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Abstract
In a traditional pharmacokinetic (PK) bioequivalence (BE) study, a two-way 
crossover study is conducted, PK parameters (namely the area under the time-
concentration curve [AUC] and the maximal concentration [Cmax]) are obtained 
by noncompartmental analysis (NCA), and the BE analysis is performed using 
the two one-sided test (TOST) method. For ophthalmic drugs, however, only one 
sample of aqueous humor, in one eye, per eye can be obtained in each patient, 
which precludes the traditional BE analysis. To circumvent this issue, the U.S. 
Food and Drug Administration (FDA) has proposed an approach coupling NCA 
with either parametric or nonparametric bootstrap (NCA bootstrap). The model-
based TOST (MB-TOST) has previously been proposed and evaluated success-
fully for various settings of sparse PK BE studies. In this paper, we evaluate, via 
simulations, MB-TOST in the specific setting of single sample PK BE study and 
compare its performance to NCA bootstrap. We performed BE study simulations 
using a published PK model and parameter values and evaluated multiple scenar-
ios, including study design (parallel or crossover), sampling times (5 or 10 spread 
across the dosing interval), and geometric mean ratio (of 0.8, 0.9, 1, and 1.25). 
Using the simulated structural PK model, MB-TOST performed similarly to NCA 
bootstrap for AUC. For Cmax, the latter tended to be conservative and less power-
ful. Our research suggests that MB-TOST may be considered as an alternative BE 
approach for single sample PK studies, provided that the PK model is correctly 
specified and the test drug has the same structural model as the reference drug.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
In bioequivalence (BE) studies for generic drug development of ophthalmic 
products, one sample of aqueous humor is taken at a certain timepoint per eye 
for measurement of drug concentration. Currently, the U.S. Food and Drug 
Administration (FDA) recommends a nonparametric or parametric bootstrap 

http://www.psp-journal.com
https://doi.org/10.1002/psp4.12960
https://orcid.org/0000-0002-2304-9910
https://orcid.org/0000-0002-4278-2974
https://orcid.org/0000-0001-7537-9615
https://orcid.org/0000-0002-0257-9082
https://orcid.org/0000-0002-7045-1275
mailto:
https://orcid.org/0000-0002-6568-1041
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:julie.bertrand@inserm.fr


      |  905EVALUATING MBBE APPROACH FOR ONE SAMPLE PK STUDIES

INTRODUCTION

Pharmacokinetic (PK) bioequivalence (BE) studies 
are key to the development of generic (or test) drugs. 
Traditionally, a two-treatment, two-sequence, two-period 
(two-way) crossover study is conducted and the two one-
sided test (TOST) is performed on estimates of the area 
under the concentration-time curve (AUC) and the maxi-
mal concentration (Cmax) obtained by noncompartmental 
analysis (NCA). In these BE studies, the AUC can be com-
puted using the trapezoidal method and linear extrapo-
lation, if sampling continues for at least three or more 
terminal elimination half-lives of the drug and there are 
at least three sampling points after the peak.1

In PK BE studies for ophthalmic drug products, typi-
cally only one single sample of aqueous humor is collected 
from one eye of each patient, at one assigned sampling 
timepoint, to measure drug exposure. Recommendations 
from the U.S. Food and Drug Administration (FDA) on 
BE study designs for ophthalmic drug products have been 
previously described.2,3 A parallel design is typically used 
when only one sample is collected per patient. A crossover 
design may be used when using patients with bilateral 
disease (i.e., on both eyes), enabling the collection of two 
samples (i.e., one eye per period).

As such, PK BE studies of ophthalmic drug products 
present unique statistical challenges. Certainly, classical 
NCA is not feasible because it is not possible to calculate 
individual AUC values from a single concentration. To 
circumvent this issue, a nonparametric bootstrap NCA 
has been proposed by Shen et al.4 This method involves 
resampling of the subjects, at each sampling time in both 
reference and test treatment groups, to generate non-
parametric bootstrap datasets. Next, the arithmetic mean 

concentration is computed at each sampling time.3 Then, 
AUC and Cmax are computed by NCA from the arithme-
tic mean concentration in each treatment group for each 
bootstrap data set to assess the relevant BE criteria. The 
product-specific guidance (PSG) for ophthalmic drug 
products generally recommends to use this method or a 
parametric method for BE analysis in PK studies.5

