
mary subcutaneous PAd from the subcutaneous adipose biopsies of
10 of the BMI-discordant MZ pairs (n = 20) (see Methods). The phe-
notypic characteristics of this subset of pairs for whom we collected
the PAd are summarized separately in Supplementary Data 2.

To characterize the PAd at the level of subnuclear compart-
mentalization of chromatin activity, we performed ATAC-seq on
the BMI-discordant MZ twin pairs’ PAd. For all downstream ana-
lyses, we report the findings from the nine pairs for whom the
ATAC-seq passed quality control (see Methods; Supplementary
Data 3; Supplementary Table 1; and Supplementary Figs. 1, 2a–d).
We inferred A and B genomic compartments, which are broadly
associatedwith active or inactive regions of genome17, respectively,
using the co-accessibility information from the ATAC-seq coverage
across 100-kb bins, as described previously20 (see Methods)
(Fig. 1a; Supplementary Data 4; and Supplementary Fig. 2e–h). In
the MZ twin PAd, the A compartments were shorter than the B
compartments, with a median of 300 kb compared with 600 kb in
the B compartments (pWilcoxon = 3.08 × 10−76) (Supplementary
Fig. 3a). B compartmentsmade up an average of 74.8 ± 9.7% (s.d.) of
each chromosome (Supplementary Fig. 3b). We validated the
compartment detection by characterizing the stratification of
known functional features of chromatin compartmentalization
across the A and B compartments17,21. The proportion of chromo-
somes making up B compartments is significantly correlated
(Spearman’s rho = 0.68, p = 6.8 × 10−4) with the percent of the
chromosome that is comprised of gene deserts (Supplementary
Fig. 3c). As previously reported17,21, gene deserts were largely
restricted to B compartments (Supplementary Fig. 3d) and the gene
density in the A compartments was significantly higher than in the B
compartments (pWilcoxon = 3.34 × 10−69) (Supplementary Fig. 3e).

Preadipocyte A/B compartments reflect cell-type-specific gene
regulatory activity
To validate our A/B compartment detection with external datasets and
address the cell-type-specificity of gene regulatory activity in the PAd
A/B compartments, we compared their coverage of chromatin states
across 127 ENCODE cell types using the imputed 25-state model from
ChromHMM22. We found that the A compartment coverage of
enhancer chromatin states was highest for themesenchymal stem cell-
derived adipocyte cultured cells (MSC-Ad) (padj < 0.05), and next
highest in adipose-derived mesenchymal stem cell cultured cells (Ad-
MSC), in line with the primary PAd being at a developmental stage
similar to these two cell types (Supplementary Fig. 4). There was a
similar trend for the A compartment coverage of promoter chromatin
states for MSC-Ad (Supplementary Fig. 4). Conversely, the A com-
partment coverage of quiescent chromatin states was significantly
lower in the MSC-Ad than all other cell types (padj < 0.05) except Ad-
MSCs and primary breast myoepithelial cells (Supplementary Fig. 4).
Since the A compartment coverage was most specific for MSC-Ad, we
consider the primary PAd to be most similar to this ENCODE cell type.
We, therefore, used these chromatin states for all subsequent analyses
using ChromHMM.

To confirm that measures of active gene regulation are more
restricted to A compartments than B compartments, we assessed the
coverage of active or inactive chromatin states within the A/B com-
partments. The A compartment coverage was higher than the B com-
partment coverage for the enhancer (pWilcoxon = 5.36 × 10−75) and
promoter (pWilcoxon = 2.43 × 10−130) chromatin states, whereas the B
compartment coverage was higher than the A compartment coverage
for quiescent states (pWilcoxon = 8.34 × 10−95) (Fig. 1b), in line with active
gene regulation being more prevalent in the A compartments. Taken
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together, we used human primary PAd ATAC-seq data to infer A/B
compartments that can be used to better understand the co-
accessibility of open chromatin of these cells.

To determine whether the compartmentalization of active (A)
and inactive (B) chromatin states associates with higher and lower
gene expression, respectively, we performed RNA-seq on the PAd
from the ten BMI-discordant MZ pairs (n = 20) (see Methods; Sup-
plementary Data 2; Supplementary Table 2; and Supplementary
Fig. 5). Genes in the A compartments have higher mean expression
than genes in the B compartments (pWilcoxon = 8.85 × 10−46), in line
with the fact that A compartments are enriched for molecular

signatures of active gene regulation (Fig. 1c). A clear example of how
the A/B compartments define cell-type-specific genomic program-
ming is presented in Fig. 1d, e. Consistent with these primary cells
being at a later developmental time point23, the early PAd marker,
DLK1, is located within a B compartment and has negligible expres-
sion in the preadipocytes (Fig. 1d). Conversely, the later PAd marker,
PDGFRA, is located within an A compartment and is clearly expressed
(Fig. 1e). Furthermore, the well-established adipocyte-specific adi-
pocytokine, ADIPOQ, is located within a PAd B compartment, in line
with this gene not being expressed until the later stages of adipocyte
differentiation (Supplementary Data 4). Taken together, the

Fig. 1 | A/B compartment identification using ATAC-seq co-accessibility in
human primary preadipocytes. a PAd A/B compartments on chromosome 1. Each
bar represents a 100-kb bin and the height of the bar is the projection onto the first
eigenvector of the 100-kb bin co-accessibility matrix across chromosome 1. The
sign switches at A/B compartment boundaries; positive values correspond to A
compartments (green) and negative values correspond to B compartments (gray).
bCoverage of enhancer, promoter, and quiescent ChromHMMchromatin states in
the A (n = 1551 compartments) and B (n = 1557 compartments) compartments. P
values correspond to the two-sided Wilcoxon rank-sum test comparing the A
compartment toB compartment coverage for each chromatin state. Boxplot center
represents the median coverage of the indicated chromatin state in the compart-
ment type, the upper and lower bounds of the box represent the 75th and 25th
percentile, respectively, and the upper and lower whiskers represent the highest

(non-outlier) and lowest (non-outlier) values, respectively. cDensity distribution of
the gene expression (mean log2(TPM)) in the A (green) and B (gray) compartments
shows higher expression in the A compartments. P value corresponds to the two-
sided Wilcoxon rank-sum test comparing the gene expression in the A (n = 6554
expressed genes) compartments to the gene expression in the B (n = 5708
expressed genes) compartments. Genome browser snapshots of two preadipocyte
marker genes: d DLK1, an early preadipocyte marker, is located within a B com-
partment on chromosome 4 and is not expressed; and e PDGFRA, a late pre-
adipocyte marker, is located within an A compartment on chromosome 14 and is
expressed. The ChromHMM state track is directly from Roadmap Epigenomics on
the WashU Epigenome Browser. PC indicates principal components; MSC-Ad
mesenchymal stem cell-derived adipocyte cultured cells, and PAd preadipocyte.
Source data are provided as a Source Data file.
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inference of the A and B compartments is in accordance with pre-
viously published hallmark features of subnuclear compartments.

Promoter–enhancer interactions are enriched in the A
compartments
Wenext aimed to determinewhether theA/B compartments demarcate
regions that have been shown to be physically interacting in an inde-
pendent source of human primary PAd. To link regulatory elements to
their target promoters through chromosomal interactions24, we iden-
tified promoter interactions in human primary PAd using our existing
promoter Capture Hi-C (pCHi-C) data from a European origin
individual16 (Supplementary Table 3). To assesswhether the PAdpCHi-C
interactions correspond to the subnuclear A/B compartmentalization,
we examined whether the two ends of the pCHi-C interactions land in
the same or different compartments. For 51,974 of the 76,473 PAd
interactions (68.0%), both ends landed in the same compartment, with
25,686 of these (49.4%) being contained within the same A compart-
ment, and 26,288 (50.6%) of these interactions being in the same B
compartment. Given that the B compartments make up ~75% of the
genome in the preadipocytes (Supplementary Fig. 3b), this suggests
that the pCHi-C interactions are enriched within the A compartments.
To determine whether the proportion of pCHi-C interactions in the A
compartments is higher than expected by chance alone, we permuted
the compartment locations and re-calculated how often both ends of
thepCHi-C interactions land in the sameAcompartment (seeMethods).
The proportion of interactions that have both ends landing in the same
permuted A compartments is, on average, 18.5 ± 1.1% (s.d.), meaning
that there is a 2.67-fold enrichment of pCHi-C interactions in the A
compartments (p < 1 × 10−04). This is in line with the pCHi-C interactions
being regulatory and thus being more prevalent in A compartment
regions of active gene regulation. It has previously been reported that
genes involved in pCHi-C interactions are more highly expressed25. We
found that this is only true for genes locatedwithin theAcompartments
(pwilcoxon = 1.38 × 10−09), whereas this was not the case for genes in the B
compartments (pwilcoxon =0.873) (Supplementary Fig. 6).

Taken together, our data suggest that PAdpCHi-C interactions are
enriched in the PAd A compartments, and that the previously reported
higher expression of genes involved in pCHi-C interactions may be
dependent upon the gene landing in A, rather than B compartments
(Supplementary Fig. 6). We chose to focus on the A compartments for
the remainder of our study, given the evidence that active gene reg-
ulation is occurring in these regions, and thus they are likely important
for PAd function.

