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Abstract 

Background  The feasibility of DNA methylation-based assays in detecting minimal residual disease (MRD) and post-
operative monitoring remains unestablished. We aim to investigate the dynamic characteristics of cancer-related 
methylation signals and the feasibility of methylation-based MRD detection in surgical lung cancer patients.

Methods  Matched tumor, tumor-adjacent tissues, and longitudinal blood samples from a cohort (MEDAL) were 
analyzed by ultra-deep targeted sequencing and bisulfite sequencing. A tumor-informed methylation-based MRD 
(timMRD) was employed to evaluate the methylation status of each blood sample. Survival analysis was performed 
in the MEDAL cohort (n = 195) and validated in an independent cohort (DYNAMIC, n = 36).

Results  Tumor-informed methylation status enabled an accurate recurrence risk assessment better than the tumor-
naïve methylation approach. Baseline timMRD-scores were positively correlated with tumor burden, invasiveness, 
and the existence and abundance of somatic mutations. Patients with higher timMRD-scores at postoperative 
time-points demonstrated significantly shorter disease-free survival in the MEDAL cohort (HR: 3.08, 95% CI: 1.48–6.42; 
P = 0.002) and the independent DYNAMIC cohort (HR: 2.80, 95% CI: 0.96–8.20; P = 0.041). Multivariable regression anal-
ysis identified postoperative timMRD-score as an independent prognostic factor for lung cancer. Compared to tumor-
informed somatic mutation status, timMRD-scores yielded better performance in identifying the relapsed patients 
during postoperative follow-up, including subgroups with lower tumor burden like stage I, and was more accurate 
among relapsed patients with baseline ctDNA-negative status. Comparing to the average lead time of ctDNA muta-
tion, timMRD-score yielded a negative predictive value of 97.2% at 120 days prior to relapse.
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Conclusions  The dynamic methylation-based analysis of peripheral blood provides a promising strategy for postop-
erative cancer surveillance.

Trial registration  This study (MEDAL, MEthylation based Dynamic Analysis for Lung cancer) was registered on Clini-
calTrials.gov on 08/05/2018 (NCT03634826). https://​clini​caltr​ials.​gov/​ct2/​show/​NCT03​634826.

Keywords  Lung cancer, Postoperative surveillance, Circulating tumor DNA (ctDNA), DNA methylation, Minimal 
residual disease (MRD)

Background
The detection of somatic mutations in circulating tumor 
DNA (ctDNA) had been shown to be a reflection of mini-
mal residual disease (MRD) and help identify recurrence 
risk earlier than traditional strategies in patients with early-
stage solid cancers, including lung cancer [1–3]. Despite 
the high specificity and positive predictive value (PPV) of 
ctDNA mutations, the extremely low ctDNA concentra-
tion in early-stage cancers poses a technological challenge. 
In addition, ctDNA-based mutation detection remains 
particularly challenging for patients with either low tumor 
burden or low tumor mutation burden, such as for patients 
with early-stage non-small-cell lung cancer (NSCLC) or 
EGFR-mutant lung adenocarcinoma [4]. Previous studies 
showed an improved sensitivity of patient-specific detec-
tion panels based on whole-exome sequencing (WES) of 
matched tissues; however, tumor-informed MRD based 
on WES are often costlyand inconvenient for clinical appli-
cation [5, 6]. Sensitive and cost-effective assays detecting 
MRD remain to be explored.

DNA methylation is one of the most frequent epi-
genetic modifications and plays an important role in 
carcinogenesis and metastasis [7, 8]. Aberrant DNA 
methylation is more ubiquitous than somatic mutations, 
making it a sensitive biomarker for early cancer detection 
[9, 10]. A fixed DNA methylation sequencing panel cou-
pled with in silico tumor-informed analysis could poten-
tially achieve a satisfactory level of accuracy at a lower 
cost. Both global methylation status and tumor-specific 
methylation panels have previously been reported for 
early cancer detection [11–14] but the feasibility of meth-
ylation-based MRD detection and cancer surveillance 
remains relatively unexplored. So far, no study has elabo-
rated on dynamic changes of cancer-related methylation 
in perioperative blood samples of early-stage cancers, 
which is critical for establishing a novel approach for 
methylation-based MRD detection.

This prospective observational study (MEDAL, MEth-
ylation-based Dynamic Analysis for Lung Cancer) inves-
tigated the dynamics of cancer-related methylation and 
the feasibility of methylation-based postoperative surveil-
lance in patients with resected lung cancer [15]. We inves-
tigated the utility of an individualized tumor-informed 

methylation-based MRD (timMRD) model in evaluating 
the tumor-specific cell-free DNA (cfDNA) methylation 
status of preoperative and postoperative blood samples. 
We then comprehensively compared the tumor-informed 
MRD model with tumor-naïve global methylation status 
(MethylMean) and tumor-informed ctDNA mutation 
status. Lastly, we illustrated the feasibility of methylation-
based cancer surveillance with timMRD in the MEDAL 
cohort and validated it in an independent cohort from 
the DYNAMIC study with survival outcome [2].

Methods
Patient selection
Patients were prospectively enrolled between August 
2018 and July 2019. The protocol of this study was pre-
viously published [15]. The inclusion/exclusion criteria 
were described in the Additional file  1: Supplementary 
Methods. The recruited patients were followed up every 
three to six months by experienced thoracic surgeons. An 
independent cohort from a previously published study 
(DYNAMIC) [2] comprising 36 patients with adequate/
remaining blood and tissue samples were included for 
validation.