Nonlinear mixed effects modeling (NLMEM) is a power-
ful tool used to describe the PK properties of a drug and may 
be used to support a lower number of subjects or reduced 
sampling in PK studies.6 In the last 15 years, NLMEM has 
been demonstrated to be a useful tool in the design and anal-
ysis of PK BE studies.7 For example, Panhard and Mentré8 
proposed to perform a TOST on empirical Bayes estimates 
(EBEs) of individual AUC and Cmax or to analyze the data 
globally and perform two Wald tests on the model-based 
treatment effect estimates (MB-TOST). However, NLMEM 
requires specific estimation algorithms which may present 
certain challenges and concerns. For instance, Panhard 
and Mentré used the first-order conditional estimates 
(FOCE) algorithm9 which presents convergence issues 
that can be avoided with the more exact stochastic approx-
imation expectation maximization (SAEM) algorithm.10 
Therefore, Dubois et al.11 evaluated the tests on EBE using 
SAEM, exploring various scenarios, and found the latter 
are not recommended when the shrinkage is above 20%. 
Furthermore, they evaluated the MB-TOST using SAEM 
and identified an inflation of the test type I error rate due to 
departure from the asymptotic conditions.12 Consequently, 
Loingeville et al.13 proposed alternative calculations of the 
standard errors (SEs) and showed that MB-TOST using non-
asymptotic SE controls type I error rate on sparse PK BE 
studies with small sample sizes. In PK BE studies with large 
sample sizes, MB-TOST using asymptotic SE derived from 

noncompartmental (NCA) approach in the BE evaluation of these products. 
Recent research has focused on nonlinear mixed effect models which have been 
evaluated for sparse pharmacokinetic (PK) BE studies.
WHAT QUESTION DID THIS STUDY ADDRESS?
The present work compares a model-based (MB) BE approach to the nonpara-
metric NCA for PK BE studies with one sampling timepoint per subject and per 
occasion.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Our simulations show that the MB BE approach controlled type I errors, and 
demonstrated a higher power for maximal concentration (Cmax) compared to 
nonparametric NCA with parallel study designs.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Results of our research suggest that an MB approach may potentially serve as 
an alternative method to evaluate BE for generic ophthalmic drug products. 
However, further research and assessment are needed.
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the observed Fisher information matrix (FIM) performed 
satisfactorily.14 Yet, Möllenhoff et al. (2020) proposed the 
bioequivalence optimal test (BOT) which was shown to be 
more powerful while controlling type I error using either a 
model or NCA method to fit the concentrations.15 Further, 
their simulation study highlighted the overly conservative 
type I error rate of the TOST method for drugs with large 
PK variability. Nonetheless, currently, the Agency recom-
mends the reference-scaled average BE approach for highly 
variable drugs.1,16

Our objective in the present work is to compare an MB 
approach to the FDA recommended NCA nonparametric 
bootstrap approach for single point designs.

METHODS

Two one-sided tests

For most drug products, BE studies are focused on the 
release of the drug substance from the drug product into 
the systemic circulation. In these BE studies, the rate and 
extent of drug absorption of the test (T) product is com-
pared to the reference (R) product using AUC and Cmax 
metrics, respectively. For the drug exposure, one can esti-
mate the AUC from time zero until the last sampling time 
(AUC0−tlast) tlast or the AUC from time zero until infinity 
(AUC0−∞).

Let �T be the treatment effect (i.e., the difference be-
tween �T and �R [�T = �T − �R]) the average means of the 
test and reference products for log (AUC) or log

(
Cmax

)
, 

then the null hypothesis for BE testing is:

with � a given threshold
The TOST relies on the decomposition of the null hy-

pothesis stated in Equation 1 in two one-sided hypotheses 
H0,−� :

{
�T ≤ − �

}
and H0,� :

{
�T ≥ �

}
.
17 Thereby the 

null hypothesis is rejected if

where �̂
T

 and SE
(
�̂
T
)
 are the �T estimate and its stan-

dard error, and u1−� is the 1 − � quantile of a reference 
distribution.

This method is equivalent to constructing a 
(1 − 2� )-confidence interval (CI) for �̂

T
 and concluding 

BE if it is completely contained in the equivalence interval 
[ − �; �]. In conventional BE analysis, regulatory author-
ities set the threshold � = log(1.25) = − log(0.8) and the 

significance level � = 0.05.18 The BE acceptance criteria is 
for the 90% CI around the geometric mean ratio (GMR) 
of AUC or Cmax to be included in the [80–125]% interval.

Single point study design

In BE studies for generic drug development of ophthal-
mic drug products, one sample of aqueous humor is taken 
at a certain timepoint per eye for measurement of drug 
concentration. A parallel study design involves sampling 
from only one eye, whereas crossover study designs in-
volve sampling from both eyes, with test product in one 
eye and reference product in the other eye.