Genome-wide A compartment co-accessibility is decreased in
MZ siblings with a higher BMI
We hypothesized that the BMI-discordant MZ pairs would exhibit dif-
ferences in the compartmentalization of chromatin activity in their
preadipocytes. To establish a measure of compartmentalization to
compare the twins, we calculated the level of co-accessibility, i.e., the
degree of correlation between a given A compartment and all other A
compartments (see Methods), for each A compartment individually.
We tested whether this co-accessibility measure is associated with
gene expression and accumulation of active chromatin states, follow-
ing the hypothesis that the A compartment co-accessibility reflects
active and coordinated gene regulation between loci. We found that
the A compartment co-accessibility is significantly associated with
gene expression (pKW = 1.27 × 10−15) (Fig. 2a), and all measures of active
gene regulation based on chromatin state, PAd pCHi-C interactions,
and PAd accessible chromatin (Fig. 2b). Thus, the A compartment
degree of co-accessibility can be used as ametric that captures various
levels of gene regulation associated with it.

To assess whether the genome-wide A compartment co-
accessibility is different between the BMI-discordant MZ siblings, we
separated the lower and higher BMI siblings (n = 9 MZ pairs split into

lower and higher BMI subgroups) and re-computed the level of co-
accessibility of the A compartments in each set separately (see Meth-
ods). We found that the A compartment co-accessibility measures are
significantly higher in the lower BMI set of siblings than in the higher
BMI siblings (p = 4.96 × 10−31) (Fig. 2c–e). This overall decline of A
compartment co-accessibility in the higher BMI siblings suggests that
the PAd compartmentalization of chromatin activity is altered when
comparing individuals with a higher BMI to those with a lower BMI.

To identify specific A compartments that exhibit the strongest co-
accessibility differences between the lower and higher BMI MZ twin
siblings, we permuted the lower and higher BMI labels between sib-
lings (n = 29pairs or 512 permutations) and re-calculated the difference in
the degree of co-accessibility between the lower and higher BMI sub-
groups of siblings for all compartments (seeMethods).We defined the
A compartments with a permutation p value of less than 0.01, totaling
~88.5Mb, as those with altered co-accessibility in response to BMI in
the BMI-discordant MZ pairs (Supplementary Data 4). These altered A
compartments thus represent regions that aremechanistic candidates
for gene–environment interactions (GxEs) originating in human PAd.

PAd A compartments with altered co-accessibility are enriched
for the heritability of CRP and contribute to gene–BMI interac-
tion effects on CRP in the UK Biobank
We first tested whether there is evidence that variants that land in
genomic regions that are active in PAd contribute to marginal genetic
effects on systemic inflammation.We used partitioned LD-score (LDSC)
regression26,27 to partition the heritability of CRP into the PAd A and B
compartments, while also stratifying the A compartments into those
with altered co-accessibility in the BMI-discordant MZ twins and those
with unaltered co-accessibility in the twins (see Methods). The B com-
partments were significantly depleted for the heritability of CRP
(enrichment =0.840, p= 1.99 × 10−09), whereas the A compartments
(enrichment = 1.33, p = 7.05 × 10−04) and the A compartments with
altered co-accessibility (enrichment = 3.10, p=6.19 × 10−03) were both
significantly enriched for theheritability of CRP (Table 1).We also tested
whether the heritability of BMI and other obesity-related traits, includ-
ing serum triglycerides (TGs), alanine aminotransferase (ALT), blood
glucose levels, LDL and total cholesterol, systolic blood pressure (BP),
and forced vital capacity (FVC), are enriched in the PAd A compart-
ments. All cardiometabolic traits testedexhibited a significant depletion
of heritability in the B compartments (enrichment =0.752–0.946, FDR
<0.05). Interestingly, the A compartments were significantly enriched
for the heritability of all obesity-related traits (enrichment = 1.33-1.72,
FDR <0.05), but not BMI itself, in line with the previously identified
enrichment of brain mechanisms in BMI GWAS loci28,29.

To next determine whether the BMI-responsive, altered A com-
partments identified in the BMI-discordantMZ twin pairs’ PAd aremore
likely to harbor GxE effects on inflammation, we performed a GxE scan
in theUKB, testing all SNPs in theA compartments for the effect of SNPs
interacting with BMI on CRP levels (see Methods). We compared the
distribution of the GxE p values in the A compartments with altered co-
accessibility of open chromatin (88.5Mb) to all other A compartments
(561Mb) (Supplementary Data 4). Indeed, we found that the altered
compartments have a higher accumulation of low p value GxE signals
than all other A compartments (pWilcoxon = 8.72 × 10

−05) (Fig. 2f). This
suggests that the regions exhibiting BMI-dependent PAd co-
accessibility differences identified in the BMI-discordant MZ pairs
likely to harbor many small-effect GxEs affecting inflammation in
humans, above what is seen in the A compartments alone.

Clustering of the A compartments identifies compartment sub-
communities that are important for distinct preadipocyte
functions
To gain insight into the genomic regulatory mechanisms that
contribute to the regionally enriched candidate GxEs affecting
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Table 1 | Partitioned LDSC analysis shows that the A compartments are significantly enriched for the proportion of CRP
heritability while the B compartments are depleted

PAd A/B compartment category Prop. of SNPs Prop. of h2 Prop. of h2 SE Enrichment Enrichment SE Enrichment p value

B 0.773 0.650 0.017 0.840 0.022 1.99 × 10−09

A (unaltered in MZ twins) 0.199 0.265 0.020 1.33 0.099 7.05 × 10−04

A (altered in MZ twins) 0.0276 0.0856 0.020 3.10 0.72 6.19 × 10−03

SE indicates standard error, prop. proportion, andh2 heritability. Partitioned LD-score regression (LDSC)26,27 was performed using theC-reactive protein (CRP) summary statistics from the UKBiobank
round 2 GWAS results from 343,524 individuals, hosted at the Neale Lab website (http://www.nealelab.is/uk-biobank/). Heritability was partitioned using the SNPs in the identified PAd B and A
compartments, the latter of which was further stratified into the PAd A compartments with unaltered open chromatin co-accessibility, or altered co-accessibility in the higher BMI twin siblings from
the BMI-discordant MZ twins. The SE for the proportion of h2 and enrichment were calculated from the block jackknife resampling using the LDSC method. The p value is calculated using the
proportion of heritability and the proportion of heritability SE from the block jackknife resampling, and computing a z-score (two-sided test for significance of enrichment). The B compartments
exhibit a significant depletion in the proportion of heritability explained, similar to repressed regions of the genome26; whereas the A compartments are significantly enriched for the proportion of
CRP heritability explained in these regions.

Fig. 2 | The A compartment co-accessibility differs between the lower and
higher BMI twins and contributes to genotype-by-BMI interactions affecting
CRP in the UK Biobank. a Boxplots show the mean expression of genes in the A
compartments, stratified into quartiles of the A compartment connectivity. The
number of expressed genes in each quartile is noted. The overall p value refers to
the Kruskal–Wallis two-sided test for expression differences across the A com-
partment connectivity quartiles. Pairwise comparisons are from the post hoc Dunn
test after correction formultiple testing using the Holmprocedure. Boxplot center
represents the median expression of the indicated gene set in the indicated com-
partment type, the upper and lower bounds of the box represent the 75th and 25th
percentile, respectively, and the upper and lower whiskers represent the highest
(non-outlier) and lowest (non-outlier) values, respectively. b Heatmap shows the
correlation of the A compartment connectivity with ChromHMM chromatin states
and this study’s PAd ATAC-seq and pCHi-C data. P values correspond to the sig-
nificance of Spearman’s rank correlation FDR. cHistogram of the differences in the

A compartment connectivity between the lower and higher BMI MZ twins. The red
dashed line at x = 0 denotes the null hypothesis that there are not genome-wide co-
accessibility differences between the twins. The p value corresponds to the one-
sample, two-sidedWilcoxon test for the co-accessibility differences. The lower BMI
twins exhibit higher A compartment connectivity compared to the higher BMI twin
siblings. Correlation plots show that the co-accessibility of the A compartments on
chromosome 7 is stronger in d the lower BMI MZ siblings relative to e the higher
BMI MZ siblings. This is a representative image from all 22 autosomal chromo-
somes. fQ-Q plots for the uniform distribution of the p values for genotype-by-BMI
interaction effects on CRP in the UKB, stratified by whether SNPs land in the A
compartments with altered co-accessibility or not. Confidence intervals (dashed
lines) were calculated for the altered A compartment p values. The p value corre-
sponds to the two-sided Wilcoxon rank-sum test for differences in the p value
distribution between the altered and unaltered A compartments. Source data are
provided as a Source Data file.
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inflammation in the UKB, we clustered the A compartments after
UMAP dimensionality reduction30 to 2 variance components (see
Methods). This clustering approach identified ten clusters that
exhibit varying levels of co-accessibility, containing between 107
and 230 A compartments (Fig. 3a; Supplementary Fig. 7a; Sup-
plementary Data 4; and Supplementary Table 4). The total sum of
the lengths (in Mbs) of the compartments in each of the A com-
partment clusters is given in Supplementary Table 4. As expected,
given the observed correlations between co-accessibility and
chromatin states (Fig. 2b), the clusters containing the A com-
partments with the highest levels of co-accessibility (clusters 1, 2,

3, and 5; padj < 0.05) (Fig. 3a and Supplementary Fig. 7a) also
exhibit the highest coverage of enhancer (Fig. 3b) (clusters 2, 3,
and 5; padj < 0.05) or promoter (Fig. 3c) (clusters 1 and 2;
padj < 0.05) chromatin states; and have the lowest coverage of
quiescent chromatin states (padj < 0.05) (Fig. 3d). Thus, as clusters
1, 2, 3, and 5 likely represent the most important A compartments
for PAd co-accessibility and function, we chose to focus on these
clusters for the remainder of the study.

