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Abstract 

Background  Immune checkpoint inhibitor therapy has revolutionized the clinical management of a diverse range 
of cancer types, including advanced cutaneous melanoma. While immunotherapy targeting the PD-1/PD-L1 sys-
tem has become standard of care, overall response rates remain unsatisfactory for most patients and there are 
no approved small molecule inhibitors of the PD-1/PD-L1 system. Flubendazole (FLU) is an anthelmintic that has been 
used to treat worm infections in humans and animals for decades.

Methods  Here we tested the anti-cancer activity of systemically delivered FLU with suppression of PD-1 in immuno-
competent mice.

Results  In C57BL/6J mice bearing subcutaneous B16F10 melanoma, FLU reduced both tumor growth and PD-1 
protein levels without affecting levels of PD-L1. FLU’s suppression of PD-1 was accompanied by increased CD3+ T 
cell infiltration. Western blotting with extracts from human Jurkat T cells showed that FLU inhibited PD-1 protein 
expression, findings confirmed by flow cytometry. To gain mechanistic insights on FLU’s ability to suppress PD-1 
protein levels, we performed bulk RNA sequencing on extracts of Jurkat T cells exposed to the benzimidazole 
for 4 h. From a pool of 14,475 genes there were 1218 differentially-expressed genes; 687 with increased expression 
and 531 with decreased expression. Among the genes induced by FLU was the AP-1 family member, JUN and sur-
prisingly, pdcd1. KEGG pathway analysis showed FLU up-regulated genes over-represented in multiple pathways 
(p < 0.01), the top hit being amoebiasis. FLU also affected the expression of genes in cancer-associated pathways, 
both through down-regulation and up-regulation. Gene set enrichment analysis revealed a large number of immu-
nological signature gene sets correlated with FLU treatment, including gene sets associated with T cell differentiation, 
proliferation and function. The AP-1 inhibitor T5224 rescued PD-1 protein expression from inhibition by FLU.

Conclusion  This study is the first to show that FLU can inhibit melanoma growth with PD-1 suppression in immuno-
competent mice.
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Introduction
Immune checkpoint therapy has radically changed the 
management of a diverse range of cancer types, including 
advanced cutaneous melanoma [1]. For example, anti-
bodies to programmed cell death protein 1 (PD-1) (such 
as nivolumab/Opdivo, pembrolizumab/Keytruda and 
cemiplimab/Libtayo), PD-L1 (atezolizumab/Tecentriq, 
avelumab/Bavencio and durvalumab/Imfinzi) and cyto-
toxic T-lymphocyte–associated antigen 4 (CTLA-4) (ipil-
imumab/Yervoy) have become standard of care in tumor 
immunotherapy. However, around 1 in 2 patients do not 
respond to PD-1 antibody-based therapies or the durabil-
ity of this response is not sustained and immune-related 
adverse events are common [2–5]. There are no approved 
small molecule inhibitors of PD-1, PD-L1 or CTLA-4 
that could be used as alternatives to antibodies. Small 
molecules offer potential advantages over antibodies 
such as greater stability, medicinal chemistry, low cost, 
penetrant effects across whole cell populations, intra-
cellular signalling pathway targeting and potential oral 
administration meaning avoidance of in-clinic adminis-
tration and reduced health costs [6].

Drug repurposing, the process by which older medi-
cines can be redeveloped for new therapeutic indications 
offers a range of advantages over conventional drug dis-
covery programs [7]. Repurposing can develop de-risked 
medicines with known pharmacology, tolerance and tox-
icity at potential lower cost. A recent study found that the 
median capitalized R&D cost of bringing a new drug to 
market was approximately $985 million and > 8 years per 
drug [8]. A well-known example of a repurposed drug is 
sildenafil, which was originally developed in the context 
of angina and is widely used for erectile dysfunction [9]. 
A more recent example is remdesivir which was devel-
oped for Ebola virus and is used for the management of 
SARS-CoV-2 infection [10].

PD-1 (CD279), encoded by the pdcd1 gene and first dis-
covered in 1992 [11], is an inhibitory receptor expressed 
by T and B cells, natural killer cells and certain myeloid 
cell populations [12]. We and others have shown that 
PD-1 is also expressed by melanoma cells [13, 14]. PD-1, 
a type I transmembrane glycoprotein bound by glyco-
proteins PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, 
CD273) [15, 16] can promote tumor growth by prevent-
ing activation of cytotoxic T-cells [13, 14]. Given current 
limitations of antibody-based therapies, small molecule 
alternatives may provide an alternative means to disrupt 
the PD-1/PD-L1 axis. For example, Wang et al. recently 
reported their discovery of compound 17 which inhibits 
the PD-1/PD-L1 interaction and results in degradation of 
PD-L1 [17]. Studies in our laboratory show that fluben-
dazole (FLU), a benzimidazole used as an anthelmin-
tic for over 40  years [18], can inhibit human melanoma 

growth and metastasis in immunodeficient mice [14]. 
Others have also shown that FLU can cause mitotic 
catastrophe [19], disrupt cell cycle progression [20] and 
promote ferroptosis [21]. However, it is unclear whether 
FLU can affect PD-1 expression in T cells or influence the 
growth of melanoma in immunocompetent mice. In this 
paper we show that FLU can inhibit melanoma growth 
and PD-1 expression in immunocompetent mice and that 
FLU’s inhibition of PD-1 involves the transcription factor 
AP-1.