Study design
The study design is illustrated in Fig.  1. Tissue samples 
were collected during surgery, and normal tissues were 
obtained between 2 to 5  cm from the surgical margin, 
with the most distant sample used for further analysis. 
Blood samples were collected before surgery (Plasma A), 
3-days post-surgery (Plasma B), approximately 1-month 
post-surgery (Plasma C) before adjuvant therapy, and 
during subsequent follow-up (Plasma F). A total of 870 
longitudinal plasma samples were assayed for somatic 
mutation and methylation status. The abundance of 
ctDNA mutations was reflected as the maximum allele 
frequency (maxAF) and defined as the highest fraction 
of the mutant allele detected in each sample. The average 
cfDNA methylation level was calculated as MethylMean. 
Meanwhile, timMRD-score explicitly illustrated in Addi-
tional file  2: Figure S1 was calculated for each plasma 
sample by a statistical model of the methylation status of 

https://clinicaltrials.gov/ct2/show/NCT03634826
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paired tumor and normal tissues (See Methods timMRD 
model).

Next‑generation sequencing
DNA isolation, library preparation procedures for 
the unique molecular identifier (UMI)-based targeted 
sequencing and bisulfite targeted sequencing, and cor-
responding data analyses were performed according to 

previously published protocols [15–18]. The performance 
of our UMI-based targeted sequencing was analytically 
validated in a report by the FDA-led sequencing quality 
control phase 2 (SEQC2) oncopanel sequencing work-
ing group [18] and demonstrated the lowest false positive 
rate at 25  ng input among 5 UMI-based hybrid-capture 
ctDNA assays. The library preparation for bisulfite tar-
geted sequencing was performed following our optimized 

Fig. 1  Workflow of the study design and methylation-based analysis. Flow diagram illustrating the study design (See Methods section). Plasma C 
was collected at a median of 36 days due to discrepancy in patient follow-up visits; however, all plasma samples were collected before adjuvant 
therapy was administered
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protocol for cfDNA methylation-based assay (ELSA-seq) 
[17]. ELSA-seq plus a machine learning classifier enabled 
the detection of tumor-derived signals at dilution fac-
tor as low as 1:10,000. Differentially methylated blocks 
(DMBs) were stratified as described in the Additional 
file 1: Supplementary Methods.

Unique molecular identifier (UMI)‑based targeted 
ultra‑deep mutation sequencing
As described previously [17], acoustically sheared tis-
sue DNA and cfDNA fragments between 200 and 400 bp 
were purified, end-repaired, and A-tailed. cfDNA were 
ligated with UMI-containing sequencing adapters 
designed by Burning Rock Biotech. Tissue DNA were 
processed accordingly with non-UMI sequencing adapt-
ers. After purification using Agencourt AMPure XP Kit 
(Beckman Coulter, CA, USA), the adapter-ligated DNA 
were hybridized with capture probes baits, hybrid-
selected with magnetic beads, and amplified. Target cap-
ture was performed using a commercial panel with RNA 
baits designed for 168 lung cancer-related genes, span-
ning 273  kb of the human genome (Lung Plasma UMI; 
Burning Rock Biotech, Guangzhou, China), which was 
validated in a study by the FDA-led sequencing quality 
control phase 2 (SEQC2) oncopanel sequencing working 
group [18]. The indexed samples were sequenced on Illu-
mina NovaSeq 6000 (Illumina, San Diego, CA, USA) with 
2 × 150 bp and target sequencing depth of 1,000 × for tis-
sue samples and 30,000 × for plasma samples. Sequenc-
ing data were analyzed using proprietary computational 
algorithms optimized for somatic variant calling.

TimMRD model assumption and parameter estimation
Let Nij be the total number of CpG sites detected in j-
th differentially methylated blocks (DMB) of i-th blood 
sample, Mij be the total number of methylated CpG sites 
detected in j-th DMB of i-th blood sample. We assume 
that cfDNA methylation sequencing data ( Mij ,Nij ) fol-
lows a mixed beta-binomial distribution defined in equa-
tion (Eq. 1)

where parameter βij denotes the probability of meth-
ylation occurrence. Since the cfDNA isolated from the 
patient’s blood contains DNA from both lung tumor cells 
(ctDNA) and non-tumor/normal cells, we can deconvo-
lute βij as:

where βij(T) and βij(N) represent corresponding methyla-
tion levels of the j-th DMB from the patient’s tumor and 

(1)Mij|Nij, βij ∼ Binomial(Nij, βij)

(2)βij = αiβij
(T ) + γiβij

(N ) + (1− αi − γi) βij
(0)

matched tumor-adjacent normal tissue sample, parame-
ters αi and 0 ≤ αi, γi < 1 represent proportions of ctDNA 
and cfDNA in the blood, respectively, and satisfy the con-
dition αi + γi < 1.βij(0)  is the normal methylation level 
of DNA from other cells in the blood. Since it is impos-
sible to collect blood samples of cancer patients in their 
healthy state, we used sequencing data derived from 
blood samples of a healthy cohort (described above) to 
fit the prior distribution of βij(0). Based on the previous 
studies [19, 20], βij(0)   was assumed to follow a beta dis-
tribution with shape parameters (pj , qj) . According to the 
distribution assumption (Eq. 1), the mixed beta-binomial 
distribution for the patient plasma methylation data can 
then be derived given the unknown parameters { αi, γi } 
with the log-likelihood functions summarized as:

where

wherein f and g denote the density functions of the bino-
mial and beta distributions accordingly. Usingβ(0)

ij   as a 
prior together with estimated distribution parameter 
values pj and qj, and expressing it from the Eq. 2, we can 
rewrite the latter equation as:

In Eq. 3, Eq 4, Eq. 5, the unknown parameters αi, γi sat-
isfy the conditions αi ≥ 0, γi ≥ 0 and αi + γi < 1.

To improve the identifiability of parameters in the 
function, patient-specific DMBs were first selected 
using personal data for tissues, and prior information 
of βij(0)  . αi and γi were then estimated by applying the 
maximum likelihood estimation (MLE) method, with 
αi indicating the malignancy density (MD) ratio. The 
Wald statistic under the null hypothesis: αi = 0 was 
defined as timMRD-score which could be used to assess 
the existence of ctDNA. Following chi-square distribu-
tion with 1 degree of freedom, 5.412 (98th quantile) was 
selected as the threshold for model prediction. Samples 
with timMRD-score > 5.412 were defined as timMRD-
high, whereas samples with timMRD-score ≤ 5.412 were 
defined as timMRD-low.