The differences in enhancer and promoter chromatin state cov-
erage between the four main A compartment clusters 1, 2, 3 and 5
suggest that there may be differential gene regulatory mechanisms

Fig. 3 | The A compartment clustering reveals differential accumulation of
chromatin states and gene regulatory landscapes. a iGraph layout of the A
compartment clusters after UMAP dimensionality reduction and Louvain clus-
tering. Each circle represents an A compartment. Colors represent the ten clus-
ters that were identified. The size of the circles is proportional to the level of co-
accessibility of that A compartment, showing that clusters 1, 2, 3, and 5 have the
highest levels of co-accessibility. The A compartment cluster coverage of
enhancer (b), promoter (c), and quiescent (d) ChromHMM chromatin states are
indicated with boxplots. Overall p values (top) correspond to the two-sided
Kruskal–Wallis test comparing the coverage across the A compartment clusters.
The p valuemap below the plot denotes which pairwise differences are significant
(p < 0.05) in the post hoc Dunn test, after correcting formultiple testing using the
Holm procedure. The number of compartments in each cluster is listed in Sup-
plementary Table 4. e Violin plots with inlaid boxplots show the number of pCHi-
C interactions per promoter in the four A compartment clusters. The overall

p value corresponds to the two-sided Kruskal–Wallis test and the pairwise com-
parisons denote the p values from the post hoc Dunn test, after correcting for
multiple testing using the Holm procedure. The violin plot shows the kernel
probability density of the data. f Boxplots show the proportion of ATAC peaks in
the cluster A compartments that are upregulated (higher accessibility in D1
relative to PAd) or downregulated (lower accessibility in D1 relative to PAd) after
24 h of PAd differentiation into adipocytes. The p values correspond to the two-
sided paired Wilcoxon rank-sum test for differences between the proportion of
up- or down-regulated peaks in each of the compartment clusters separately. See
also Supplementary Figs. 7, 8, Supplementary Data 5, 6, and Supplementary
Table 4. For all boxplots, the center represents the median gene density of the
compartment type, the upper and lower bounds of the box represent the 75th
and 25th percentile, respectively, and the upper and lower whiskers represent the
highest (non-outlier) and lowest (non-outlier) values, respectively. Source data
are provided as a Source Data file.
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functioning within each cluster. In support of this, we found that
cluster 5, which exhibits the highest enhancer chromatin state cover-
age (Fig. 3b), is enriched 3.2-fold for PAd super-enhancers
(FDRhypergeom = 7.8 × 10−04) (see Methods). Cluster 5 also exhibits the
highest number of PAd pCHi-C interactions per promoter
(pKW = 8.85 × 10−46), particularly when compared with cluster 1 (mean
of eight interactions per promoter in cluster 5 versus themeanof three
interactions per promoter in cluster 1) (Fig. 3e). Accordingly, the gene
expression in cluster 1 is significantly lower than in clusters 2, 3, and 5
(pKW = 2.50× 10−08) (Supplementary Fig. 7b). These data suggest that in
contrast to the highly interacting, enhancer-enriched cluster 5, cluster
1 may be more developmentally primed.

One feature that has been previously reported to be more com-
mon in cells that are primed for differentiation is a higher number of
promoter-promoter (P-P) interactions in pCHi-C data31. We found that
cluster 1 does, in fact, exhibit a higher proportion of P-P interactions
relative to clusters 2, 3, and 5 (pKW = 1.05 × 10−24) (Supplementary
Fig. 7c). We performed a gene ontology (GO) enrichment analysis on
the genes in each of the clusters separately (Supplementary Fig. 8 and
Supplementary Data 5) (see Methods). Importantly, performing
enrichment analyses on genes selected from large genomic regions
can lead to spurious enrichments due to clusters of gene families or
genes with similar functions32. We, therefore, used the Network
Enrichment Analysis Tool (NEAT)33, which uses information about the
relationship between genes (e.g., genes in the same co-expression
network) to test for functional enrichment. To provide the network
information to NEAT, we performed weighted gene co-expression
network analysis (WGCNA)34 using the RNA-seq data from all of the A
compartment genes together (Supplementary Data 6). Genes from
each A compartment cluster were assigned a co-expression module,
and this network information was provided to NEAT for the A com-
partment GO enrichment. We found that cluster 1 is enriched for
developmental processes, cell polarity, and cell adhesion, in line with
this cluster being important for cellular priming35 (Supplementary
Fig. 8 and Supplementary Data 5). Notably, immune-related processes
such as leukocyte chemotaxis and proliferation, response to cytokine,
and apoptotic cell clearance are also enriched in the A compartment
cluster 1 (Supplementary Fig. 8 and Supplementary Data 5).

Next, we performed a transcription factor (TF) motif enrichment
analysis using HOMER36 (see Methods) on each of the clusters sepa-
rately and identified 20 motif sequences (matching 18 distinct TFs)
that are significantly enriched in the A compartment cluster 1, relative
to all other A compartment clusters (Supplementary Table 5). One of
thesemotifs matches the sequence for the Sterol Regulatory Element-
Binding Protein 1 (SREBP1), which is a master transcriptional activator
required for lipid homeostasis and is involved in adipogenesis37,38,
supporting our conclusion that the A compartment cluster 1 regions
are developmentally primed PAd elements.

To further examine whether the regions in the A compartment
cluster 1 are likely to be developmentally primed relative to the A
compartment cluster 5, we assessed the effects of initiating the MZ
twin pairs’ PAd differentiation into adipocytes for 24 h by performing
ATAC-seq on the cells at this developmental time point (see Methods;
Supplementary Table 1 and Supplementary Figs. 1, 9). The A com-
partment cluster 5, which has the highest accumulation of enhancer
chromatin state coverage, exhibited a higher proportion of ATAC-seq
peaks with decreased accessibility after the first 24 h of differentiation
(Fig. 3f). This is consistent with cluster 5 being made up of genomic
regions that are specifically important for PAd function, in linewith the
strong enrichment of super-enhancers (see above). On the other hand,
cluster 1 showed the opposite trend,with a higher proportion ofATAC-
seq peaks being more accessible after the first 24 h of differentiation,
relative to PAd (Fig. 3f). Taken together, the chromatin state and super-
enhancer coverage, as well as the differential responses to early dif-
ferentiation signals, suggest that the A compartment clusters

represent regions of the genome that are functionally related and
exhibit distinct gene regulatory mechanisms in PAd.

The developmentally primed PAd A compartment cluster 1 is
enriched for the heritability of CRP and obesity-related traits in
the UK Biobank
To determine whether any of the four main A compartment
clusters are relatively more important in participating in the PAd
genomic responses to BMI in the MZ twin pairs, we tested whe-
ther the A compartments with altered co-accessibility (Supple-
mentary Data 4) are overrepresented in any of the clusters. We
found that both clusters 1 (2.65-fold enrichment,
padj = 2.62 × 10−07) and 2 (3.47-fold enrichment, padj = 2.81 × 10−13)
are significantly enriched for the A compartments with altered co-
accessibility (Supplementary Data 4). Interestingly, cluster 1 is
significantly enriched for the heritability of CRP (Fig. 4a), BMI,
TGs, ALT, blood glucose levels, systolic BP, and FVC (enrich-
ment = 1.75-3.14; padj < 0.05). We did not observe a significant
heritability enrichment of LDL and total cholesterol in the A
compartment cluster 1, although the heritability of ALT, total
cholesterol, systolic BP, and FVC was enriched in the A com-
partment cluster 2 (enrichment = 1.92-2.19; padj < 0.05). As a
comparison with a non-cardiometabolic trait, the neuroticism
score showed no significant heritability enrichment in any of the
A compartment clusters. Strikingly, when we compare the GxE
SNP p values for SNPs interacting with BMI to affect CRP levels in
the UKB, we also found that cluster 1 has a higher accumulation of
low p value GxE SNPs when compared to cluster 5 (pKW = 0.0164)
(Fig. 4b). This supports the conclusion that primed (cluster 1),
rather than highly regulated and cell-type-specific regions (cluster
5), are important for the immunomodulatory effects of PAd
responses to BMI. In summary, the cluster-dependent responses
to BMI, contribution to the heritability of cardiometabolic traits,
and GxEs affecting CRP in the UKB, all support a role for the A
compartment cluster 1 region being important for PAd responses
to BMI and affecting systemic inflammation and other obesity-
related traits.

