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Abstract
When aiming to make predictions over targets in the pharmacological setting, 
a data-focused approach aims to learn models based on a collection of labeled 
examples. Unfortunately, data sharing is not always possible, and this can result 
in many different models trained on disparate populations, leading to the natural 
question of how best to use and combine them when making a new prediction. 
Previous work has focused on global model selection or ensembling, with the 
result of a single final model across the feature space. Machine-learning mod-
els perform notoriously poorly on data outside their training domain, however, 
due to a problem known as covariate shift, and so we argue that when ensem-
bling models the weightings for individual instances must reflect their respective 
domains—in other words, models that are more likely to have seen informa-
tion on that instance should have more attention paid to them. We introduce a 
method for such an instance-wise ensembling of models called Synthetic Model 
Combination (SMC), including a novel representation learning step for handling 
sparse high-dimensional domains. We demonstrate the use of SMC on an exam-
ple with dosing predictions for vancomycin, although emphasize the applicability 
of the method to any scenario involving the use of multiple models.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Model averaging population pharmacokinetic models is known to improve the 
predictive accuracy when informing optimal dose selection.
WHAT QUESTION DID THIS STUDY ADDRESS?
Appropriately averaging models is challenging, and current methods ignore 
important information about the demographics of which population a model is 
based on, a concept this study leverages for improved performance.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Incorporating demographic information into model averaging methods allows 
us to improve the quality of predictions while maintaining the gains of current 
methods.
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INTRODUCTION

The ability of a model to correctly represent a population 
is of necessity limited by how well the data used to build it 
represents the population. Given the enormous variability 
within and between human populations for pharmacoki-
netics (PKs) and pharmacodynamics (PDs), this is a sig-
nificant challenge for the use of models and their ability to 
make useful predictions about the effects in humans. This 
problem is further increased by the variability within dis-
eases which are generally not homogenous entities where 
all patients have exactly the same disease processes.

When attempting to apply one or more previously de-
veloped models to make predictions about new patients 
or populations it is a very challenging task for us to know 
how well the individual models should perform, making 
the task of choosing the most appropriate model (or en-
semble) difficult. This is compounded by the problem that 
the provided models could perform poorly for two main 
reasons. First, the model itself may not have been flexible 
enough to properly capture the underlying true function 
present in the data; and second, in the area that they are 
making a prediction there may not have been sufficient 
training data used for the model to have been able to learn 
appropriately (i.e., the model is extrapolating [potentially 
unreasonably] to cover a new feature point; Figure 1). This 

can be the case even when models have been designed and 
are based on a mechanistic understanding of a biological 
process, as in most cases, we still have an incomplete rep-
resentation of the full process.

Various methods have been developed to address this 
problem. At the simplest level, there are typically multi-
ple models developed each using different datasets that 
are claimed to better represent the population or at least a 
specific subset of the population. However, the reference 
populations used to build each model are usually only 
small subsets of the whole. Methods, such as the Bayesian 
model averaging, are used to combine multiple models to 
try to capture the value of each, however, they usually as-
sume the model's performance is independent of the pop-
ulations, ignoring their training domain. Data and model 
repositories have been proposed to allow the development 
of more definitive models of diseases and of the PK/PD of 
therapies.1 There has been some success developing pub-
licly accessible repositories of disease models that make 
the data and scope of the models more transparent, for 
example, the Drug Disease Model Resource (DDMoRe) 
model repository2 and several academic institutions, char-
ities, and pharma companies make some trials data avail-
able through the non-profit organization Vivli.3 However, 
the extent of the data accessible is limited by some par-
ticipants and phase I studies or PK data are excluded by 

HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The algorithms described in the study may increase the accuracy of precision 
dose calculations among other targets.