Statistics
Data were analyzed using the R software package (R ver-
sion 3.4.0). A range of appropriate statistical hypoth-
esis testing technique were applied, including Student’s 

(3)l(αi, γi) =
m

j=1
log(lij αi, γi;Mij ,Nij )

(4)

lij
(

αi, γi;Mij ,Nij

)

=

∫

1

0

f
(

Mij|Nij ,βij
)

g
(

βij
)

dβij

(5)

lij (�i , �i ;Mij ,Nij ) = ∫
1

0

(

Mij

Nij

)

�ij
Mij

(

1 − �ij
)Nij−Mij g(

�ij − �i�ij
(T ) − �i�ij

(N )

1 − �i − �i
, pj , qj )d�ij
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t-test, Fisher’s exact test, Kruskal–Wallis H test, two-
tailed Wilcoxon signed-rank test, Spearman rank-order, 
or Pearson correlation test, to identify potential signifi-
cant differences among the groups. Disease-free survival 
(DFS) was defined as the days from surgery to radio-
logically confirmed recurrence, or death from any cause 
when no evidence of relapse was recorded. Survival anal-
yses were performed using the Kaplan–Meier method 
with log-rank test. Hazard ratios (HR) with correspond-
ing 95% confidence intervals (CI) were calculated using 
univariable Cox proportional-hazards regression model. 
Multivariable analyses were also performed using Cox 
proportional-hazards regression model. P values < 0.05 
were considered statistically significant.

Study approval
This study was performed according to the Declaration of 
Helsinki in 1964 and its current amendments. The study 
protocol was approved by the Medical Ethics Commit-
tee of the Peking University People’s Hospital (approval 
number: 2018PHB077–01). Written informed consent 
was obtained from every patient before study enrollment.

Results
Patient characteristics and tumor‑informed methylation 
analysis
Of the 387 consecutive patients with suspected NSCLC, a 
total of 195 patients (stage I-II 165, 84.6%) were included 
in the MEDAL cohort. The clinicopathological features of 
the MEDAL cohort were comparable to that of the inde-
pendent DYNAMIC cohort [2] (Table 1; Additional file 3: 
Table  S1). Figure  1 provides an overview of the study 
design.

Although the cfDNA input for targeted bisulfite 
sequencing was variable, particularly for Plasma B (range, 
6–31 ng; Additional file 2: Figure S2A), the methylation 
levels for all CpG blocks were evenly distributed with 
minor variation across time-points for the blood sam-
ples, indicating the quality and consistency of bisulfite 
sequencing (Additional file 2: Figure S2B). The methyla-
tion levels of the tumor samples had very distinct distri-
butions in comparison with the paired tumor-adjacent 
normal samples obtained 2 or 5 cm away from the tumor 
margin (Additional file 2: Figure S2C). Clustering analy-
ses revealed the distinct methylation profiles in tumor 
tissues, tumor-adjacent normal tissues, and blood sam-
ples; however, blood samples across time-points were 
indistinguishable (Fig. 2A; Additional file 2: Figure S2D). 
The heterogeneous methylation profiles of the tumors 
and blood samples suggested the potential benefits of a 
tissue-informed approach in blood-based methylation 
analysis (Additional file 2: Figure S2D). The bisulfite con-
version metrics for non-CpG sites revealed consistent 

and satisfactory bisulfite conversion rates for blood sam-
ples (Additional file  2: Figure S2E) and tissue samples 
(Additional file  2: Figure S2F). The timMRD-scores of 
blood samples collected at different time-points were not 
correlated with the tumor cell percentage of tumor tis-
sue samples (Additional file 2: Figure S2G), indicating the 
robustness of timMRD-scores.

We further explored the global methylation profiles of 
tumor tissues. The global methylation profile of tumor 
tissues was distinct from tumor-adjacent normal tissues 
and plasma samples (Additional file  2: Figure S3). The 
direct association between global methylation profiles 
and disease characteristics was demonstrated by unsu-
pervised hierarchical clustering of tumor tissue samples 
(Fig.  2A) and subgroup analyses (Figs.  2B-2D). Higher 
levels of MethylMean were associated with higher path-
ological stages (P = 0.021; Fig.  2B), and high-risk his-
tological subtypes (P < 0.001, Fig.  2C) and radiological 
features (P < 0.001; Fig. 2D, see Additional file 1: Supple-
mentary Methods for definitions). Additional file 4: Data 
S1- Additional file  7: Data S4 summarizes the detailed 
clinical, mutational, and methylation information of each 
sample.

Characterization of baseline ctDNA mutation 
and methylation status
Of the 155 patients evaluable for tumor-informed ctDNA 
mutation status at baseline, 47 (30.3%) had detectable 
ctDNA mutations in the baseline plasma samples (Addi-
tional file  2: Figure S4). TP53 (61.7%, 29/47) was the 
most frequently mutated gene, followed by EGFR (14.9%, 
7/47). Baseline cfDNA methylation status was indicated 
as either the tumor-naïve MethylMean or the tumor-
informed timMRD-score (Methods). Listed by descend-
ing order of timMRD-scores, we observed an obvious 
cluster of mutation-positive cases with high timMRD-
scores (Additional file 2: Figure S4).

To validate the accuracy and robustness of the tim-
MRD model, a series of in  vitro dilution experiments 
and single-parameter and paired-parameter numerical 
simulations were performed as described in the Addi-
tional file  1: Supplementary Methods. First, we evalu-
ated the accuracy of timMRD model using serial dilution 
experiments with lung cancer cell line. These dilution 
experiments demonstrated a 95% accurate detection 
of methylation signals at tumor dilution factor as low 
as 1:5,000 or a tumor fraction of 0.0002, which had 
timMRD-scores at the cutoff. This finding indicates the 
accuracy and limit of detection for the timMRD model 
(Additional file  2: Figure S5A). Next, we performed 
numerical simulations to evaluate whether timMRD-
score can identify the quantity of tumor-derived DNA 
represented by the simulated cfDNA tumor fraction. As 
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shown in Additional file  2: Figure S5B, timMRD-scores 
were directly proportional to the simulated cfDNA tumor 
fractions, indicating high accuracy even at a tumor frac-
tion as low as 0.01%. The paired-parameter simulations 
demonstrated that timMRD-scores were only slightly 
affected by the proportion of normal lung tissues when 
the simulated tumor fraction is > 0.1%, indicating a mar-
ginal to negligible contribution of DNA from non-tumor 
cells to the timMRD-score estimation (Additional file 2: 
Figure S5C).