In both treatment arms of parallel studies, the subjects 
will be assigned to each of several prespecified sampling 
times tj with j = 1, … , J. Let Cij be the concentration 
of subject i = 1, … ,Nj at the sampling time tj. The total 
number of samples is ntot =

∑J
j=1 Nj which is the same as 

the total number of subjects.
In the crossover studies, each subject with bilateral 

cataracts is randomly assigned for treatment with the test 
product in one eye and the reference product in the other 
eye.

A single sample of aqueous humor is collected from 
each eye at the same assigned sampling time tj. Let Cijk 
be the concentration of subject i = 1, … ,Nkj at the same 
assigned sampling time tj at each period/in each eye 
k = 1, 2. So, the total number of samples in the study is 
ntot =

∑2
k=1

∑J
j=1 Nkj for crossover. The total number of 

subjects N = ntot∕2.

MB-TOST method

This approach uses NLMEM that account for the nonlin-
earity of the concentration versus time profile, as well as 
between- and within-subject variability (BSV and WSV).19

For crossover designs, the concentration Cijk is de-
scribed by a nonlinear function f  depending on the vector 
of individual parameters �ijk of subject i sampled at time 
tj for period/eye k:

The lth element of the vector �ijk (i.e., the lth individual pa-
rameter �ijkl l = 1, … ,np where np is the number of PK pa-
rameters) can be decomposed as in the following equation:

with �l the lth element of the vector of fixed effects for 
the covariate reference class. Tijk, Pk, and Sij are known 

(1)H0: �
T
≥ �or�T ≤ − �

(2)
�̂
T
+ �

SE
(
�̂
T
) ≥ u1−� and

�̂
T
− �

SE
(
�̂
T
) ≤ − u1−�

(3)Cijk = f
(
tj,�ijk

)
+ g

(
tj,�ijk

)
�ijk

(4)
log

(
�ijkl

)
= log

(
�l
)
+ �T

�

l
Tijk + �P

�

l
Pk + �S

�

l
Sij + �ijl + �ijkl,
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vectors of treatment, period and sequence covariates, re-
spectively. �T

l
, �P

l
, and �S

l
 are the vectors of coefficients 

of treatment, period and sequence effects, respectively, 
for the lth individual parameter. �ijl is the lth element of 
the vector of random effects �ij for subject i at time tj 
capturing the BSV. �ijkl is the lth element of the vector of 
random effects �ijk for subject i at time tj and period k, 
capturing WSV.

The random effect vectors �ij and �ijk are independently 
and normally distributed, with mean zero and variance–
covariance matrix Ω and Γ, respectively, of size np × np. 
Let �2

l
 and �2

l
 denote the lth diagonal element of Ω and Γ, 

corresponding to the BSVs and WSVs of the lth parameter, 
respectively.

The residual errors �ijk are independently and iden-  
tically distributed according to a normal centered distribu-
tion of variance �2. The associated error model can be ad-
ditive g

(
tj,�ijk

)
= a, proportional g

(
tj,�ijk

)
= bf

(
tj,�ijk

)
, 

or combined g
(
tj,�ijk

)
= a + bf

(
tj,�ijk

)
.

For parallel designs, both Equations 1 and 2 simplify 
as follows (i.e., no period or sequence effect because there 
is only one period/eye and one sequence per subject):

The full vector of parameters to be estimated in the 
NLMEM is � =

(
�, �T , �P , �S ,Ω,Γ, a, b

)
 or 

(
�, �T ,Ω, a, b

)
 

depending on the design. Let VAR
(
�̂
)
 denote the asymp-

totic variance–covariance matrix of estimation, with the 
square root of its diagonal elements being the parameter 
asymptotic SEs. VAR

(
�̂
)

 is derived as the inverse of the 
observed FIM.

The treatment effects on AUC and Cmax (�TAUC and �TCmax , 
respectively) are functions of the reference effects � and 
the treatment effects �T on the PK model parameters. The 
delta-method is used to obtain estimates of SE

(
�̂
T

AUC

)
 and 

SE
(
�̂
T

Cmax

)
.
20 These estimates and their SE are used to calcu-

late the TOST statistics stated in Equation 2 to be compared 
to z1−� the (1 − �)-quantile of a normal distribution.

In this approach, the exposure can be captured by 
AUC0−tlast and AUC0−∞, both being different functions of 
the reference effects � and the treatment effects �T on the 
PK model parameters.

Nonparametric bootstrap NCA

In recent years, the FDA has recommended parametric or 
nonparametric bootstrap NCA methods for the BE analy-
sis of generic ophthalmic drug products.3–5

For crossover designs, at each time tj, the mean of the 
concentrations Cijk are calculated, for each period k. Here, 

two versions of the nonparametric bootstrap NCA are eval-
uated (i) using the geometric mean of the concentrations or 
(ii) using the arithmetic mean of the concentrations.3 In both 
versions, one value of Ckmax and AUCk is derived from the Jk 
(geometric or arithmetic) means at each timepoint, for each 
period (e.g., k = 1 for treatment T and 2 for treatment R).