F I G U R E  1   Instance-wise ensembles. (a) Here, we represent the density of the training features for three separate models: M1, M2, 
and M3. Given new test points A, B, and C, we need to construct predictions from these models. A is well-represented by both M2 and M3, 
whereas B only has significant density under M3. C looks like none of the models will be able to make confident predictions. (b) Different 
models are useful for new patients. Population pharmacokinetic models are often trained on certain demographic groups given the studies 
that are designed for data collection. For a new patient who does not necessarily fit into one of the existing demographics, different models 
may be more or less relevant and accurate. Naive ensembles ignore this fact and always incorporate evenly the predictions of each model, 
SMC on the other hand aims to up-weight the models that would appear to be more relevant. SMC, Synthetic Model Combination.

(a) (b)
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some pharma participants. Sharing data brings its own 
challenges, not the least being that there may not be per-
mission to use the data for anything other than the spe-
cific purpose for which it was first developed.

Synthetic Model Combination (SMC) is a new machine-
learning method that leverages and combines multiple 
models in an effective manner. Unlike existing methods, 
it focuses on building ensembles in an instance-wise man-
ner before any additional data have been collected, that is 
to say that for each new test point over which a prediction 
needs to be made it constructs a new ensemble. This effec-
tively means that SMC is able to select models for each test 
case (patient) that it thinks will be most effective for the 
given case, based primarily on whether the case is likely to 
have been well-represented in the training domain of each 
model. In this paper, we introduce and describe SMC, il-
lustrate its use through an example of multiple pharma-
cometric models, and try to stimulate ideas about other 
possible applications relevant to pharmacometrics, clini-
cal pharmacology, and drug development and use.

BACKGROUND AND RELATED 
WORK

SMC can be used in any situation where there are mul-
tiple alternative models. For the purposes of illustrating 
the method, we chose to consider the common situation of 
multiple population PK/PD models. In the case of the an-
tibiotic vancomycin, this is clinically important as popula-
tion PK/PD models are commonly used to guide selection 
of doses to achieve a target area under the curve (AUC) 
and maximize the chances of effective therapy without 
nephrotoxicity and it is important to identify how best to 
use the multiple possible models.4 We emphasize that this 
specific example is an illustration for the purposes of ex-
plaining the methodology. We anticipate there are many 
other situations, including other drugs and other cases 
where multiple models are available for which SMC may 
be even more useful.

With multiple models our goal is to combine them in 
the most appropriate way, taking the form of construct-
ing ensembles. Here, we differentiate between what we 
first describe as naive ensembling, where multiple models 
have been trained (through bootstrapping or on different 
datasets) in order to reduce the expected bias or get an es-
timate of distributional uncertainty. Performance-based 
Model Averaging (PBMA), on the other hand, works by se-
lecting models with higher weights based on an estimate 
of the performance of the model; a practical and common 
approach being Bayesian Model Averaging (BMA).5 Given 
an appropriate (usually uniform) prior, we calculate the 
posterior probability that a given model is the optimal 

one—and once this is obtained, the models can be mar-
ginalized out during test time predictions, creating an 
ensemble weighted by each model's posterior probability. 
The posterior being intractable, the probability is approxi-
mated using the Bayesian Information Criterion (BIC)6—
which requires a likelihood estimate over some validation 
set containing labeled examples* and is estimated as:

With this it is important to note the subtle difference 
in setup to the problem we are trying to work with. In all 
cases, it is assumed that there is some ordering for the 
models that hold across the feature space and so a global 
ensemble is produced with a fixed weighting ŵ such that 
w(x) = ŵ∀x ∈ . This causes failure cases when there is 
variation in the models across the feature space, because 
it is a key point that BMA is not a model combination 
method.7 This being an important distinction and one of 
the main reasons BMA has been shown to perform badly 
under covariate shifted tasks8—that is to say tasks where 
the testing distribution differs from the training distribu-
tion, a scenario that is well known to affect the quality 
of a model's predictions.9 That being said, it can be ex-
tended by considering the set of models being averaged 
to be every possible combination of the provided mod-
els,10 although this becomes even more computationally 
infeasible.