Our data revealed no association between Methyl-
Mean and tumor area (Fig. 3A) or diameter (Additional 
file  2: Figure S6A). In contrast, the timMRD-score 
(P < 0.001, Fig.  3A; P < 0.001, Additional file  2:  Figure 
S6A) and the abundance of ctDNA mutations (P < 0.001, 
Fig.  3A; P < 0.001, Additional file  2: Figure S6A) were 
positively associated with larger tumor areas and diam-
eters. Baseline timMRD-scores were significantly higher 
in patients in more advanced stage (Fig.  3B), solid 
nodules (P < 0.001, Fig.  3C), and smokers (P < 0.001, 

Table 1  Baseline clinicopathologic features of the two independent cohorts

Abbreviations: NSCLC non-small-cell lung cancer

Clinicopathologic features MEDAL cohort 
n = 195
n (%)

DYNAMIC cohort 
n = 36
n (%)

P-value

Age, years (median, range) 63 (35–84) 62.5 (39–78) 0.67

Sex 0.93

  Female 82 (42.1%) 16 (44.4%)

  Male 113 (57.9%) 20 (55.6%)

Smoking history 0.76

  Non-smoker 116 (59.5%) 23 (63.9%)

  Smoker 79 (40.5%) 13 (36.1%)

Histology 0.50

  Lung adenocarcinoma 130 (66.7%) 28 (77.8%)

  Lung squamous cell carcinoma 51 (26.1%) 7 (19.4%)

  Other NSCLC 14 (7.2%) 1 (2.8%)

Pathological stage 0.28

  I 128 (65.6%) 28 (77.8%)

  II 37 (19.0%) 3 (8.3%)

   ≥ IIIA 30 (15.4%) 5 (13.9%)

Tumor diameter, cm (median, range) 2.5 (1.0–8.2) 2.3 (1.1–9.3) 0.77

Visceral pleural involvement 0.63

  With 45 (23.1%) 10 (27.8%)

  Without 144 (73.8%) 24 (66.7%)

  No data 6 (3.1%) 2 (5.5%)

Duration of surgical procedure, minutes (median, range) 140 (60–325) 132.5 (60–300) 0.52

Surgical method 1.00

  Lobectomy 175 (89.7%) 33 (91.7%)

  Wedge resection 20 (10.3%) 3 (8.3%)

Devascularization technique performed during surgery 0.50

  Arterial first 134 (68.7%) 27 (75.0%)

  Venous first 49 (25.1%) 6 (16.7%)

  No data 12 (6.2%) 3 (8.3%)

Adjuvant therapy 0.54

  With 55 (28.2%) 8 (22.2%)

  Chemotherapy 47 (24.1%) 7 (19.4%)

  Targeted therapy 5 (2.6%) 1 (2.8%)

  Immunotherapy 1 (0.5%) 0 (0.0%)

  Radiotherapy 2 (1.0%) 0 (0.0%)

  Without 140 (71.8%) 28 (77.8%)
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Additional file  2: Figure S6B). The sensitivity of base-
line timMRD model in the MEDAL and DYNAMIC 
cohorts were 40.6% (52/128) and 39.3% (11/28) for stage 
I, respectively. Consistently, tumor-informed ctDNA 
mutation status showed the same trend as the tim-
MRD-scores in patients with advanced stage, solid nod-
ules, and smokers (P < 0.001, Fig.  3B; P < 0.001, Fig.  3C; 
P < 0.001, Additional file  2: Figure S6B) but was poorly 
detected in adenocarcinoma (P < 0.001, Additional 
file  2: Figure S6C). In contrast, no statistical difference 

was observed for baseline MethylMean values, except 
for smoking status (Spearman’s correlation; Fig.  3A-C; 
Additional file 2: Figure S6B-C). Moreover, the baseline 
timMRD-scores were highly correlated with the maxAF 
in ctDNA-positive samples (Pearson correlation r = 0.76, 
P < 0.001; Fig. 3D). The timMRD-score could distinguish 
ctDNA-positive (maxAF > 0) from ctDNA-negative sam-
ples (P < 0.001, Fig. 3E). A majority of patients who were 
baseline ctDNA mutation-positive also had high tim-
MRD-scores (74.5%, 35/47).

Fig. 2  Baseline global methylation status of tumor samples are associated with clinicopathologic features. A Unsupervised hierarchical clustering 
of the hypermethylation ratios of tumor tissues. The clinical details of each patient were annotated above including pathologically-evaluated 
risk of recurrence, radiological features, tumor diameter, pathological stage, tumor cell percentage of the tumor sample, age, and smoking 
status. B-D Violin plots comparing the distribution of the hypermethylation ratio according to the pathological stage (B), pathological risk (C), 
and radiological features characterized either as solid nodule (solid) or mixed ground-glass opacity (mix) (D). Kruskal–Wallis H test (B) or Wilcoxon 
signed-rank test (C-D) was performed to compare the difference between groups. Statistical significance was defined as P-value < 0.05
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Fig. 3  Tumor-informed cfDNA methylation scores at baseline are positively associated with disease burden and the presence of ctDNA. 
A Relationship between tumor area (expressed as cm2) and maxAF of mutations (left panel), timMRD score (middle panel), and MethylMean (right 
panel). The gray shadow denotes 95% confidence intervals. The colors of the dots indicate ctDNA status at baseline, wherein blue represents 
undetectable ctDNA mutations (n = 108), and red represents positive ctDNA status as samples with maxAF > 0 (n = 47). Spearman rank-order 
correlation test was performed to analyze the correlation between the molecular marker and tumor area. B-C Distribution of somatic mutations 
reflected as mutation positive rates (left), timMRD scores (middle), and MethylMean (right) according to pathological stages (B); and radiological 
features (C). Pairwise comparisons were performed using Fisher’s exact test or Wilcoxon signed-rank test. Statistical significance was defined 
as P-value < 0.05. D Relationship between timMRD score and tumor-informed somatic mutation status (maxAF) for 47 patients who were 
ctDNA-positive at baseline. The blue line denotes the best-fitting line. The gray shadow denotes 95% confidence intervals. Pearson correlation 
test was performed to analyze the correlation between the timMRD-score and maxAF of ctDNA mutations. E Comparison of the timMRD scores 
between patients with undetectable and detectable ctDNA mutations. Wilcoxon signed-rank test was performed to compare the difference 
between groups. Statistical significance was defined as P-value < 0.05
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These results demonstrate that the baseline timMRD-
scores could reflect the tumor burden and invasiveness. 
TimMRD-score was also positively correlated with the 
abundance of tumor-specific mutations in cfDNA, indi-
cating its potential in identifying MRD at the molecular 
level.