Let Chij be the hth product concentration of the sub-
ject i and sampling timepoint tj, h = T ,R, i = 1, … ,Nhj,  
and j = 1, … , J . Let Chj be the mean concentration of 
the hth product at the jth sampling timepoint, defined 
as follows:

Thus, the AUC of the hth product from the mean profile of 
drug concentration is calculated, using the trapezoidal rule, by:

Cmax is also obtained from the mean profile by:

Then, the ratios AUC
T

AUCR
 and 

CTmax
CRmax

 are calculated and the 
90% CIs around these ratio estimates are obtained using 
nonparametric bootstrap as follows.

Let us consider b ( = 1, … ,B) bootstrap samples. For 
each sampling time tj, the concentrations of the Nj indi-
viduals at both occasions k (i.e., for treatments R and T) 
are re-sampled with replacement. For each bootstrap 
sample, at each time tj the geometric and arithmetic 
mean of the concentrations Cij are calculated for each 
treatment group, before deriving the respective treat-
ment AUC, Cmax and the corresponding ratios. B ratio 
estimates AUCTb

AUCR
b

 and CTmax b
CR
max b

 are obtained and the fifth and 

95th percentiles of these distributions are used as the 
lower and upper bounds of the 90% CIs, respectively. 
Then, BE is concluded if the latter intervals are included 
in the [80–125]% interval.

To calculate the 90% bootstrap CIs for parallel designs, 
the concentrations of the Nj individuals are bootstrapped 
in each treatment group separately.

In this approach, the exposure is captured by AUC0−tlast 
(i.e., the trapezoidal rule is used to obtain the AUC and no 
extrapolation to infinity is made from the last sampling 

(5)
Cij= f

(
tj,�ij

)
+g

(
tj,�ij

)
�ij

log
(
�ijl

)
= log

(
�l
)
+�T

�

l
Tij+�ijl,

(6)Chj=

⎧
⎪⎪⎨⎪⎪⎩

�
i=Nhj

Chij∕Nhj if arithmetic mean

exp
⎛⎜⎜⎝
�
i=Nhj

log
�
Chij

�
∕Nhj

⎞⎟⎟⎠
if geometric mean

(7)AUCh = t1 × Chj∕2 +

J−1∑
j=1

(
Chj + Ch,j+1

)
⋅

(
tj+1 − tj

)
∕2

(8)Chmax = max
j∈(1,… ,J)

(
Chj

)
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time). In the content of the following tables and figures, 
we refer to this approach as “NCA bootstrap Geometric 
and Arithmetic.”

Simulation study

Simulation settings

The PK data describing the PK of theophylline drug were 
simulated using the following one-compartment PK 
model with first-order absorption and elimination as in 
ref. 13, thereby assuming the test drug has the same PK 
structural model as the reference drug:

where F is the bioavailability, D the dose, V  the distribution 
volume, ka the absorption rate constant, and Cl the clear-
ance of the drug. This PK model describes an exponential 
rise followed by a mono-exponential decrease in the concen-
trations which would have fitted the data of the ophthalmic 
product described in ref. 4.

Parallel and two-way crossover designs were consid-
ered, both with one sampling timepoint per subject. For 
each subject, the one sampling time was drawn from a 
rich or sparse set containing 10 or 5 sampling times, re-
spectively, for selection. A total of 500 subjects was sim-
ulated with balanced sample sizes per sampling time and 
treatment group. For parallel designs, there were 25 sub-
jects per sampling time in each treatment group for the 
rich set, and 50 subjects per sampling time in each treat-
ment group for the sparse set. For crossover designs, there 
were 50 subjects per sampling time and per period/eye for 
the rich set, and 100 subjects per sampling time and pe-
riod/eye for the sparse set.

The set of 10 sampling times was selected from: 
t ∈ {0.25, 0.5, 1, 2, 3.5, 5, 7, 9, 12, 24} h, and the set of 5 was 
selected from: t ∈ {0.25, 1.5, 3.35, 12, 24} h. The latter was 
obtained by maximization of the determinant of the FIM 
with fixed sampling times at {1.5,12} h.8 For the two-way 
crossover design, the same timepoint after drug administra-
tion is assumed in both periods/eyes within each individual.