This has led to a family of ensemble methods that calcu-
late their weights slightly differently, replacing the BIC

(
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)
 

term in the above equation with other measures of the 
“quality” of the model, such as Akaike information crite-
rion, log likelihood, or negative sum of squared errors—all 
of which are explored in the work of Uster et al.11 This ap-
pears to be the extent of the exploration in model averaging 
in the clinical pharmacological setting. We have summa-
rized the properties of these methods in Table 1.

Traditionally PBMA models would not be used for 
instance-wise predictions, because, in a typical supervised 
learning setting, each patient would only have a single set 
of covariates and outcome associated with them and so 
it would not be possible to get an estimate of the perfor-
mance for a given individual that would be different from 
the population as a whole. This reflects the central prob-
lem with global ensembles that run on the assumption 
that the measure of “goodness” of each individual model 
holds the same across the feature space. That is to say that 
each model will be just as effective at predicting for older 
patients with diabetes as it would for infants, however, 
this is unlikely as models are often trained in different 
subpopulations and it is expected that they might all react 
differently to a drug. Global ensembles implicitly assume 

p
(
�|

)
=exp

(
−
1

2
BIC

(
�

))
∕

N∑

i=1

exp
(
−
1

2
BIC

(
�

))



956  |      CHAN et al.

that this covariate shift is not the case and as such suf-
fer when it is—they apply the same ensemble of models 
to every single new test point regardless of what data the 
model was trained on.

However, in population PK (PopPK) settings, we some-
times wish to predict a patient's AUC having already 
observed one or multiple observations—in this case, we 
would be able to use these few observations to get a per-
formance estimate and thus weight models via PBMA. 
Despite this, we will likely still only have at most single 
digit observations for a patient and so there is a risk that 
we do not have enough signal to fit appropriate models 
and may potentially overfit. We still may want to make 
predictions without any observations, and as noted in  
ref. 11, this is an area that PBMA does not handle and sim-
ply reduces to a naive ensemble.

METHODS

Synthetic Model Combination

Unlike the previously mentioned methods, even without 
any observations at all, SMC does not search for a global 

ensemble—rather, it asks the question; for a given indi-
vidual xi, what do we think is the best ensemble? This 
could naturally vary quite considerably from individual to 
individual, especially if the models were trained on data 
from relatively disparate populations.

We explain at a high level the method here but refer the 
interested reader to ref. 12 for more in-depth detail. The 
method can be broken down into essentially three main 
steps, an overview of which is shown in Figure 2, detailing 
both the algorithm for learning (Figure 2a) and inference 
(Figure 2b).

The first step in SMC is to use the demographic infor-
mation reported alongside published models to produce a 
density estimate such that we can sample from each mod-
el's effective support. This aims to create a crude estimate 
of the region on which the model was trained on in the 
original feature space, for example, the general distribu-
tion of heights, weights, sex, etc. We will often expect this 
feature space to be high dimensional and the information 
available to be not hugely detailed, limiting our ability to 
use this original space to make meaningful predictions.

Given the flexibility in the form of what we allow the 
information to take, SMC must remain relatively agnostic 
to this step. A common example of the type of information 

Method Instance-wise?
Require 
new data? Weights

Naive ensemble No No w = 1∕N

PBMA No Yes wi ∝ BIC
(


�

)

Model selection No Yes N/A

Synthetic Model Combination Yes No wi(x) ∝ p
i

(
fθ(x)

)

Abbreviations: N/A, not applicable; PBMA, Performance-based Model Averaging.

T A B L E  1   Comparison of modern 
model averaging/ensembling methods.