Dynamics of cfDNA methylation in the perioperative 
period associated with presence/absence of residual 
disease
We further explored the dynamics of cfDNA meth-
ylation during the perioperative period (Plasma A to C, 
Additional file  2: Figure S7A). No dramatic change was 
observed in MethylMean at perioperative time-points 
(P = 0.037, Additional file  2: Figure S7A). Meanwhile, 
the abundance of ctDNA mutations decreased rapidly 
after curative resection, with most baseline mutation-
positive cases having zero maxAF for Plasma C (P < 0.001; 
Additional file  2: Figure S7B). Also, the timMRD-score 
revealed a declining pattern for Plasma A to C (P = 0.007, 
Additional file  2: Figure S7C). The observed differences 
in the timMRD-score were not affected by the surgical 
procedures (Additional file 2: Figure S8). Consistent with 
the baseline samples, the timMRD-scores were positively 
correlated with the maxAF of ctDNA mutations at all 
time-points (Pearson correlation r = 0.46, P < 0.001; Addi-
tional file 2: Figure S9).

Compared to patients with no evidence of disease, the 
relapsed patients revealed a significantly higher muta-
tion positive rate for Plasma B (P < 0.001) and Plasma 
C (P < 0.001, Additional file  2: Figure S10A). Similarly, 
timMRD-scores were significantly higher in samples of 
relapsed patients for Plasma B (P = 0.049) and Plasma C 
(P = 0.023, Additional file  2: Figure S10B). In contrast, 
MethylMean did not reflect these dynamic changes 
(P > 0.1, Additional file 2: Figure S10C).

Consistent with somatic mutation status, the timMRD-
score revealed a rational dynamic pattern during periop-
erative periods and was significantly elevated in relapsed 
patients at postoperative time-points, indicating its 
potential utility in MRD detection.

TimMRD can be used for cfDNA methylation‑based 
prognostic prediction
To explore the capability of timMRD for prognostic pre-
diction, we analyzed the survival data of the MEDAL 
cohort and validated it in the independent DYNAMIC 
cohort [2] (Fig.  4A). In the MEDAL cohort, 35 patients 
exhibited tumor recurrence, with a median follow-up of 
two years (25  months) (Fig.  4A). The DFS was signifi-
cantly shorter for mutation-positive patients for Plasma 
B/C (HR: 4.13, 95% CI: 1.90–9.00, P < 0.001; Fig. 4B; see 
Additional file 2: Figure S11A for Plasma B and C sepa-
rately), albeit considerably lower ctDNA mutation rates 
(n = 23). Based on the 98th percentile of the chi-square 
distribution for timMRD-scores, we used a cutoff of 
5.412 to stratify the patients into two groups (low vs. 
high timMRD-score; see Additional file  1: Supplemen-
tary Methods for details). DFS was also significantly 
shorter among the patients with higher timMRD-score 
for Plasma B/C (HR: 3.08, 95% CI: 1.48–6.42, P = 0.002; 
Fig.  4C; see Additional file  2: Figure S11B for Plasma B 
and C separately) and two-years post-surgery (HR: 2.50, 
95% CI: 1.36–4.57, P = 0.002; Additional file  2: Figure 
S12A). Moreover, multivariable Cox regression analysis 
also identified high postoperative timMRD-score as an 
independent predictive factor for worse DFS (HR: 2.80, 
95% CI: 1.17–6.70, P = 0.021; Fig. 4D).

The DYNAMIC cohort consists of 36 patients with 
adequate archival blood samples, with a median follow-
up of > 4.4  years and comparable clinicopathological 
characteristics with the MEDAL cohort (Additional file 3: 
Table S1). Using the same cutoff, patients with high post-
operative timMRD-scores consistently had significantly 
shorter DFS (HR: 2.80, 95% CI: 0.96–8.20, P = 0.041; 
Fig. 4E).

We also explored if these observations could be identi-
fied in patients with lower disease burden in the MEDAL 
cohort. For Plasma B/C, ctDNA mutations were detected 
in only 13.0% (13/100) of the evaluable patients with 
stage I tumors and 16.7% (17/102) of patients with ade-
nocarcinoma histology, whereas two of the relapsed 
patients with stage I (28.6%, 2/7) and only 31.2% (5/16) 