Identification of BMI-responsive genes in the reprogrammed
cluster 1 A compartments
We next searched for candidate BMI-responsive genes in the repro-
grammed PAdA compartment cluster 1 regions. First, to identify genes
with a high likelihood of being disrupted by reprogramming, we
referred to our WGCNA co-expression modules (Supplementary
Data 6). We use the module colors arbitrarily assigned by WGCNA to
describe our gene co-expression module analyses to avoid confusion
of module numbers with the A compartment cluster numbers. Two
modules were enriched for A compartment cluster 1 genes: 472 of the
1054 black module genes (44.8%, 1.3-fold enrichment,
padj = 3.01 × 10−15); and 116 of the 228purplemodule genes (50.9%; 1.53-
fold enrichment, padj = 2.92 × 10−06) are located within the cluster 1 A
compartments (Supplementary Data 6 and Supplementary Table 6).
We found that the first principal component (PC) of the black co-
expression module is associated with the BMI status in the twins, both
for the entire module (n = 1054 genes; padj = 5.5 × 10−03) as well as for
themodule genes that landwithin theA compartment cluster 1 regions
(n = 472; padj = 3.1 × 10−03) (Supplementary Fig. 10; see Methods). None
of the other PAd co-expression modules were associated with the BMI
status in the twins (Supplementary Fig. 10). These results are in line
with the black co-expression module being important in the MZ twin
BMI discordance, and in particular, provide further support for the A
compartment cluster 1 genes playing an important role in responding
to BMI. Indeed, whenweperform aKEGGpathway enrichment analysis
on the cluster 1 genes in the black module, we find that they are
enriched (enrichment ratio = 3.5; FDR <0.05) for genes in the
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parathyroid hormone synthesis, secretion, and action pathway (see
Methods; Supplementary Data 7), which has previously been shown to
be an axis through which adipose tissue is remodeled in obesity39.

Considering the black module association with BMI status in
the twins, we posited that genes that are correlated with the first
PC (PC1) of the module gene expression represent strong candi-
dates for differential expression (DE) between the lower and
higher BMI siblings. We, therefore, tested the 380 black module
genes correlated with module PC1 (FDR <0.05) for DE (Supple-
mentary Data 7). Given the small number of twin pairs, we applied
an FDR <0.1 for the subsequent individual gene- and peak-level
analyses. We found that 213 of the 380 genes (56.1%) are DE
between the BMI status in the MZ twins, 52 of which are located in
the reprogrammed A compartments (Supplementary Data 7).

Next, when searching the cis regions of the 52DEgenes for genetic
enrichment of BMI GWAS variants utilizing the MAGENTA tool40 (see
Methods), we observed a significant enrichment of BMI GWAS variants
(p = 1.00 × 10−04) using the background set of genes as all A compart-
ment cluster 1 genes in the black module. Notably, the enrichment of
BMIGWAS SNPs remains significant even if only using a background of
the remaining DE genes not in the reprogrammed A compartments
(p < 0.05), highlighting the importance of these reprogrammed com-
partments in contributing to BMI. We further performed a TF motif
enrichment analysis using HOMER on the ATAC-seq peaks in the sur-
rounding regions of the 52 genes (gene ±250kb), using the remaining
black module genes in the A compartment cluster 1 as background.
This identified four enriched motifs, including KLF7, which has pre-
viously been implicated in adipogenesis41,42, obesity and glucose-
related pathological mechanisms43,44, and inflammatory signaling
pathways in adipose tissue43,45 (Supplementary Table 7). In all, our
results support the importance of the 52 DE genes in the repro-
grammed A compartments as BMI response genes that ultimately may
function as modulators of obesity-related traits.

INPP5K-MIR22HGATAC-seq peak co-accessibility is disrupted by
increased BMI in the MZ siblings
To identify individual genomic regulatory elements that may
differ between the lower and higher BMI MZ siblings, we first

determined which ATAC-seq peaks are correlated with the
expression of the 52 DE genes. We identified 143 preadipocyte
ATAC-seq peaks correlated with the expression of 21 of the DE
genes in the specific chromatin co-accessibility regions disrupted
by increased BMI. These DE gene expression-correlated peaks
land within seven of the 18 reprogrammed A compartments that
contain DE genes, with most peaks (77; 53.8%) correlated with one
gene (range 1–6 genes) (Supplementary Data 8).

Next, we searched the GWAS catalog46 for SNPs that are asso-
ciated with obesity-related traits and land in the DE gene-correlated
ATACpeaks (SupplementaryTable 8). Five of the seven reprogrammed
A compartments containing peak-gene associations hadGWAS SNPs in
at least one of the expression-associated peaks, and one A compart-
ment on chromosome 17 contains 12 (ten independent signals) of the
total 19 (17 independent signals) cardiometabolic trait GWAS SNPs that
land in the DE gene -correlated ATAC peaks (Supplementary Table 8).
In particular, one of the SNPs within the promoters of the
MIR22HG/WDR81 genes (rs11078597) is associated with CRP, TGs, and
ALT (Fig. 5a and Supplementary Table 8). This promoter peak is cor-
related with a distally located DE gene in the A compartment, inositol
polyphosphate-5-phosphatase K (INPP5K) (Fig. 5a, b), but not the DE
gene WDR81 (Fig. 5a; Supplementary Data 8; and Supplementary
Table 8). The peak is also correlated in the opposite direction with the
long non-coding RNA (lncRNA) gene MIR22HG (Pearson’s r = −0.93,
p = 2.75 × 10−08) (Fig. 5a), which is not DE in the twins but its expression
is inversely correlated with INPP5K expression (Pearson’s r = −0.77,
p = 1.71 × 10-04). These results motivated us to look further into INPP5K
as an important DE gene responding to BMI in preadipocytes.

We searched for evidence of altered local INPP5K regulation
between the lower and higher BMI MZ siblings by selecting the
MIR22HG promoter peak containing the GWAS SNP rs11078597, as well
as the ATAC-seq peaks within the INPP5K gene (±10 kb surrounding the
gene region) for further follow-up (Fig. 5a and Supplementary Data 8).
Five of the seven peaks within these regions are correlatedwith INPP5K
expression, including a peakoverlapping anexonnear the 3’ end of the
INPP5K gene that is inversely correlatedwith INPP5K expression (Fig. 5a
and Supplementary Data 8). This exonic peak is the only one among
the five INPP5K expression-correlated ATAC peaks that is inversely

Fig. 4 | The A compartment cluster 1 contributes significantly to the herit-
ability of CRP and is enriched for genotype-by-BMI interaction effects on CRP
in the UK Biobank. a Dotplot shows the enrichment of heritability for CRP in the
different A compartment clusters relative to the null hypothesis of the uniform
contribution from all SNPs. Partitioned LD-score regression (LDSC)26,27 was per-
formed using the C-reactive protein (CRP) summary statistics from theUKBiobank
round 2 GWAS results from 343,524 individuals, hosted at the Neale Lab website
(http://www.nealelab.is/uk-biobank/). Error bars represent the heritability enrich-
ment standard error (SE) and the data were presented as the enrichment of her-
itability for CRP calculated from LDSC± the enrichment SE. The SE for the
proportion of h2 and enrichment were calculated from the block jackknife
resampling using the LDSCmethod. The p value is calculated using the proportion

of heritability and the proportion of heritability SE from the block jackknife
resampling, and computing a z-score (two-sided test for significance of enrich-
ment). The x-axis tick marks list the A compartment cluster with the proportion of
SNPs in that cluster in parentheses.bQ-Qplots for the uniformdistributionof thep
values for the genotype-by-BMI interaction effects on CRP in the UKB, stratified by
which of the A compartment clusters the SNP lands in. Confidence intervals
(dashed lines) were calculated for the A compartment cluster 3. The overall p value
corresponds to the Kruskal–Wallis test for differences among all cluster p value
distributions. Cluster 1 has a higher accumulation of low p value SNPs than cluster 5
in the post hoc Dunn test (p =0.041 after correcting for multiple testing using the
Holm procedure). CRP indicates C-reactive protein. Source data are provided as a
Source Data file.
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correlated with INPP5K expression, and it is differentially accessible
(DA) between the lower and higher BMI MZ siblings (padj < 0.05)
(Fig. 5c). The directly opposing gene expression correlations of the
INPP5K exonic peak and theMIR22HG promoter peak (Fig. 5a) led us to
hypothesize that these two ATAC peaks would be inversely correlated.
Further,we hypothesized that this correlation (or co-accessibility)may
bedependent on theBMI status in theMZ twin pairs, since INPP5K is DE
and its exonic peak is DA between the higher and lower BMI MZ sib-
lings (Fig. 5b). We, therefore, tested whether the correlation of the two
peaks is different between the lower and higher BMI MZ siblings. We
found that there is a strong inverse correlation of the MIR22HG pro-
moter peak and the INPP5K exonic peak in the lower BMI MZ siblings
that is not seen in the higher BMI siblings (p value for comparing the
correlation coefficients using Fisher’s z-transformation =0.027; see
Methods) (Fig. 5d). These results demonstrate the regional co-
accessibility disruption in higher BMI twin siblings and how it may
relate to the DE of INPP5K. Based on GTEx data, human subcutaneous
adipose tissue is the fourth most expressing tissue of INPP5K (median
TPM 51.71 in 663 GTEx subcutaneous adipose samples) among the 54
tissues tested by GTEx, confirming that INPP5K is expressed in the
human subcutaneous adipose tissue. Noteworthy, previous studies in
animal models have shown that homozygous disruption of Inpp5k
leads to embryonic lethality, while heterozygous mutant mice
demonstrate normal food intake and adiposity but exhibit increased
insulin sensitivity and reduced diet-induced obesity47. Combined with
our result that INPP5K expression is upregulated in the higher BMIMZ
siblings, this suggests that the regulatory circuit we highlight here

(Fig. 5) is a BMI-responsive pathological mechanism contributing to
obesity-related traits.