F I G U R E  2   Synthetic Model Combination training algorithm. (a) Algorithm outlining the main steps in training for SMC. (b) Inference 
flow diagram. As a new case comes in, the first step is to calculate all of the individual models' predictions, using NONMEM, for example. 
Then, like with any model averaging algorithm the weights must be calculated. Performance-based model averaging methods have a set of 
weights independent of the new case, whereas SMC maps the new case features to a latent space that is then used to calculate individual 
weights for that case. BMA, Bayesian Model Averaging; SMC, Synthetic Model Combination.
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we expect will simply be example feature samples, and, 
in this case, a simple kernel density estimate13 or other 
density estimation method could be used. On the other 
hand, when models are published, authors will often also 
provide demographic information on the patients that 
were involved in the study, such as the mean and variance 
of each covariate recorded. In this case, we may simply 
want to approximate the density using a Gaussian, and 
moment-matching, for example.

The second step is to learn a representation space for 
the individual features which will be maximally infor-
mative for considering which models will be effective at 
making accurate predictions on an individual. The prin-
cipal aim is to lower the relevant dimensionality of the 
data such that density modeling is effective in the learnt 
space, but this can also be effective in bending and com-
pressing the space such that regions of model training 
data are moved closer together or further apart based on 
whether they produce useful and transferable models. In 
cases when the dimension of covariates is already low, this 
step is not always necessary. Learning the representation 
takes the form of a Variational / Regular Autoencoder14 
with additional auxiliary losses. This is trained on the fea-
tures of the testing set as well as samples from the densi-
ties for individual models that were generated in the first 
step. Choosing the latent dimension to be low results in 
learning a representation space that compresses the use-
ful information in the features and aims to move training 
regions that are transferable closer together.

In the final step, we remodel the original densities in 
the feature space now in the representation space, so that 
we can calculate ensemble weights for individuals based 
on their density under each model. Given model densi-
ties in the feature space p

j
(x), we construct a correspond-

ing density in the representation space p
j
(z), this can be 

achieved simply by sampling from p
j
(z), passing through 

the encoder fθ and modeling the new density with a kernel 
density estimate.

From here, we calculate weights as the relative density 
a feature representation has under the densities in the 
new space:

with a regularization hyperparameter γ chosen to be very 
small such that an outlier's weights are not dominated by 
the closest model.

This step simply weights models by an individual's 
density in the new representation space, meaning that 
models that are more likely to have seen features simi-
lar to the individual (or ones with transferable features) 
will play a bigger part in the ultimate prediction for the 

given individual. The quantity can be used to inform the 
confidence of any prediction made by SMC. Particularly 
low values will indicate that the feature had low den-
sity under all the domains and as such it may be likely 
that none of the models were accurate. We note as well 
that assuming a hierarchical generative model for the 
test data where one of the models training data distribu-
tions is selected and then sampled from, this can be in-
terpreted as the posterior probability that a test instance 
was sampled from a model's domain and is thus well-
represented by it.

Interacting with PBMA

The key thing to note is that, unlike PBMA methods, SMC 
does not need any sort of observation in order to individu-
alize the weights of the ensembles. This means that it can 
be applied in areas that PBMA cannot, such as making di-
rect a priori predictions about a patient's AUC before any 
observations have been observed. However, when PBMA 
can be applied, because both it and SMC fundamentally 
use different signals to generate their weights, they can rea-
sonably be combined at the same time in order to achieve 
the benefits of both models (i.e., the weights from both 
methods can be calculated individually and then com-
bined in order to produce a final weighting). Interestingly, 
in the case of BMA, we can potentially see this as a case 
of SMC learning an appropriate prior distribution for the 
weights that is then updated based on the performances of 
the models on the new observations, allowing for a natu-
ral integration into the current framework that allows for 
the best of both methods.

RESULTS

A case study in vancomycin

For vancomycin, the latest consensus dosing guidelines 
from the Infectious Diseases Society of America15 recom-
mend adjusting the dose to achieve a target AUC. Many 
PopPK models have been developed to adjust the doses on 
an individual patient basis taking into account important 
patient covariates.