(See figure on next page.)
Fig. 4  Risk assessment by somatic mutation and timMRD score in two independent cohorts. A Schematic diagram illustrating the analytical 
procedures in the MEDAL cohort (n = 195) and the DYNAMIC cohort (n = 36). B-C, E Kaplan–Meier analysis of disease-free survival (DFS, expressed 
in days) according to ctDNA mutation status (B) and timMRD scores (C) at postoperative time points (Plasma B/C) of MEDAL (B, C) and DYNAMIC 
(E) cohorts. The patients were classified according to their tumor-informed ctDNA mutation status and timMRD scores of Plasma B or Plasma C. The 
DFS of each patient was computed from the date of surgery until radiological confirmation of disease relapse. Tick marks indicate patients who 
were disease-free at data cut-off date. The risk table below the KM plot summarizes the number of patients included per time point. KM survival 
analysis was performed with log-rank statistics to compare the survival between the two subgroups. Hazard ratio (HR) and corresponding 95% 
confidence intervals (CI) were computed using univariable Cox proportional-hazards regression model. D Forest plot summarizing the results 
of the multivariable analysis for DFS of the MEDAL cohort. Multivariable Cox proportional-hazards regression model was performed to compute 
the HR and corresponding 95% CI
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of relapsed patients with adenocarcinoma were ctDNA 
mutation-positive. Contrastingly, more relapsed patients 
with stage I (85.7%, 6/7) and adenocarcinoma (68.8%, 
11/16) had high timMRD-scores for Plasma B/C. Prog-
nostication at two years post-surgery using timMRD-
scores for Plasma B/C also revealed the association 
between shorter DFS and higher timMRD-scores in 
patients with stage I (P = 0.047, Additional file  2: Figure 
S12B) and adenocarcinoma (P = 0.029, Additional file  2: 
Figure S12C). Moreover, among the 14 relapsed patients 
who were ctDNA-negative at baseline, only a patient was 
detected with ctDNA mutations from Plasma B/C, while 
timMRD-scores were high for 64.3% (9/14) of relapsed 
patients. Two-year prognostication demonstrated a trend 
of shorter DFS for baseline ctDNA-negative patients with 
high postoperative timMRD-score (HR: 2.77, 95% CI: 
0.91–8.43, P = 0.050; Additional file 2: Figure S12D).

These results from two independent cohorts indicates 
the feasibility of prognostication by timMRD-scores 
at early postoperative time-points and its advantage in 
patients with low tumor burden.

TimMRD‑scores are applicable for methylation‑based 
surveillance strategy in lung cancer
Next, we hypothesized that the dynamic changes in 
timMRD-scores may provide an innovative strategy for 
cancer surveillance. As shown in Fig.  5A, the timMRD-
score and maxAF of somatic mutations decreased rapidly 
for Plasma B and C after patient MEDAL-059, ctDNA-
positive at baseline, received curative surgery. Thereafter, 
the significant elevations of timMRD-score and maxAF 
were observed concomitantly at 270  days post-surgery, 
with a lead time of 49  days before clinical confirmation 
of recurrence. Figure 5B illustrated patient MEDAL-109, 

with no ctDNA mutation detected at any perioperative 
time-point, who had a remarkable elevation of timMRD-
score for Plasma B (4.244), Plasma C (7.978), and Plasma 
F (33.865) at 189 days after surgery. Dynamic analysis of 
another two relapsed patients consistently demonstrated 
elevated timMRD-scores with or without ctDNA muta-
tions before radiological detection of relapse (Additional 
file  2: Figure S13). No specific pattern was observed in 
the MethylMean of the relapsed patients (Fig.  5A-B, 
Additional file 2: Figure S13).

We next compared the predictive accuracy of tumor-
informed ctDNA mutations and timMRD-scores. 
At various postoperative time-points before relapse, 
timMRD-scores demonstrated significantly better 
performance in predicting relapse than ctDNA muta-
tion in almost all the time-points (Fig.  5C). Previous 
three studies focusing on lung cancer MRD detection 
have demonstrated the accuracy of both tumor-naïve 
and tumor-informed ctDNA-based MRD detection 
in predicting recurrence with an average lead time of 
127 ± 42 days before clinical diagnosis (Additional file 3: 
Table S2). Hence, we compared the performance of tim-
MRD-score and tumor-informed ctDNA mutation status 
at 120  days before clinical diagnosis of disease recur-
rence in the MEDAL cohort. Although ctDNA muta-
tions had higher specificity than the timMRD-scores 
(90.4% vs. 67.3%); the assay sensitivity for timMRD-
scores increased over 70% compared with ctDNA muta-
tions (90.9% vs. 45.5%). Note that some patients may have 
clinically undetected radiological recurrence, which may 
underestimate the specificity for both. The area under 
the curves (AUC) for the timMRD-scores was 0.87, and 
0.68 for ctDNA mutations (Fig. 5D). At the same sensitiv-
ity level of 45.5% for both assays, timMRD model using 

Fig. 5  The performance of somatic mutation and timMRD score in prognostication. A-B Graphical summary of the medical history 
and the dynamic monitoring of ctDNA mutation and cfDNA methylation profile for Patients MEDAL-059 (A) and MEDAL-109 (B). Top images show 
the radiological imaging at different time points and the treatment timeline for each patient. Bottom plot summarizes the dynamics of the ctDNA 
mutations, MethylMean, and timMRD scores at different perioperative and postoperative time points. The colored shading corresponds 
to the treatment modalities received by the patient at the specified time point. C-D Diagnostic performance of timMRD score and tumor-informed 
ctDNA mutation positive rate in identifying relapsed patients. C. Area under the receiver operating characteristic (AUROC) curve illustrating 
the performance of timMRD score and tumor-informed ctDNA mutation positive rate over time before radiological confirmation of disease relapse. 
D Receiver operating characteristic (ROC) curves plotting the specificity and sensitivity for timMRD score and tumor-informed ctDNA mutation 
positive rate revealing the area under the curve (AUC) at 120 days before relapse. E–F Kaplan Meier analysis of disease-free survival (DFS, expressed 
in days) of timMRD scores (E) and ctDNA mutation status (F) evaluated using the last postoperative follow-up sample 120 days before relapse. 
The patients were classified according to their timMRD scores for the last follow-up sample. The DFS of each patient was computed from the date 
of surgery until radiological confirmation of disease relapse. Tick marks indicate patients who were disease-free at data cut-off date. The risk 
table below the KM plot summarizes the number of patients included per time point. KM survival analysis was performed with log-rank statistics 
to compare the survival between the two subgroups. Hazard ratio (HR) and corresponding 95% confidence intervals (CI) were computed using 
univariable Cox proportional-hazards regression model. G Dynamic postoperative analysis of timMRD scores and mutation detection in 30 relapsed 
patients evaluable for tumor-informed somatic mutation status reveals the lead time before radiological confirmation of relapse for each molecular 
assay. The data was arranged in descending order of DFS and grouped according to ctDNA status at baseline, wherein the top 15 patients were 
ctDNA-positive at baseline and the bottom 15 patients were ctDNA-negative at baseline. The first data points correspond to results from Plasma B. 
Colored dots represent the molecular assay that detected the molecular residual disease. BothPos denotes positive status for both timMRD-score 
(high) and ctDNA mutation; MRDPos denotes timMRD-score high status; MutPos denotes positive tumor-informed ctDNA mutation status. Time 
of disease relapse is marked with ×