Discussion
Obesity predisposes to COVID-19 complications and a cascade of
cardiometabolic disorders (CMDs), likely at least partially by inducing
chronic low-grade inflammation in the affected tissues1,4–6,48. Pre-
adipocytes (PAd) are one of the key cell types in adipose tissue,
responding to environmental cues and deciding whether to proceed
toward fat storage (differentiation into adipocytes) or alternative
pathways. In this study, we showed that increased BMI may affect the
higher-order compartmentalization of the genome in PAd, in regions
that contribute to the heritability of inflammation,measured byCRP in
the UK Biobank (UKB). Furthermore, these genomic regions with
altered co-accessibility in PAd that span a total of ~88.5Mb exhibit a
higher accumulation of small-effect GxBMI SNPs affecting CRP. Taken
together, BMI seems to affect PAd co-accessibility in large genomic
regions that contribute to systemic inflammation in humans, sug-
gesting an important role for this progenitor cell type in the low-grade
inflammatory state that is associated with obesity49.

PAd are an important cell type to consider when understanding
systemic inflammation and downstream obesity comorbidities. How-
ever, PAd are an understudied cell type, underrepresented in large
collections of epigenetic data such as ENCODE50 and Roadmap51, and
mainly studied in mouse or human PAd-like cells, rather than primary
cells52,53. This is likely in part due to the relative difficulty in collecting
and propagating primary PAd cells in sufficient numbers for genomics

Fig. 5 | An example of a disruption in ATAC peak co-accessibility in the higher
BMI MZ siblings and how it is linked to the twins’ differential expression of
INPP5K. a Schematic of the genomic locus containing the MIR22HG promoter
ATAC-seqpeak that harbors aGWASSNP rs11078597 forCRP, TGs, andALT.Dashed
lines represent significant correlations between peak accessibility and gene
expression. Red dashed lines indicate positive correlations and blue dashed lines
indicate negative correlations. Boxplots show the b differential expression of
INPP5K (n = 10 pairs of MZ twins) and c differential accessibility of an ATAC-seq
peak toward the 3’ end of the INPP5K gene (n = 9 pairs of MZ twins) between the
lower and higher BMI MZ siblings’ preadipocyte data. P values correspond to the

two-sidedpaired t-test. Theboxplot center represents themedian expressionof the
indicated gene set in the indicated compartment type, the upper and lower bounds
of the box represent the 75th and 25th percentile, respectively, and the upper and
lower whiskers represent the highest (non-outlier) and lowest (non-outlier) values,
respectively. d The Spearman’s rank correlation between the MIR22HG promoter
peak and the INPP5K exonic peak is shown for the lower (left, n = 9 lower BMI MZ
siblings) and higher (right, n = 9 higher BMI MZ siblings) BMI MZ siblings sepa-
rately. The significance of the difference in correlation was assessed using Fisher’s
z-transformation (p =0.027). Source data are provided as a Source Data file.
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studies. Because of this, there is an overall lack of knowledge sur-
rounding the epigenomicsof primaryhuman PAd.Our study identified
and characterized primary PAd A/B compartments, which represent
the higher-order genomic compartmentalization of chromatin activity
across BMI-discordant MZ twin pairs. Thus, this work advances the
field by elucidating the genomic context in which local epigenetic
signatures function, toward understanding how these cells integrate
information from the environment to make important cellular deci-
sions.We showed that the active PAdA compartments are enriched for
enhancer and promoter chromatin states, relative to themore inactive
B compartments, which are enriched for quiescent chromatin states.
Furthermore, subclustering of the A compartments groups genomic
regions that contain genes that are important for distinct progenitor
cell functions, such as development (cluster 1), signal transduction
(cluster 2), and hormone secretion (cluster 5). These clusters exhibit
differences in their gene regulatory landscapes, assessed through
chromatin state coverage, super-enhancer identification, regulatory
interactions, and responses to differentiation signals. Thus, we have
shown that higher-order genomic coordination is important for
defining functionally related regions of the genome in PAd. By quan-
tifying this coordination through the A compartment co-accessibility,
we were then able to show that the PAd genomic programming at this
level is impaired in the higher BMI siblings of the BMI-discordant
MZ pairs.

We showed that the A compartments with altered co-accessibility
contribute significantly to the heritability of CRP, meaning that
environment-responsive regions of the genome also contain an
enrichment of marginal SNP effects on inflammation. This suggests an
important contribution of PAd BMI-responsive regions to systemic
inflammation. GxEs are difficult to detect in humans for various rea-
sons, including environmental heterogeneity, imprecision in the
environmental measurements, and low power to detect interaction
effects in the current cohort sizes, even in theUKB.Wehave previously
shown that by restricting the GxE search space to regions of the gen-
ome that contain SNPs that respond to environmental cues in experi-
ments,wecan reduce themultiple testingburden toonly include those
regions with prior evidence of being relevant for that environmental
stimulus54. This enables the detection of significant GxEs, even when
genome-wide significant signals remain difficult to detect. Here, rather
than a controlled experiment, we are using BMI as the environmental
variable, which in itself is very heterogeneous in its etiology. By
leveraging theBMI-discordantMZtwinpairs,we identified regions that
differ between siblings, who exhibit decreased heterogeneity of
genetic backgrounds that complicates and reduces power in envir-
onmental studies from cohorts of unrelated individuals. However, we
recognize that the BMI-discordant MZ twin pairs may have been
exposed to different environmental factors, ranging from increased
caloric intake and decreased energy expenditure to other obesogenic
andmetabolic disruptors, such as drinking and smoking, medications,
or food additives55, which eachwouldwarrant additional future studies
with larger sample sizes.

We found that the regions with altered co-accessibility, marginal
effects on CRP and other obesity-related traits, and GxE signals
affecting CRP were enriched in regions of the genome that exhibit
features of a more developmentally primed cellular state (cluster 1),
rather than in the regions enriched for super-enhancers and highly
interacting gene promoters (cluster 5). Cluster 1 exhibits a higher
accumulation of promoter chromatin states, which possibly represent
poised promoters. This is supported by the lower number of interac-
tions per promoter, the lower gene expression, and the previous
knowledge that promoter-promoter interactions are associated with a
primed cellular state31,56. However, there are some limitations regard-
ing this conclusion. It is important to consider that this conclusionmay
be driven by the fact that wemainly assessed the effects of BMI on the
higher-order level of genome organization. The complex etiology of

increased BMI reduces the power to detect BMI-driven differences in
epigenetic signatures, particularly with the small sample size of the
current study. This precluded the assessment of the effects of BMI on
individual open chromatin peaks at the genome-wide level, due to the
heavy multiple-testing burden at the genome-wide level (testing for
BMI-driven differences in tens to hundreds of thousands of individual
peaks). Therefore, it is possible that enhancer-enriched regions in PAd
do respond toBMI, but thehigher-order coordinationof those regions,
as we assessed through the PAd A compartment co-accessibility, is not
as strongly affected. Of note, we did identify individual genes asso-
ciated with the BMI differences between the MZ siblings, which was
made possible by restricting our search space to the A compartments
in cluster 1 that are likely to harbor differences between the BMI-
discordant MZ twin pairs. This identified 52 DE genes in the repro-
grammed cluster 1 A compartments, 21 of which exhibit correlations
between their expression and local ATAC-seq peak accessibility. These
21 genes offer new candidates for future functional studies elucidating
direct BMI effects on PAd biology, such as geneticallymodified PAd, to
understand the function of these genes in this understudied cell type.
Overall, to address the limitations in testing for DE genes and differ-
entially accessible ATAC-seq peaks at the genome-wide level, larger
cohort sizes and investigation of alternative genomic regulatory
mechanisms aside from the higher-order coordination of active
regions iswarranted to further understand the effects of increasedBMI
on human primary PAd.