Each subject received D = 4 mg. The fixed effects for 
the reference treatment group of subjects were �ka = 1.5

/h, �V∕F = 0.5 L and �Cl∕F = 40 mL/h. Diagonal matri-
ces were used for both BSV and WSV (only used when 
crossover design) with �ka = �V∕F = �Cl∕F = 52% for 
parallel designs, and �ka = �V∕F = �Cl∕F = 50% and 
�ka = �V∕F = �Cl∕F = 15% for crossover designs. We used 

a combined error model for the residual variance with 
a = 0.1 mg/L and b = 10%.

The limit of quantification (LOQ) for simulated con-
centrations was set at 0.2 mg/L. Simulated concentrations 
below 0.2 mg/L, including negative concentrations (< 0) 
and concentrations between 0 and 0.2 (0–0.2) mg/L were 
identified as below the limit of quantification (BLOQ). For 
MB-TOST, BLOQ concentrations were handled in the like-
lihood calculations using the method described in ref. 21 
(i.e., the likelihood for a BLOQ observation is taken to be 
the likelihood that it is between 0 and the LOQ, given the 
current model parameter estimates). For NCA bootstrap, 
the BLOQ data were set to LOQ/2 as in Ref. 4.

Evaluation

Both MB-TOST and NCA bootstrap were evaluated for BE 
on AUC0−tlast and Cmax (and not on AUC0−∞) for the pur-
pose of the comparison (see Supplementary Material  S1 
for the details of these metric calculations).

Despite the sparse sampling in our design, we used as-
ymptotic SE for MB-TOST due to the large sampling size 
evaluated (N = 500). Indeed, with 

√
N -consistency for all 

PK parameters simulated and fitted with BSV (and WSV 
for crossover designs), we assumed asymptotic conditions 
were met.

For all approaches, the type I error was as-
sessed under two different H0 hypotheses by setting 
�T
Cl∕F

= �T
V∕F

= log (0.8) and �T
Cl∕F

= �T
V∕F

= log (1.25), cor-
responding to a simulated GMR for AUC0−tlast and Cmax of 
1.25 and 0.8, respectively (see Supplementary Material S1).

We simulated under two different H1 hypotheses, first 
by setting �T

Cl∕F
= �T

V∕F
= log (0.9) and second by setting 

�T
Cl∕F

= �T
V∕F

= log (1) = 0, corresponding to a simulated 
GMR for AUC0−tlast and Cmax of 1.111 and 1, respectively. 
In all scenarios, period and sequence effects were assumed 
to be null (i.e., �P = �S = 0).

Therefore, we simulated 16 scenarios: two study de-
signs (parallel or two-way crossover) times two sets of 
possible sampling times (5 or 10) and four hypotheses 
(�T = log (0.8), log (0.9), log (1), log (1.25)). Subsequently, 
our notation C10H0:0.8 refers to the scenario with a cross-
over design, a set of 10 sampling times to choose from and 
a simulated treatment effect �T of log (0.8).

Estimation errors (EEs; the differences between the 
estimates and the simulated value) were calculated for 
model-based GMR and NCA bootstrap (geometric and 
arithmetic) mean ratio (MR) of AUC and Cmax. Similarly 
for all scenarios, we calculated the empirical 5th and 
95th percentiles of the GMR for MB-TOST (as the mean 
± u1−�× the standard deviation over all simulation esti-
mates) and of the MR for the NCA bootstrap (geometric 

(9)

C(t)= f
(
t, ka,Cl∕F ,V∕F

)

=
D

V∕F

ka
Cl∕F

V∕F
−ka

(
exp

(
−ka t

)
−exp

(
−
Cl∕F

V∕F
t

))
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and arithmetic, as the 5th and 95th percentiles over all 
simulation estimates) to be compared to the distribution 
of the estimated 5th and 95th percentiles obtained on each 
simulated data sets, for AUC and Cmax.

For the MB approach, relative EE (REE), relative bias 
(Rbias) and relative root mean square error (RRMSE) 
were calculated for fixed effects, random effects, and error 
model parameters.22 Because the treatment, sequence, 
and period effects were simulated at zero, we did not cal-
culate REE, Rbias, and RRMSE for the latter but absolute 
values of the corresponding metrics.

MB-TOST and NCA bootstrap were evaluated on 500 
simulated data sets for each scenario. As NCA bootstrap 
runs faster, it was also evaluated on 10,000 simulated 
data sets for the challenging scenarios with 10 samples 
under one null and one alternative hypothesis: P10H0:1.25, 
P10H1:0.9, C10H0:1.25, and C10H1:0.9.

NCA bootstrap was evaluated with each of these sce-
narios, assuming there is no LOQ at 0.2 mg/L. Whereas 
MB-TOST was evaluated on scenarios P10H0:1.25 and 
C10H0:1.25 with no LOQ at 0.2 mg/L. In the absence of a 
defined LOQ, concentrations simulated below zero were 
set to 0.0001.