We base our experiment around those of ref. 11 who 
themselves consider a model averaging approach through 
the application of model averaging. We use simulated pa-
tients provided by the authors to evaluate the effectiveness 
of SMC in the accuracy of predicting the AUC across a 
number of settings when a number ∈ {0 (A priori), 1, 2, 3} 
of concentration measurements are taken in a 48-h pe-
riod. Ultimately, we have six models, each from a separate 

wi(x) =
p
i

�
fθ(x)

�
+ γ

∑N
j=1 p



j

�
fθ(x)

�
+ γ
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subpopulation (extremely obese,16 critically ill post heart 
surgery,17 trauma patients,18 intensive care patients,19 sep-
tic,20 and hospitalized patients21), as well as a variety of 
demographic information for each. In our experiments, 
we focus on the age, height, weight, and creatinine clear-
ance levels as have been shown to be strongly associated 
with drug response11 and are provided for each model.

We use the exact same test simulations as the original 
authors in order to more accurately explore the impact 
of SMC on the predictions made, we refer the interested 
reader to their paper for exact details of how the simu-
lations were produced. In summary though, covariates 
were sampled from a global population before AUC obser-
vations being sampled for 1000 patients from each of the 
PopPK models used for a total cohort of 6000 simulated 
patients.

In Table  2, we report the relative root-mean-square 
error (RMSE) and bias of the predictions—the lower, the 
better. We can see that SMC consistently performs compet-
itively, especially when combined with PBMA, although it 
does not appear to be outperforming the competition in 
any significant sense. However, we note that the simula-
tion setup here is not based on the underlying assump-
tion that we make (i.e., when simulating patients based on 
the model of Adane et al.16) for clinically obese patients, 

the current simulations still generate covariates from a 
normal population, and actually only a small minority of 
the patients would be considered obese. We believe that 
this is not representative of what is seen in the real world 
and, consequently, in order to evaluate the performance 
of SMC in what we consider a more realistic setting, we 
developed a method to subsample the original simulations 
in order to obtain a population for each model that more 
accurately reflects the population on which each model 
was developed.

In order to select a smaller sample of 1000 patients, we 
first modeled the density of each of the patient popula-
tions based on the demographic statistics provided in each 
of the original papers. Then, for each of the 6000 simulated 
patients, we evaluated the likelihood that their covariates 
came from each model and selected the model with the 
highest likelihood. If this selected model matched the 
model from which the AUC observations were simulated, 
then the patient was kept and otherwise discarded. This 
mimics a rejection sampling method for the covariates 
from the original model demographics using the sampling 
method of ref. 11 as the base distribution. This results in 
a population where each model only simulated data for 
patients whose covariates were likely under their reported 
demographic information, a scenario that appears more 

T A B L E  2   RMSE and bias for AUC predictions from models given number of concentration measurements over a 48-h period on the full 
cohort of 6000 simulated patients.