While we performed our study on primary PAd, it is important to
note that the cells were cultured for a limited time (at most five pas-
sages) in the same media across MZ siblings and twin pairs. We find it
interesting that the molecular alterations we see at the co-accessibility
and gene expression level aremaintained in vitro, but it is important to
note that we do not have a direct comparison of PAd ex vivo (i.e.,
without culture), and thus our results as they pertain to the in vivo
behavior of PAd must be interpreted with caution. Furthermore, it is
important to consider the contribution of visceral adipose tissue pre-
adipocytes to systemic inflammation. It has been suggested that visc-
eral adipose tissue is even more prone to a pro-inflammatory profile
than subcutaneous adipose tissue57. However, it is also postulated that
efficient adipogenesis to expand subcutaneous adipose tissue is cri-
tical for buffering against lipotoxicity, and thus subcutaneous pre-
adipocytes are likely relevant for visceral adipose tissue inflammation
as well58.

In conclusion, we have characterized the higher-order genomic
programming of human primary PAd and refined active genomic
regions to functionally related clusters that span 30–130 Mbs, thus
providing new important information for adipose biology and obesity
research. Increased BMI seems to affect this level of PAd genomic
programming through dysregulation of the coordination of function-
ally related regions of the genome. Our integrative analyses suggest
that these regions are biologically meaningful for inflammation in
humans by extending the results to an independent cohort, the UKB.
The regions with altered co-accessibility are significantly enriched for
the heritability of CRP, and harbor a higher accumulation of small-
effect SNPs interacting with BMI to affect CRP levels. Taken together,
our results suggest that the identified PAd-origin genomic regulatory
mechanisms respond to BMI to induce the key obesity consequence,
inflammation.

Methods
Study cohorts
Work in this manuscript is part of an ongoing study of BMI-discordant
(ΔBMI ≥3 kg/m2) MZ twin pairs identified from the population-based
Finnish twin cohorts (FTC), collected and recruited in the University of
Helsinki, Helsinki, Finland. The twin study design was approved by the
Ethics Committee of the Helsinki University Central Hospital, Helsinki,
Finland, and all participants gave written informed consent. The FTC
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has conductedmultiple, longitudinal surveys of Finnish twins, bothMZ
andDZ, bornbefore 1958, 1975–1979, and 1983–198759–61.MZ twinpairs
with a large intrapair difference in BMI in the absence of medication
and serious comorbidities were identified and invited for detailed
metabolic phenotyping as described earlier18,19. Using genome-wide
SNP array data, monozygosity was confirmed using the plink62 --gen-
ome function, which resulted in IBS estimates of 1.0 for allMZ siblings;
as well as the GATK Picard Tools v2.9.0 GenotypeConcordance func-
tion that resulted in all twin pairs exhibiting a genotype concordance
of >99%. The phenotypic characteristics are shown in Supplementary
Data 1. The mean age is 47 y (±2 y (s.e.)), and it comprises 22 pairs of
males (42%) and31 pairsof females (58%) (n = 53pairs) at theUniversity
of Helsinki. We successfully cultured the preadipocytes (PAd) for a
subset of ten pairs (n = 20). This subset has a mean age of 42 y (±4 y
(s.e.)), and it comprises six pairs of males (60%) and four pairs of
females (40%). All participants gave written informed consent, and the
study protocol was approved by the local ethics committee. The PAd
sample collection is described below. For the C-reactive protein (CRP)
genotype-by-environment interaction (GxE) analysis, we used the UK
Biobank (UKB) cohort (n = up to 372,652 non-related Europeans)63,
under Application Number 33934. UK Biobank has approval from the
North West Multi-centre Research Ethics Committee (MREC) as a
Research Tissue Bank (RTB) approval. All participants gave informed
consent. The population sample used in this study has a mean age of
57 y ± 8 y (s.d.) and comprises 54% males and 46% females. The details
of the GxE analysis are described below.

PAd collection and cell culture from the BMI-discordant MZ
twins’ adipose biopsies
We isolated the PAd from the subcutaneous fat biopsy specimens of
the twin pairs undergoing adipose biopsies. Briefly, the biopsy speci-
mens were first treated with collagenase and then centrifuged to
separate the adipocytes from the stromal vascular fraction (SVF) pellet.
Next, the SVF pellet was suspended to PAd basal media with 5% fetal
calf serum supplemented with 1% penicillin-streptomycin. Then, the
SVF was filtered before plating to allow the PAd to adhere and pro-
pagate. Finally, the viable PAdwere cryopreserved for the downstream
ATAC-seq and RNA-seq experiments (see below). To optimally pre-
serve the in vivo epigenetic characteristics of these primary human
cells, we will use the earliest passages (no more than five) for all
experiments.

For the experiments, cryopreserved cells (passages 3–4) were
seeded into PromoCell PAd growthmedium (PromoCell C-27410) with
1% Gibco Penicillin-Streptomycin (Thermo Fisher 15140122) and cul-
tured according to PromoCell PAd culturing protocols. Cells were
maintained in a monolayer culture at 37 °C and 5% CO2. The primary
PAd were passaged once for plating after propagation, resulting in
fewer than five passages before collection for the experiments. We
grew cells to <90% confluency for the PAd sample collection. We grew
the cells to 100% confluency to begin the differentiation of these cells,
using a PAd differentiation medium (PromoCell C-27436) for the 24-h
differentiated (D1) time point. We collected two replicates of the PAd
(for the ATAC-seq and RNA-seq) and one replicate of the D1 cells (for
ATAC-seq), per individual.

Assay for transposase-accessible chromatin (ATAC)
–sequencing and data processing
We performed the ATAC-seq protocol in the PAd (n = 20) and D1
(n = 20) cells from each individual, including isogenic biological
replicates (i.e., separate cultures from the same individual) from two
twin pairs (n = 4 PAd and n = 4 D1), for a total of 48 samples. We fol-
lowed the omni-ATAC protocol64, beginning with the 30min DNase I
treatment (Worthington LS002007; 200U/ml), and then trypsinized
cells using the PromoCell detach kit (PromoCell C-41210), according to
the manufacturer’s protocols. Cells were lysed in ice-cold ATAC

resuspension buffer (RSB) (10mM Tris-HCl pH 7.4; 10mM NaCl; 3mM
MgCl2) with 0.01%Digitonin, 0.1% Tween-20, and 0.1% Igepal on ice for
3min. The lysis was quenched with ice-cold ATAC-RSB with 0.1%
Tween-20. Nuclei were pelleted by centrifuging at 500 rcf for 10min at
4 °C and resuspended in the transposition master mix (per sample:
25 ul 2x Illumina tagment DNA (TD) buffer, 2.5 ul Illumina TDE1 trans-
posase, 16.5 ul PBS, 0.5 ul 1% digitonin, 0.5 ul 10% Tween-20, 5 ul H2O).
The tagmentation reaction was incubated at 37 °C for 30min with
mixing at 1000 RPM. We purified the DNA and Illumina adapters were
added by PCR. Libraries were sequenced on the Illumina HiSeq 4000
to produce an average of 40,315,572 (±14,577,770) reads. All ATAC-seq
data were generated all at once, without any batches.

We processed the sequencing reads and performed quality con-
trol (QC) using the ENCODE ATAC-seq Data Standards and Prototype
Processing Pipeline. Briefly, we aligned reads to the human reference
genome (1000 Genomes v37) using Bowtie2 v2.2.965 (with parameters
-k 4 -X 2000 --local), filtering out unpaired mapped reads and reads
with MAPQ <30 (Samtools v1.1566) and duplicates (marked with Picard
Tools v2.9.0). Only reads from the autosomes were retained for
downstream analyses.

Forty out of the 48 samples were retained for downstream ana-
lyses. One pair (n = 2) of twins failed the differentiation step; one
sample had poor tagmentation and did not exhibit the proper frag-
ment size distribution; four samples did not pass library complexity
thresholds as defined by the ENCODA ATAC-seq Data Standards; and
one sample had too few sequencing reads. Seven of the eight isogenic
biological replicates from the same individual were retained after QC.
These samples were used to assess the reproducibility of the data: the
uncorrected peak BPMs for the seven isogenic biological replicates
were correlated at ameanSpearman’s rhoof0.96. For comparison, the
inter-individual PAd samples were correlated at a mean Spearman’s
rho of 0.87 and the inter-individual differentiating PAd samples were
correlated at a mean Spearman’s rho of 0.83.

For the samples that passed theQC, we called consensus peaks on
all samples combined, after removing one of each isogenic biological
replicate from the same individual (nfinal = 33). Peaks were called using
MACS267 v2.2.7.1 and peaks with an FDR <0.05 were retained. We fil-
tered out peaks in blacklisted regions68 using bedtools v2.25.069

intersect function with the -v parameter, and retained peaks with
counts per million (cpm) mapped reads ≥1 in at least 10% of the sam-
ples. When comparing the peaks called on individual samples to the
consensus peak set, 85–99% of the individual peaks were also called in
the consensus peak set; and 53–83% of all consensus peaks were called
in each individual peak set, indicating a high reproducibility of
called peaks.