MB-TOST and NCA bootstrap were also evaluated on 
500 simulated data sets for two parallel design scenar-
ios with 10 possible sampling times and an increased 
residual variance at b = 30% (P10H1:0.9RUV0.3 and 
P10H0:1.25RUV0.3) and two crossover design scenarios 
with 10 possible sampling times and increased WSV and 
residual variance at �ka = �V∕F = �Cl∕F = 30% and b = 30% 
(C10H1:0.9WSVandRUV0.3 and C10H0:1.25WSVandRUV0.3 ).

Implementation

For the NCA bootstrap method, B = 5000 bootstrap samples 
were performed in the R statistical software version 4.0.2.

For the model-based approach, the Monolix 2018R2 
software23 was used which implements the SAEM al-
gorithm for parameters.24 Population parameters were 
estimated with 300 exploratory and 100 smoothing iter-
ations, ensuring an appropriate convergence of SAEM  
visually assessed on a couple of data sets. Further, 
because there was only one observation per subject 
per occasion, 10 Markov chains were used to im-
prove the precision of the estimation. This choice 
was motivated by a previous simulation study which 
already recommended to use 10 Markov chains with 
three sampling times per subject.13 Initial values 
were set at the true value (i.e., the simulation value 
[see section simulation settings and Supplementary 
Material S2]) for all parameters except the treatment, 
period, and sequence effects all set to zero. Standard 

errors were computed using the stochastic approxi-
mation method.25

BE tests were performed on GMR for MB-TOST and 
MR for NCA bootstrap (geometric and arithmetic), of 
AUC0−tlast and Cmax in the R statistical software version 
4.0.2.

RESULTS

Figure  1 represents a typical data set under the hy-
potheses of no BE (�T

Cl∕F
= �T

V∕F
= log (0.8) top two 

lines) and equivalence (�T
Cl∕F

= �T
V∕F

= log (1) bot-
tom two lines) for scenarios with parallel (left column) 
and crossover (middle and right columns) designs and 
choosing the individual sample from a set of five or 10 
possible times. As simulating �T

Cl∕F
= �T

V∕F
= log (0.8) cor-

responds to �TAUC = �TCmax
= log (1.25) (see Supplementary 

Material  S1), the test treatment curve appears above 
the reference treatment curve on plots A-D of Figure  1. 
Consequently, simulating �T

Cl∕F
= �T

V∕F
= log (1) leads to 

the reference and test treatment curves being overlaid on 
plots E-H of Figure 1. There were very few BLOQ data in 
our simulations, with 0.2% to 1.6% of simulated concen-
trations below 0.2 mg/L at 12 and 24 h post-dose respec-
tively, for scenario P10H0:1.25 which simulates the lowest 
concentrations in the treatment group.

Model-based GMR and NCA bootstrap MR (geomet-
ric and arithmetic) for AUC0−tlast and Cmax were unbiased 
and precise (see Figures 2 and 3). These results validated 
the parameter estimation from both the model-based and 
NCA approaches. The evaluation of the model parameter 
estimation is detailed in Supplementary Material S2.

Compared to parallel studies, crossover studies re-
sulted in smaller 90% CIs (see Figures S5 and S6) and con-
sequently higher power estimates (see Table  1) close to 
100%, as expected. The number of samples to choose from 
impacted only the percentiles of the NCA bootstrap MR 
for Cmax. Because the AUC is an average over the concen-
trations, it is expected to be less sensitive to the design than 
Cmax which relies mostly on one measurement. Indeed, for 
designs with 10 rather than five samples to choose from, 
and consequently half of the sample size at each sampling 
time, the 90% CIs were significantly larger. This phenom-
enon led to 50% drops in power for parallel designs. For 
crossover designs, the drop in power was modest under 
the scenario with �T = log (0.9). Indeed, in crossover de-
signs, we simulated a rather low WSV which resulted in 
small 90% CIs and consequently a power close to one. Of 
note, 90% CIs derived from the empirical percentiles were 
even smaller.

For AUC, both MB-TOST and NCA bootstrap (geomet-
ric and arithmetic) obtained controlled type I error rates 
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F I G U R E  1   Concentrations versus time following the reference and test treatments for the first simulated clinical study for different 
simulation scenarios with parallel and two-way crossover designs (period 1 on the left and period 2 on the right). The lines are connecting 
the median in each group successive timepoints. (a) P5H0:0.8; (b) C5H0:0.8; (c) P10H0:0.8; (d) C10H0:0.8; (e) P5H1:1; (f) C5H1:1; (g) P10H1:1; and (h) 
C10H1:1.
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on 500 simulated data sets (see Table 2) with the excep-
tion of a slightly inflated estimate in scenario P10H0:0.8 for 
NCA bootstrap geometric (0.076).