A priori One Two Three

Bias Adane et al. 24.7 ± 0.3 13.3 ± 0.1 13.3 ± 0.1 13.3 ± 0.1

Mangin et al. 34.7 ± 0.2 11.6 ± 0.1 10.5 ± 0.1 2.3 ± 0.1

Medellin-G et al. 27.7 ± 0.1 12.8 ± 0.1 11.2 ± 0.1 8.1 ± 0.1

Revilla et al. 12.3 ± 0.3 1.1 ± 0.1 0.3 ± 0.1 2.9 ± 0.1

Roberts et al. 11.0 ± 0.1 0.2 ± 0.1 1.7 ± 0.1 1.7 ± 0.1

Thomson et al. 0.5 ± 0.1 3.1 ± 0.1 3.7 ± 0.1 4.0 ± 0.1

Naïve ensemble 10.7 ± 0.1 6.6 ± 0.1 6.8 ± 0.1 5.4 ± 0.1

PBMA 10.7 ± 0.1 1.1 ± 0.1 2.2 ± 0.1 1.7 ± 0.0

SMC 0.7 ± 0.1 2.7 ± 0.1 3.8 ± 0.1 3.5 ± 0.0

SMC + PBMA 5.0 ± 0.1 1.9 ± 0.1 3.0 ± 0.0 2.6 ± 0.1

RMSE Adane et al. 52.4 ± 0.3 32.9 ± 0.2 32.7 ± 0.3 27.4 ± 0.3

Mangin et al. 57.4 ± 0.2 27.8 ± 0.1 25.5 ± 0.3 17.7 ± 0.1

Medellin-G et al. 51.4 ± 0.2 25.7 ± 0.1 22.8 ± 0.1 17.3 ± 0.1

Revilla et al. 35.1 ± 0.1 20.8 ± 0.1 18.5 ± 0.1 15.4 ± 0.1

Roberts et al. 31.7 ± 0.1 18.7 ± 0.1 18.1 ± 0.1 14.7 ± 0.1

Thomson et al. 34.5 ± 0.1 22.9 ± 0.1 20.6 ± 0.1 16.8 ± 0.1

Naïve Ensemble 38.4 ± 0.1 21.9 ± 0.1 20.0 ± 0.1 16.1 ± 0.1

PBMA 38.4 ± 0.1 19.0 ± 0.1 17.4 ± 0.1 13.9 ± 0.1

SMC 36.4 ± 0.1 21.0 ± 0.1 19.3 ± 0.1 15.4 ± 0.1

SMC + PBMA 36.0 ± 0.1 19.0 ± 0.1 17.6 ± 0.1 14.1 ± 0.1

Abbreviations: AUC, area under the curve; PBMA, Performance-based Model Averaging; RMSE, root-mean-square error; SMC, Synthetic Model Combination.
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reasonable as the true underlying process. In Table 3 we 
report the relative RMSE and bias again of the predictions, 
seeing a big improvement in the relative performance of 
SMC and its combination with PBMA.

DISCUSSION

It might not be immediately clear why we include these 
two separate results, and which one is the most appro-
priate to pay attention to. We refer to the first being the 
“original” simulation setting; and the second being an 
augmented population that we will now call the “realis-
tic” setting, as we believe that this better reflects the as-
sumptions of the real world.

Why is this more realistic? It seems clear given the di-
versity of models that are discovered that different models 
are more reflective of the underlying process in the differ-
ent populations. In the “original” setting, the covariates 
of an individual are sampled from a global distribution, 
and then a random model is selected in order to simulate 
the drug dynamics. On the other hand, in the “realistic” 
setting, the covariates of an individual are again sampled 
from a global distribution. The difference then is that the 
model selected in order to simulate the drug dynamics is 

chosen with probability proportional to the likelihood that 
the individual came from each of the populations. As a 
concrete example, if we sample an individual with a body 
mass index greater than 30, then it is much more likely 
that we then simulate the dynamics from the model of 
Adane et al.16 rather than any of the others. Based on the 
previous data collected by all of the previous studies, this 
makes for a more realistic data generation process.

So why did we include the “original” results? Given 
the original simulations previous used in the most rele-
vant case of PBMA, we thought it best to include them in 
order to give a fuller picture of when and how SMC can be 
expected to work. We think this is useful for practitioners 
to better understand when there might be limitations in 
some simulation setups.

So, what is the key takeaway? In the first set, SMC does 
not perform above and beyond comparative methods de-
spite being competitive. However, this is not as realistic 
as the second set which we have designed to be more re-
flective of how we expect to see data in the real world. As 
such, the results on the second set are the important ones 
to pay attention to, and the ones for which it matters most 
that SMC is able to combine with PBMA and then out-
perform alternative methods, thus we think it should not 
be thought of as a limitation that SMC only outperforms 

T A B L E  3   RMSE and bias for AUC predictions from models for given number of concentration measurements over a 48-h period on 
1000 subsampled patients.