We corrected the log2-transformed peak bins per million mapped
reads (BPMs) for family ID (as a random effect), age, sex, and a fraction
of read inpeaks (FRiP), using the lme470 v1.1 Rpackage (Supplementary
Fig. 2a–d and Supplementary Fig. 9). There are no patterns in the
molecular trait sample correlation plots that would suggest batch
effects in our data. These corrected BPMs were used in all analyses
using the peak accessibility.

A/B compartment detection from ATAC-seq data
We performed the A/B compartment detection as described pre-
viously in ref. 20. Briefly,first, webinned thePAdATAC-seq sequencing
reads for all complete pairs of twin PAd samples that passed QC (n = 9
pairs, for a total of 18 PAd ATAC-seq samples) into 100-kb bins across
the genome, using the bedtools v2.25.069 makewindows function and
Subread featureCounts v1.6.471, except for reads landing in blacklisted
regions68, which were removed with the bedtools subtract function.
We called the A/B compartments on all samples together so that we
could quantify significant differences between the consensus A com-
partments between the lower and higher BMI twin siblings. We cal-
culated the BPMs and corrected the log2-transformed BPMs for family
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ID (as a random effect), age, sex, and FRiP, using the lme470 v1.1 R
package. (Supplementary Fig. 2e–h). There are no patterns in the
molecular trait sample correlation plots that would suggest batch
effects in our data. Next, we obtained Spearman’s rank correlation
matrix of the bins to get the pairwise bin co-accessibility measures. To
call the A/B compartments, we calculated the first eigenvector of the
correlation matrix, by chromosome, using the nipals function in the
mixOmics72 v6.10.9 R package. Since the sign of the eigenvector is
arbitrary, we used the known fact that the B compartments are gen-
erallymore correlated thanA compartments20. Thus, we correlated the
eigenvector with the level of correlation of the compartment (sum of
the correlation coefficients with all other bins on the chromosome),
and ensured that the positive values in the eigenvector are negatively
correlated with the level of bin correlation to denote A compartments
as positive an B compartments as negative, changing the sign of the
eigenvector if necessary. Next, we smoothed the eigenvector using a
simple moving average (movavg function in the pracma v2.4.2 R
package) with a bin size of 3 and obtained the final set of A/B
compartments.

To permute the compartment locations for assessing the enrich-
ment of pCHi-C in A compartments, we used the bedtools v2.25.069

shuffle command with the -noOverlapping option, the -chrom option
to shuffle the compartments within the same chromosome and the
-excl option to exclude blacklisted regions that were removed when
identifying A/B compartments.

To calculate the chromatin state coverage in the A/B compart-
ments, we downloaded the ChromHMM22 25-state segmentation
across 127 reference epigenomes from the Roadmap Epigenomics
Project. We determined the compartment coverage for each subset of
ChromHMM states (enhancers, promoters, quiescent, and active)
using bedtools v2.25.069 intersect function and dividing by the length
of the compartment.

PAd RNA-sequencing and data processing
We isolated and purified RNA from the PAd cells from the ten pairs of
twins, resulting in a total of 20 samples. Cells were washed with PBS
once before lysing with TriZol (Invitrogen 15596026) and purified
usingDirect-zol RNAMini-Prep (ZymoResearchR2061). Libraries were
preparedusing the Illumina TruSeq StrandedmRNAkit and sequenced
on an Illumina HiSeq 4000 instrument for an average sequencing
depth of 78M reads (±28M reads) per sample. All RNA-seq data were
generated all at once, without any batches.

Reads were aligned to human reference genome (1000 Genomes
v37) with STAR v2.7.0e73, using the 2-pass method and the following
parameters: --outFilterMultimapNmax 1, --outFilterMismatchNmax 6,
--alignIntronMin 20, --alignIntronMax 500000, --chimSegmentMin 15.
The various technical factors were obtained from STAR v2.7.0e73 after
sequence alignment (uniquelymapped reads) or from the Picard Tools
v2.9.0 (option CollectRnaSeqMetrics). We only retained genes with
≥1 cpm mapped reads in at least 10% of the samples.

We corrected the log2-transformed gene TPMs for family ID (as a
random effect), age, sex, and median 3’ bias, using the lme470 v1.1 R
package (Supplementary Fig. 5). There are nopatterns in themolecular
trait sample correlation plots that would suggest batch effects in our
data. These corrected TPMs were used in all analyses using the gene
expression.

The A compartment co-accessibility analysis
To quantify the compartment co-accessibility, we first calculated the
BPMs for the A compartments and corrected the log2-transformed
BPMs for family ID (as a random effect), age, sex, and FRiP, using the
lme470 v1.1 R package. Next, we obtained Spearman’s rank correlation
matrix of the bins to get the pairwise bin co-accessibility measures.
The level of co-accessibility per compartment is calculated as the
sum of the compartment adjacency with all other compartments

genome-wide, divided by the total number of compartments. Adja-
cency is equal to 0 if the Spearman’s ρ <0.6 and equal to 1 if the
Spearman’s ρ ≥0.6.

To compute the differences in compartment co-accessibility
between the lower and higher BMI siblings, we separated the MZ twin
pairs into subgroups containing the lower BMI siblings (n = 9) and
higher BMI siblings (n = 9). We then calculated the compartment co-
accessibility in the two subgroups separately, and compared the dif-
ferences in co-accessibility at the compartment level by subtracting
the co-accessibility value in the higher BMI MZ sibling group from the
co-accessibility value in the lower BMI MZ sibling group. We used the
one-sample Wilcoxon rank-sum (mu =0) test to compare the level of
co-accessibility between the lower and higher BMI siblings at the
genome-wide level.

To identify individual compartments that are significantly differ-
ent between the lower and higher BMI subgroups of siblings, we per-
muted the BMI status (higher or lower) within each MZ twin pair and
re-calculated the co-accessibility differences of the compartments for
all permutation (29 pairs = 512 permutations). Permutations were out-
lined using the permute v0.9 R package. For each permutation, we
compared the difference in the level of co-accessibility for a given
compartment between the groups and compared it with the true dif-
ference in co-accessibility between the lower and higher BMI groups of
siblings. We calculated the number of permutations that exhibited a
higher co-accessibility in the lower BMI compared to higher BMI
groups of siblings than the true difference (one-sided), given our
previous result that there is a shift toward higher co-accessibility in the
lower BMI sibling group at the genome-wide level. Compartments with
a permutation p value of <0.01 (n = 121, totaling 88.5Mb) were defined
to have altered co-accessibility in the BMI-discordant twins and
selected for downstream analyses.

Partitioned LD-score (LDSC) regression
Weused the partitioned LDSC regressionmethod26,27 v1.0.1 to estimate
the heritability of C-reactive protein (CRP), serum triglycerides (TGs),
alanine aminotransferase (ALT), blood glucose levels, LDL and total
cholesterol, systolic blood pressure (BP), forced vital capacity (FVC),
and neuroticism score explained by the A/B compartments (stratifying
the A compartments into the ones with altered co-accessibility or
unaltered co-accessibility); or partitioned across the A compartment
clusters. We downloaded the summary statistics for the second round
of the UKB GWAS performed by the Neale Group and colleagues
(http://www.nealelab.is/uk-biobank/).

GxE analysis in the UKB
We downloaded the imputed genotype data from the UKB cohort63.
We selected unrelated individuals of European ancestry who had both
body mass index (BMI) and CRP measurements collected. We per-
formed inverse normal transformation of the CRP values and cor-
rected for age, age2, sex, assessment center ID, array type, and the first
20 genetic principal components. The BMI values were centered and
scaled.

For the gene–environment interaction (GxE) analysis, we filtered
out SNPs with a minor allele frequency of <1% and genotyping missing
rate of >5%. To test for the interaction between the SNP and BMI, we
used plink62 v1.90b3.45 to test the effect of the SNP, BMI, and BMIxSNP
in a linear model.

A compartment dimensionality reduction and clustering
Using UMAP for dimensionality reduction prior to clustering, as
opposed to pairwise correlations to create an adjacency matrix, has
previously been shown to improve the detection of true genetic
interactions74. To do this, we first binned the PAd ATAC-seq sequen-
cing reads into the identified PAd A compartments, except for reads
landing in blacklisted regions68. We calculated the bins per million
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mapped reads (BPMs) and corrected the log2-transformed BPMs for
family ID (as a random effect), age, sex, and FRiP, using the lme470

v1.1 R package.We performed dimensionality reduction and clustering
following the previously published methodology74: we performed
principal component analysis (PCA) on the corrected PAd BPMs using
the prcomp function in R. We then performed an additional dimen-
sionality reduction to 2 components using Uniform Manifold
Approximation and Projection (UMAP)30 in the umap v0.2.7.0 R
package, with n_neighbors set to 10 and min_dist set to 0.05. We
obtained the 75 nearest neighbors based on the UMAP projections for
each compartment, which corresponds to the mean number of com-
partments each compartment is correlatedwith in pairwise correlation
analyses. Thiswas done using the get.knn function in the FNN75 v1.1.3 R
package. Louvain clustering was performed on the resulting adjacency
matrix, using the iGraph76 v1.2.6 R package, to obtain the 10 A com-
partment clusters used for downstream analyses.