In terms of power, MB-TOST and NCA bootstrap arith-
metic obtained similar mean estimates, whereas NCA 
bootstrap geometric power estimates were consistently 
lower in parallel designs.

For Cmax, the 90% CIs of all approaches were larger 
than the 90% CIs derived from the empirical percentiles. 
Further, the 90% CIs of the NCA bootstrap (geometric and 
arithmetic) MR was wider than that for the model-based 
GMR. Consequently, type I error rates were significantly 
conservative, for NCA bootstrap in general with the ex-
ception of scenario P5H0:0.8 when using arithmetic means 
and for scenarios C5H0:0.8 and C10H0:0.8 for MB-TOST.

In terms of power, MB-TOST had a similar power as 
NCA bootstrap in crossover designs, but higher power 
than NCA bootstrap in parallel designs. Of note for Cmax, 
conversely to AUC, NCA bootstrap geometric had slightly 
higher power than NCA bootstrap arithmetic in parallel 
studies, but the two were similar in crossover designs.

On the scenarios where we investigated NCA bootstrap 
on 10,000 simulated data sets, the type I error rates con-
verged closer to the 5% target value and with narrower CIs 

compared with 500 simulated data sets (Supplementary 
Material S5). Other trends were similar to those observed 
in Tables 1 and 2. When we analyzed the data without a 
LOQ at 0.2 mg/L, the results were generally consistent 
(Supplementary Material S6) for AUC.

We observed no impact of inflating the simulated RUV 
on the type I error of MB-TOST and NCA bootstrap for 
AUC or Cmax (Supplementary Material  S4), in general. 
Inflating the simulated WSV only resulted in a slight in-
flation of the type I error of NCA bootstrap arithmetic for 
AUC in crossover designs. For a parallel design, the power 
estimate for AUC decreased by 28%, 21%, and 19% with 
MB-TOST, NCA bootstrap geometric mean, and NCA 
bootstrap arithmetic, respectively, whereas on the cross-
over design they decreased by 8%, 17%, and 7%, respec-
tively. Likewise, the power estimate for Cmax decreased by 
26% and 21% with MB-TOST using a parallel and cross-
over design, respectively, and decreased by more than 60% 
for both NCA bootstrap methods and designs.

Overall, MB-TOST and NCA bootstrap performed sim-
ilarly for AUC. For Cmax, NCA bootstrap tended to be con-
servative and less powerful for parallel designs compared 
to MB-TOST, likely due to the more precise estimates of 
MB-TOST when the PK model is correctly specified.

F I G U R E  2   Boxplot (2.5th, 25th, 50th, 75th, and 97.5th percentiles) of estimation errors (EEs) of the geometric mean ratio (MB-TOST) 
and the mean ratio (NCA bootstrap geometric and arithmetic) for AUC0−tlast and Cmax, for 500 simulated data sets with parallel designs. 
AUC0−tlast, area under the time-concentration curve from time zero until the last sampling time; Cmax, maximum concentration; EEs, 
estimation errors; MB-TOST, model-based two one-sided test; NCA, noncompartmental analysis.
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DISCUSSION

In this study, we used NLME tools to simulate PK BE stud-
ies for a generic ophthalmic drug product with one sam-
pling timepoint per subject and per occasion. Consistent 
with our previous research, we estimated treatment ef-
fects on all model parameters12,13,15,26 and evaluated 
various scenarios, including the study design (parallel or 
crossover), set of sampling times, and GMR. The aim was 
to evaluate and compare the performances of MB-TOST15 
and the NCA bootstrap4 using concentration geometric or 
arithmetic means.

All model parameters were well-estimated except for 
the additive term of the combined error model, possibly 
due to the limitations of using a single sample per pa-
tient (see Tables  S1–S8 in Supplementary Material  S2). 
Whether a proportional error model or fixing the additive 
term would have solved that issue requires further evalua-
tion.27 It had, however, no impact on the estimation of the 
treatment, sequence, or period effects parameters as well 
as on the GMRs of AUC and Cmax.