A priori One Two Three

Bias Adane et al. 53.4 ± 0.5 29.9 ± 0.4 23.8 ± 0.3 21.1 ± 0.2

Mangin et al. 63.4 ± 0.5 23.2 ± 0.3 20.7 ± 0.3 9.7 ± 0.2

Medellin-G et al. 55.4 ± 0.5 22.4 ± 0.3 18.3 ± 0.3 12.6 ± 0.2

Revilla et al. 3.7 ± 0.3 4.0 ± 0.2 3.5 ± 0.2 4.4 ± 0.2

Roberts et al. 7.9 ± 0.3 4.5 ± 0.2 5.4 ± 0.2 4.2 ± 0.1

Thomson et al. 22.6 ± 0.4 14.2 ± 0.3 11.3 ± 0.3 10.7 ± 0.2

Naïve Ensemble 34.4 ± 0.4 16.4 ± 0.2 13.8 ± 0.2 10.4 ± 0.2

PBMA 34.4 ± 0.4 4.7 ± 0.2 4.8 ± 0.2 3.4 ± 0.2

SMC 18.4 ± 0.5 8.2 ± 0.3 7.1 ± 0.2 5.2 ± 0.2

SMC + PBMA 26.4 ± 0.1 6.5 ± 0.2 5.9 ± 0.2 4.3 ± 0.2

RMSE Adane et al. 80.0 ± 0.7 47.3 ± 0.4 40.9 ± 0.6 32.5 ± 0.3

Mangin et al. 83.3 ± 0.6 36.2 ± 0.3 33.0 ± 0.3 21.4 ± 0.2

Medellin-G et al. 76.5 ± 0.6 33.5 ± 0.2 28.5 ± 0.2 20.9 ± 0.2

Revilla et al. 32.7 ± 0.4 21.6 ± 0.2 20.0 ± 0.2 16.7 ± 0.2

Roberts et al. 35.8 ± 0.3 20.6 ± 0.1 20.0 ± 0.2 16.1 ± 0.1

Thomson et al. 48.2 ± 0.4 30.2 ± 0.2 25.8 ± 0.2 20.9 ± 0.1

Naïve ensemble 55.7 ± 0.4 28.5 ± 0.2 24.9 ± 0.2 19.3 ± 0.2

PBMA 55.7 ± 0.4 20.8 ± 0.2 19.3 ± 0.2 15.2 ± 0.2

SMC 41.8 ± 0.5 22.1 ± 0.2 19.6 ± 0.2 15.2 ± 0.2

SMC + PBMA 47.5 ± 0.5 20.5 ± 0.1 18.7 ± 0.2 14.6 ± 0.2

Abbreviations: AUC, area under the curve; PBMA, Performance-based Model Averaging; RMSE, root-mean-square error; SMC, Synthetic Model Combination.
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on this second set, rather it should highlight the potential 
pitfalls of the previous, overly simplistic, simulations.

In this situation, it becomes clear that SMC can take 
advantage of the setting where our assumptions more 
appropriately line up with the simulations. Still, in the 
question of only using SMC or PBMA, we can see that 
they both seem to perform roughly equivalently. A clear 
and noticeable exception is in the “a priori” setting where 
PBMA cannot be applied properly and as such SMC sig-
nificantly improves upon it. This happens because PBMA 
needs to see at least one extra observation in order to con-
struct its estimate of the performance. Without it, PBMA 
just assumes equal performance and so weights all of the 
models equivalently, the same as a naïve ensemble. This 
is an important point to note when it comes to choosing 
which model one might use in practice, if we are only 
interested in making a priori predictions, then it is not 
possible to apply PBMA properly, making SMC a much-
preferred alternative that performs well. What is clearer, 
however, is that when both are used in combination, they 
can each take advantage of their different properties and 
outperform the other methods individually.