(See figure on next page.)
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a cutoff at 99.99th percentile only had 1 false positive 
call, yielding a higher specificity (98.1% vs. 90.4%) than 
tumor-informed mutation status. At the same specificity 
level of 90.4% for both assays, the sensitivity (54.5% vs. 
45.5%) and negative predictive value (90.4% vs. 88.7%) 
were consistently higher for timMRD-score using a cutoff 
at 99.95th percentile as compared with tumor-informed 
mutation status (Additional file 3: Table S3). DFS was sig-
nificantly shorter for patients with high timMRD-score 
evaluated using the last follow-up sample approximately 
120 days before relapse (HR:15.32, 95% CI: 1.96–119.76; 
P < 0.001; Fig.  5E). Only one relapsed patient had low 
timMRD-score, resulting in a negative predictive value 
of 97.2%. DFS was also significantly shorter for patients 
with positive ctDNA mutation status evaluated using 
the last follow-up sample approximately 120 days before 
relapse (HR:15.14, 95% CI: 4.45–51.45; P < 0.001; Fig. 5F). 
Figure  5G summarizes the mutation and methylation 
status during follow-up of 30 relapsed patients stratified 
according to baseline tumor-informed ctDNA mutation 
status as positive (blue) and negative (orange) groups. 
The average lead time before confirmation of disease 
recurrence was 303 days for timMRD-score and 137 days 
for tumor-informed ctDNA mutation status compared 
with radiological diagnosis. As expected, baseline ctDNA 
mutation status was positively associated with signifi-
cantly shorter DFS (median DFS 10.3 vs. 20.5  months; 
P = 0.031 Wilcoxon) and the detection of ctDNA muta-
tion at any follow-up time-point before confirmation of 
relapse (baseline positive vs. negative, 56.3% [9/16] vs. 
7.1% [1/14], P = 0.007). At the last follow-up time-point 
before relapse, ctDNA mutation positivity was signifi-
cantly higher among relapsed patients with positive than 
negative baseline ctDNA mutation status (68.8% [11/16] 
vs. 14.3% [2/14], P = 0.004). In contrast, both ctDNA-
positive and ctDNA-negative groups had similarly high 
timMRD-scores for Plasma B/C (68.8% [11/16] vs. 64.3% 
[9/14], P = 0.350) or at the last follow-up before relapse 
(75.0% [12/16] vs. 71.4% [10/14], P = 0.694). ctDNA 
mutation status and timMRD-score yielded similar sen-
sitivity among relapsed patients with baseline ctDNA-
positive status (68.8% vs. 75.0%); whereas timMRD-score 
was more accurate than ctDNA mutation status among 
relapsed patients with baseline ctDNA-negative status 
(64.3% vs. 14.3%). These results suggest the reliability of 
timMRD-based postoperative monitoring, particularly in 
patients with negative baseline ctDNA status.

Discussion
The abundance of circulating cfDNA originating from 
non-cancerous cells could significantly obscure the small 
genetic fragments released by solid tumors, resulting 

in the diluted ctDNA concentration, particularly in 
the smaller tumor bulk of early-stage cancers. This low 
ctDNA concentration makes it challenging to detect 
postoperative MRD using ctDNA mutations [21]. To the 
best of our knowledge, this is the first prospective study 
to investigate the feasibility of methylation-based MRD 
detection in early-stage malignancies (NCT03634826) 
[15] and adopt a personalized approach to MRD analysis 
using a methylation assay.

Tumor-informed models are recognized to improve 
sensitivity and accuracy in detecting low-frequency 
somatic mutations from blood samples [5, 22, 23]. Since 
radical resection enables the collection of tissue samples, 
both genetic and epigenetic analysis can benefit from 
the personalized tumor-informed approach, providing 
a unique advantage to the field of postoperative MRD 
monitoring. Our study comprehensively elucidated the 
DMBs through targeted bisulfite sequencing of 80,672 
CpG sites. As described in the Additional file 1: Supple-
mentary Methods section and the recent publication by 
Liang et  al. [17], these 80,672 CpG sites were identified 
as lung cancer-specific based on publicly available 450 k 
microarray-derived methylome data from The Cancer 
Genome Atlas [24]. These CpG sites were first clustered 
into 8,312 methylation blocks and further compared 
with tumor-adjacent normal tissue samples from the 195 
patients in the MEDAL cohort, which identified the 3,159 
DMBs in lung tumors. Patient-specific DMBs were then 
selected from the 3,159 tumor-specific DMBs, which 
guaranteed the robustness of the individualized analysis 
of blood samples at different time-points. The cfDNA 
methylome data were analyzed using this innovative sta-
tistical model that integrates the methylation data gath-
ered from paired tumor and normal tissue samples. The 
use of a tumor-informed approach in analyzing the meth-
ylation data from a fixed panel could minimize the con-
tribution of epigenetic heterogeneity and is considerably 
cost-effective and applicable for clinical practice.

We have observed the positive association between 
timMRD-score and the abundance of ctDNA mutations 
and disease characteristics as indicated by the tumor size, 
stage, and radiological feature. Both the timMRD-score 
and somatic mutations revealed consistent dynamic 
changes during perioperative periods. These results indi-
cated that the timMRD model could reflect the abun-
dance of tumor-specific differentially-methylated DNA 
fragments in peripheral blood.