Both MB-TOST and the NCA bootstrap (geometric and 
arithmetic) performed similarly in terms of type I error 
rate for AUC. For Cmax, the NCA bootstrap approach 

almost always provided conservative type I error rates with 
values below 0.05. For parallel designs, NCA bootstrap, 
which does not need to specify the underlying PK model, 
led to noticeable lower power for Cmax as compared to MB-
TOST when the underlying PK model is correctly speci-
fied and the test drug has the same PK structural model as 
the reference drug. We used optimal design to choose the 
sampling times of the sparse set which did not include the 
tmax according to the fixed effects. This may have favored 
MB-TOST as NCA relies on observed sampling times 
to estimate Cmax. However, this advantage is difficult to 
appreciate as due to BSV all subjects had different tmax. 
Power was also particularly impacted by the number of 
sampling timepoints. Indeed, with 10 sampling times to 
choose from, fewer subjects were allocated to informative 
timepoints, which reduced the informativeness of the de-
sign28 and led to larger 90% CIs of the GMR and MR for 
Cmax. The simulation showed that estimates for Cmax were 
not as efficient as for AUC because Cmax is only based on 
one value whereas AUC is based on an average over the 
concentrations.

This work presents a notable limitation in the use of 
the simulated PK model structure, as well as the simu-
lated values as initial guess for the parameters (except for 

F I G U R E  3   Boxplot (2.5th, 25th, 50th, 75th, and 97.5th percentiles) of EEs of the geometric mean ratio (MB-TOST) and the mean ratio 
(NCA bootstrap geometric and arithmetic) for AUC0−tlast and Cmax, for 500 simulated data sets with two-way crossover designs. AUC0−tlast, 
area under the time-concentration curve from time zero until the last sampling time; Cmax, maximum concentration; EEs, estimation errors; 
MB-TOST, model-based two one-sided test; NCA, noncompartmental analysis.
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the treatment effects which were fixed to 0) in the MB ap-
proach, whereas the model structure and parameter val-
ues are unknown in reality. In this paper, we did not test 
the performance of MB-TOST if the underlying PK model 
is not correctly specified, which is likely with a limited 
number of sampling points. This is mitigated, however, 
by the fact that BE studies occur downstream of the drug 
development process when a non-negligible knowledge 
has been accumulated on the PKs of the drug at least in 
the reference treatment arm.6 Moreover, the model would 
be subjected to a thorough evaluation prior to its use for 
the BE analysis.7 Nonetheless, using the true model and 
parameter estimates provided a favorable setup for MB-
TOST and challenging its robustness to departure from 
the simulated PK model and parameter values needs to be 
explored in the future.

Another limitation is only 500 datasets were simu-
lated under each of the 16 scenarios due to the limitation 
of computation power, which can impact the precision 
of the evaluation of the performance (e.g., bias, type 1 
error rate, and power). Computing times ranged in aver-
age from 15 min per data set for parallel designs to 45 min 
per data set for crossover designs, on a similar computing 
setup. Notably, it is the default number for simulation-
based goodness of fit plots in PsN, a recognized tool for 
NLMEM.29 Additionally, the number of bootstraps for 
the NCA approaches could also have been increased from 
50004 to 10,000.

In addition, the lowest concentration level in real 
studies is zero, but, in simulation, negative concentra-
tion levels can happen, which is a limitation of using 
simulation to generate concentration data. For those 
concentrations simulated below zero, they are imputed 
as 0.0001 when no LOQ is defined. When a LOQ is de-
fined, the likelihood is taken to be between zero and the 
LOQ for all simulated BLOQ concentrations including 
those with 0 to LOQ (e.g., 0.2) values as well as negative 
(<0) concentration values for MB-TOST. Likewise, for 
NCA bootstrap, LOQ/2 is imputed for both 0–0.2 mg/L 
values and negative (<0) concentration values. These 
are typically used methods to handle BLOQ values, 
however, for simulated concentration values below 
zero, these imputations may impact bias, type 1 error 
rate, and power. This limitation also contributes to the 
observed inflated type 1 error rate above 0.05 in certain 
scenarios, besides the limited simulation data sets (500).

In addition, we considered the same magnitude of BSV 
and WSV for ka, Cl∕F, and V ∕F. Further, the initial 16 
scenarios considered a residual variance at b = 10% and 
a WSV at 15%, which are rather low. We explored the im-
pact of increasing both variances at 30% in four additional 
scenarios and found no impact on MB-TOST and NCA 
bootstrap type I error rate and, as expected, a decrease 

in power although to a remarkable extent for Cmax with 
NCA bootstrap approaches on both parallel and crossover 
designs.

In conclusion, our simulations show that MB-TOST 
demonstrates higher power and controlled type I error 
rate when compared to NCA-TOST in single sample PK 
studies, provided that the underlying PK model is cor-
rectly specified, and the test drug has the same PK struc-
tural model as the reference drug. As such, MB-TOST may 
potentially serve as an alternative approach to evaluate BE 
for generic ophthalmic drug products.
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