This highlights the separate sources of gain between 
SMC and PBMA, where the latter works best when a par-
ticular model just makes generally better predictions and 
we are able to make a good estimate of this performance. 
It should be pointed out as well that in cases where you 
have no labeled data it can be hard—or impossible—to 
obtain such an estimate of global performance, meaning 
that often this approach may not even be possible in the 
first place, as is pointed out in ref. 11. However, when it 
is possible, it does not interfere with SMC in that you can 
calculate weights according to both methods and then 
combine them as you like. The key takeaway being that by 
introducing SMC, you do not need to give up the benefits 
of global ensembling for identifying good average models.

To further understand how scenarios affect SMC, we 
see that raw SMC performs worse when there is high 
variability in the performance of individual models. 
Because SMC does not attempt to evaluate the relative 

performances of the models, when there are models that 
just perform very badly, they can severely detract from 
SMC's performance. This highlights that SMC performs 
best when all the models perform well in their respective 
domains, but that those domains are relatively disjointed. 
This weakness is partially offset by the combination with 
PBMA—this weights models globally by some level of 
how confident we are that the model is good as well as lo-
cally by how well we believe the model will be able to per-
form on a specific feature, balancing the potential causes 
of poor performance.

In other cases of individuals on which SMC tends to 
perform particularly poorly, are those which have low 
density in the learnt representation space under all of the 
models. These then become individuals for which it will 
then weight relatively evenly across them, this then rein-
forces the point of the previous paragraph, as relatively 
poor models are over-represented in the proposed en-
semble weights. However, these are the same individuals 
for which SMC has high uncertainty, for which it would 
recommend collecting more data, and this could be taken 
into account at the point of decision, opening up oppor-
tunity for SMC to highlight when it is uncertain and then 
decline to make a prediction, or at the least pass this un-
certainty on to the practitioner.

Applications in practice

To explain and illustrate SMC and how it differs from ex-
isting model ensembling methods, we used an example 
of multiple PopPK models. However, SMC is not limited 
to use only with Pop PK models. It can be used in any 
situation where multiple models have been developed to 
address the same issue, for example, multiple disease pro-
gression models of the same disease. It is likely there are 
other situations too and we hope to inspire ideas for other 
applications.

In order to identify good models on the individual 
level, SMC models the regions of the feature space for 

F I G U R E  3   Methods based on varying information. A selection of methods from the spectrum of information available to a practitioner. 
SMC lies quite far toward the little information end, aiming to only take use of some demographic information from each of the models and 
not require any labeled training points. SMC, Synthetic Model Combination.
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which models should be able to produce good predictions 
based on a level of epistemic uncertainty. This epistemic 
uncertainty could in turn be used in a feedback system for 
identifying regions of the space for which we have no good 
models. This would allow for future targeted data collec-
tion, allowing practitioners to identify subpopulations 
that require more information, not wasting resources col-
lecting information on patients which we can already pre-
dict well for.

As we show in Figure  3, the machine-learning com-
munity has developed a range of methods for what to do 
in the cases of different amounts of information. SMC is 
not the definitive answer on how to use the knowledge of 
model training domains, but it is the first, and highlights 
an important consideration that practitioners should be 
aware of when making their own predictions. We hope 
that this work will inspire future investigation, particu-
larly in the task of adapting models to new populations 
we have no existing data on.

In general, we aim for the key takeaway for practi-
tioners to be the following: If the individual models seem 
unlikely to transfer well across populations, then incorpo-
rating an aspect of SMC into ensemble predictions is un-
likely to damage predictive power in the worst case and will 
most likely improve predictions.

To conclude, in this paper, we have introduced the 
framework of SMC to the clinical pharmacological and 
pharmacometric community—an instance-wise approach 
to ensembling models in order to make predictions with 
only models that have seen similar individuals during 
their training phase. We demonstrated how it can be ap-
plied in the averaging of PopPK models with the real case 
study of estimating the effectiveness of vancomycin preci-
sion dosing, and the impact that could have in terms of the 
appropriate treatment of patients.
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ENDNOTE
	*	 By labeled examples we mean covariate-target pairs {(x,y)} - 

whereas unlabeled examples only contain the covariates {x}.
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