A vast majority of the mutations detected from cfDNA 
are related to clonal hematopoiesis [22, 25]. To improve 
the accuracy of mutation profiling, we utilized a UMI-
tagging technology, also referred to as duplex sequenc-
ing, to eliminate amplification errors and contaminants 
and improve the detection of somatic mutations with 
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ultralow frequency [16, 17]. Moreover, the simultaneous 
profiling of leukocyte DNA enabled the removal of clonal 
hematopoietic mutations and ensured that variants 
reported were specific, tumor-derived mutations. The 
ubiquity of aberrant DNA methylation [26, 27] may con-
tribute to the improved diagnostic sensitivity of a meth-
ylation-based assay more than the detection of a limited 
number of somatic mutations, particularly in early-stage 
cancer, which were also demonstrated by other published 
studies [9, 10, 17]. Since DNA methylation patterns are 
generally tissue-specific with distinct methylation pro-
files seen in blood and tumor cells [28], non-specific sig-
nals or technical noise can be eliminated in silico without 
requiring additional methylation data from paired leuko-
cytes [29].

Blood-based detection of somatic mutations was highly 
specific in reflecting disease recurrence, particularly for 
patients with stage II/III disease and non-adenocarci-
noma histology [3, 30, 31]. However, the sensitivity of 
mutation-based MRD analysis became limited in patients 
with low tumor burden or low tumor mutational burden, 
particularly in stage I, adenocarcinoma, or patients who 
are ctDNA-negative at baseline. Our study demonstrated 
the promising utility of tumor-informed methylation-
based approach in disease monitoring at early postop-
erative time-points, including the patient subgroups with 
the above-mentioned low tumor burden. Multivariable 
regression analyses revealed a similar prognostic value 
between postoperative timMRD-score and TNM stag-
ing. Furthermore, timMRD-scores were also feasible for 
patients with stage I lung cancer and patients who were 
ctDNA-negative at baseline, which may help to accu-
rately identify the population at higher risk of disease 
recurrence and guide their therapeutic and surveillance 
strategy before starting adjuvant chemotherapy approxi-
mately a month after surgery. Low-risk populations can 
maintain a moderate follow-up strategy; whereas high-
risk populations may benefit from intensive follow-up 
and adjuvant therapy. In addition, during long-term fol-
low-up, the high negative predictive value for timMRD-
score indicates an accurate prediction of lower to no 
risk of relapse within a time frame for patients with low 
timMRD-scores. Patients with low timMRD-scores are 
basically not expected to experience relapse within four 
months and may not need to undergo radiologic imaging 
before four months. Overall, methylation-based disease 
monitoring may enable a personalized strategy in the 
postoperative management of lung cancer patients in line 
with the proposed TNM staging system [32, 33].

This study represents a proof-of-concept of a novel 
methylation-based cancer surveillance framework. Since 
the data generated by the timMRD model is dependent 
on the methylation markers included in the panel and 

the sequencing accuracy, our future plans include opti-
mization of the probe range of the panel, the sequencing 
method, and the algorithm used for the model. Bisulfite-
free methylation sequencing methods have demon-
strated improved accuracy and cost-effectiveness, which 
is promising in liquid biopsy applications [34–36]. In 
view of the complementary advantages of mutation and 
methylation-based MRD detection, establishing a model 
that integrates both mutation and methylation may lever-
age the respective advantages of these two cfDNA-based 
approaches to further improve the accuracy of disease 
monitoring [37]. Furthermore, integrating other omics 
data, including fragmentomics and proteomics, may also 
enhance the accuracy in disease monitoring and warrants 
further exploration [4, 37–40].

There are limitations in our study. First, some data for 
the postoperative blood samples were not according to 
the set schedule or missing due to interruptions in regu-
lar patient follow-up caused by the coronavirus disease 
2019 (COVID-19) pandemic. Second, the median follow-
up was only 25  months for the MEDAL cohort, which 
is insufficient to monitor some patients with elevated 
postoperative timMRD-scores and identify disease-free 
patients with latent residual disease. However, about 
80% of the relapsed patients from our cohort experi-
enced disease relapse within two years [41] and the 
findings from the MEDAL cohort were successfully vali-
dated in the independent, non-overlapping cohort with 
a five-year follow-up data from the DYNAMIC study. 
Hence, we believe that our findings are conclusive and 
raise the potential clinical utility of methylation-based 
MRD detection. In the future, a multi-center study that 
includes a larger cohort and long-term follow-up is nec-
essary to clarify these observations. In this study, tim-
MRD provides a promising strategy for postoperative 
lung cancer surveillance, which could account for social 
economic benefits by reducing the combined costs from 
various post-operative screening approaches and ensure 
better adherence of the high-risk patients to intensive 
follow-ups and adjuvant therapy. With the development 
of technical innovations, reduced sequencing costs, and 
large-scale translational studies, we anticipate the adapt-
ing sensitive, cost-effective and individualized methyla-
tion-based MRD detection tests from the bench-side to 
the bedside will eventually benefit the general public as 
the technology evolves.

Conclusions
In this study, the dynamic characteristics of cancer-related 
methylation signals was explored using personalized 
tumor-informed methylation-based MRD (timMRD). 
In the MEDAL cohort, the pre-operative timMRD 
scores showed a positive correlation with tumor burden, 
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invasiveness, and the presence and abundance of somatic 
mutations. Furthermore, the postoperative timMRD score 
emerged as an independent prognostic factor for lung 
cancer. Notably, the timMRD scores outperformed tumor-
informed fixed panel in identifying relapsed patients dur-
ing postoperative follow-up, even among patients with 
lower tumor burden. This study has provided clinical evi-
dence on the feasibility of tumor-informed methylation-
based MRD detection, contributing an incremental step 
in developing effective postoperative cancer surveillance 
strategies in early-stage lung cancer.
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