For assessing the statistical significance of the differences
between the A compartment clusters, we used the Kruskal–Wallis test
and applied the dunnTest function in the FSA77 v0.8.32 R package for
the post hoc test to determine which pairwise comparisons are sig-
nificant after correcting formultiple testingusing theHolmprocedure.

Preadipocyte super-enhancer identification
We used the sratoolkit v2.10.8 to download the raw FASTQ ChIP-seq
data for the H3K27ac histone mark and MED1 at the day 1 adipogenic
time point53 from bonemarrow-derived stromal stem cells (BM-hMSC-
TERT4) from the GEO database (accession code GSE113253). We pro-
cessed the ChIP-seq data according to the ENCODE ChIP-seq pipeline.
Briefly, sequencing reads were aligned to the human reference gen-
ome (1000 Genomes v37) reference genome using Bowtie2 v2.2.965

(with parameters -k 4 --local), filtering out unmapped reads and reads
with MAPQ< 30 (Samtools v1.1566) and duplicates (marked with Picard
Tools v2.9.0). Only reads from the autosomes were retained for
downstream analyses.

Peaks were called on each biological replicate separately using
MACS267 v2.2.7.1 and then consensus peaks were called on both
replicates together to run the irreproducible discovery rate (IDR v2.0.3
[https://github.com/nboley/idr/]) analysis to identify reproducible
peaks across both replicates. Only MED1 peaks that overlapped with
H3K27acpeakswere retained as the constituent peaks for downstream
analyses to identify super-enhancers. The ROSE algorithm78,79 [https://
bitbucket.org/young_computation/rose/src/master/] was used to call
super-enhancers based on the MED1 ChIP-seq alignments.

Gene ontology (GO) term enrichment in the A compartment
clusters
We performed a gene ontology (GO) enrichment analysis on the
compartment genes in each A compartment cluster separately. As
performing enrichment analyses on genes selected from large geno-
mic regions can lead to spurious enrichments due to clusters of gene
families or genes with similar functions32, we used the Network
Enrichment Analysis Tool (NEAT) v1.2.333 R package. NEAT uses infor-
mation about the relationship between genes (e.g., genes in the same
co-expression network) to test for functional enrichment, thereby
requiring additional information about the gene function in that cell-
type, on top of simply the region of the genome in which it lands.

To provide the network information to NEAT, we used the
weighted gene co-expression network analysis (WGCNA) v1.7234 R
package, using the RNA-seq data from all of the A compartment genes
together. We followed default WGCNA procedures, except that we
used a soft power value of 12 and performed a signed analysis. Genes
from each A compartment cluster were assigned a co-expression
module, and this network information was provided to NEAT for the A
compartment GO enrichment. We downloaded the GO slims from the
PANTHER80 database. We used an alpha of 0.005 as the cutoff for GO

term significance to correct for testing 10 A compartment clusters
separately, and then thresholded the within-compartment p values
using an FDR <0.05 as the significance cut-point.

To summarize the cluster GO terms based on semantic similarity,
we used the online tool REVIGO81. We used the simRel method for
clustering, and then quantified the number of GO terms that are listed
under each indispensable GO term from the REVIGO output.

Transcription factor motif enrichment
To identify TF motif enrichments in this study, we used the HOMER36

v4.11.1 software de novo motif identification and enrichment assess-
ment. For the A compartment cluster HOMER analyses, we used all
ATAC-seq peaks within the PAd promoter–enhancer interactions
identified in the PAd pCHi-C, for each A compartment cluster sepa-
rately. We only included promoter–enhancer interactions in which the
two ends of the interaction land in the same A compartment. As
background, we used all the ATAC-seq peaks landing in the
promoter–enhancer interactions within all other A compartment
clusters.

For the TFmotif enrichment in the regions surrounding the 52 DE
genes in the reprogrammed A compartment cluster 1 regions, we
selected all ATAC-seq peaks in the gene bodies (±250 kb). As back-
ground, we used all ATAC-seq peaks in the gene bodies (±250kb) of
the A compartment cluster 1 gene in the black gene co-expression
module.

Identification of differentially accessible ATAC-seq peaks in the
first 24 h of PAd differentiation
We performed the differential accessibility (DA) analysis between the
PAd and D1 time points using the R package limma v3.34.982,83 and the
voom84 method.We used the duplicateCorrelation function in limma85

to account for the repeated measure from the same individual. To
decrease confounding, we included age, sex, and fraction of reads in
peaks (FRiP) as covariates in the model and the family ID as a blocking
factor. We tested for DA between the PAd and D1 time points in the
lower and higher BMI individuals separately. We used an FDR <0.05
cutoff to define significant DA peaks for these comparisons.

WGCNA module follow-up analyses
Module enrichment in A compartment clusters:We testedwhether the
genes in the 14 identifiedWGCNA co-expressionmodules are enriched
in any of the 10 A compartment clusters, using the hypergeometric
enrichment test implemented in the phyper function in R. We cor-
rected for the multiple testing of 140 tests using the Bonferroni
adjustment.

Module association with BMI status in the MZ twin pairs: We
tested the effect of the BMI status in theMZ twin pairs on thefirst PCof
the WGCNA gene co-expression modules, while accounting for twin
pair ID as a random effect.

KEGG pathway enrichment: We used theWebGestalt86 tool to test
for enrichment of KEGG pathways in the A compartment cluster 1
region black co-expression module genes. As background, we used all
genes expressed in the A compartments.

Gene expression correlation with the first PC of the module gene
expression:We correlated the expression of all A compartment cluster
1 genes in the black co-expression module with the first PC of the
expression of these genes (n = 472 genes). We used Spearman’s rank
correlation and corrected for multiple testing using the
Benjamini–Hochberg adjustment, taking genes with a padj < 0.05 as
significant.

Differential gene expression and peak accessibility between the
BMI-discordant MZ twin siblings
We assessed whether the 380A compartment cluster 1 genes that are
correlated with the first PC of the black co-expression module are DE
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between the lower and higher BMI MZ siblings by using a paired t-test
on the corrected TPMs. We used a padj < 0.1 as the significance
threshold for DE genes.

We tested whether the five ATAC-seq peaks that land within the
INPP5K gene (±10 kb) are DA by using a paired t-test on the corrected
TPMs. Due to the small number of peaks tested, we corrected for
multiple testing with the Bonferroni adjustment.

BMI GWAS enrichment analysis of the 52 DE gene regions using
MAGENTA
We used Meta-Analysis Gene-set Enrichment of variaNT Associations
(MAGENTA) v2.440 to assess the 52 DE genes for significant BMI GWAS
enrichment using the second round BMI GWAS summary statistics of
the UK Biobank cohort from the Neale Lab (http://www.nealelab.is/uk-
biobank/) and generating the association scores for each gene based
on the p values of all variants within a 500 kb upstream and down-
stream window. MAGENTA natively filters out genes within close
proximity of one another in the input set, but we retained all 52 genes
in our analyses due to our small gene set size. As background, we used
either 1) all genes in the A compartment cluster 1 region that are in the
black gene co-expression module; or 2) all DE genes (n = 161) in
the non-reprogrammed A compartment cluster 1 regions that are in
the black gene co-expression module.

Differential correlation between the lower and higher BMI MZ
siblings
For the MIR22HG promoter peak and the INPP5K 3’ exonic peak co-
accessibility differences,we used Fisher’s z-transformation to compare
the correlation coefficients between the lower and higher BMI MZ
siblings, as implemented in the cocor87 v1.1 R package.

All analyses using R were performed in R v3.6.3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Both the raw counts and normalized counts in transcript per million
(TPMs) of the RNA-seq and ATAC-seq data used in the analyses of this
study are available at the GEO database under the accession number
GSE235363, and source data are provided with this paper. The data
that support the GxE findings in this manuscript were generated using
the UK Biobank under the UK Biobank Application Number 33934.
These data were available under restricted access for bona fide
researchers through the application process. The round 2 UK Biobank
GWAS summary statistics used in this study are publicly available
[http://www.nealelab.is/uk-biobank/]. The human reference genome
(1000 Genomes human_g1k_v37) used in this study is available at IGSR
[https://www.internationalgenome.org/category/assembly/]. The PAd
pCHi-C data are available at the GEO database under the accession
number GSE183770. The ChIP-seq data for the H3K27ac histone mark
and MED1 at the day 1 adipogenic time point from bone marrow-
derived stromal stem cells (BM-hMSC-TERT4) are available at the GEO
database under the accession number GSE113253. The ENCODE
blacklist used in this study is available at the ENCODE portal under the
accession number ENCFF001TD. All data supporting the findings
described in this manuscript are available in the article and in the
Supplementary Information and from the corresponding author upon
request. Source data are provided with this paper.

Code availability
No custom codewas used, and all codes used for analyses in this study
were unaltered from their publicly available sources, as outlined in the
Methods.
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