Materials and methods
Mouse tumor experiments
Six to eight week old female C57BL/6  J mice were 
sourced from Animal Resources Centre (Perth). Ani-
mals were inoculated subcutaneously with B16F10 cells 
(1 × 105 cells/animal in 100  µl DMEM containing 10% 
FBS and 50% Matrigel) into the shaven right flank on Day 
0. These cells were obtained from ATCC. Mice were ran-
domized on Day 5 into groups with mean tumor volume 
40–45  mm3 per group. Treatments were started on Day 
7, vehicle or FLU (Advanced Molecular Technologies, 
Scoresby) was administered intraperitoneally (20  ml/
kg or 200 mg/kg, i.p.) once daily on a 5 days-on/2 days-
off schedule. FLU was suspended at 10  mg/ml in vehi-
cle (saline (0.9% NaCl) with 0.5% Tween 80 and 0.01% 
DMSO) and sonicated. Animals were weighed daily 
after Day 5. The general health condition and attitude of 
each animal was monitored daily throughout the study. 
Tumors were measured by length, height and width 
in millimeters daily. Tumor volumes were calculated 
using formula V = L × H × W × π/6. If a second tumor 
occurred in an animal, both tumor volumes were meas-
ured and their volumes were combined. After euthanasia 
by isoflurane overdose and cervical dislocation, tumors of 
each animal were fixed in 10% neutral buffered formalin. 
The protocol was approved by the UNSW Animal Care 
and Ethics Committee.

Cell culture, Western blotting and flow cytometry
Human Jurkat T cells grown in RPMI 1640 with, pH 7.4, 
containing 10% FBS and penicillin/streptomycin were 
seeded into 6 well plates and treated with FLU or vehi-
cle for the indicated times. Where indicated, T5224 (cat. 
S8966, Selleck Chem) or vehicle was added 2 h prior to 
the addition of FLU. Total cell extracts were prepared 
in RIPA buffer and lysates were resolved by SDS-PAGE 
and Western blot analysis with primary antibodies tar-
get PD-1 (1:1000, cat. ab214421, Abcam; 1:500, cat. 
86163, CST, which was used for the T5224 studies), JUN 
(1:500, cat. ab32137; Abcam), FOS (1:500, cat. no. 2250; 
CST); or β-actin (1:3000, cat. A5316, Sigma) and followed 
by chemiluminescence detection using the Western 
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Lightning Chemiluminescence system (ThermoFisher, 
cat. A38556) and visualized with an ImageQuant™ LAS 
4000 Biomolecular Imager.

Alternatively, cells were washed and resuspended 
(5 × 106 cells/ml) in Stain Buffer. One hundred µl was 
added to 12 × 75 mm tubes and 5 µl of BV421 conjugated 
mouse anti-human CD279 (PD-1) (1:20, BD, cat. 562,516) 
or BV421 conjugated mouse IgG1 (1:20, BD, cat. 562,438) 
was added and then incubated for 45 min at 22 °C, pro-
tected from light. Cells were washed twice with 2 ml of 
Stain Buffer, centrifuged and pellets were resuspended 
in 0.5 ml Stain Buffer. Stained cell suspensions were ana-
lysed by flow cytometry using a BD LSR Fortessa X20.

Immunohistochemical processing and staining
Formalin-fixed, paraffin embedded sections were pre-
pared from tumors. Heat-induced epitope retrieval was 
applied to all deparaffinized Sects.  (4  μm Superfrost 
slides) with citrate buffer, pH 6.0 for 5  min at 110  °C. 
Sections were blocked with endogenous AP (levamisole) 
blocking agent (DAKO, S2003) for 10 min and then with 
2% skim milk for 20  min. Rabbit monoclonal anti-PD-1 
(cat. ab214421) and rabbit monoclonal anti-CD3 anti-
body (SP7) (cat. ab16669) were obtained from Abcam. 
Rabbit polyclonal anti-PD-L1 (cat. PA5-20,343) antibod-
ies were obtained from ThermoFisher. Slides were incu-
bated with primary antibody for 1 h at room temperature 
and then for 10  min with MACH3 Rabbit AP-Polymer 
Detection solution (probe incubation) (Biocare Medi-
cal, M3R533 G, H, L). After rinsing with buffer, the slides 
were incubated with MACH3 Rabbit AP-Polymer Detec-
tion solution (polymer incubation) (Biocare Medical, 
M3R533 G, H, L) for a further 10 min. Slides were incu-
bated with red chromogen (Warp RedTM Chromogen 
Kit) for 5  min and counterstained in haematoxylin and 
Scott blue. Slides were dried with filter paper and dehy-
drated in xylene then coverslipped.

Immunostained slides were scanned using an Aperio 
ScanScope XT slide scanner (Leica Biosystems, Mt 
Waverley, Vic, Australia) and images were captured using 
ImageScope software (Leica Biosystems). Tissue area 
(µm2) and integrated optical density (IOD) of positive 
staining (red chromogen) using Image-Pro Plus software 
(Cybernetics, Bethesda, MD, USA). Positive staining cells 
numbers were manually counted for CD3 using Image-
Pro Plus software (Cybernetics, Bethesda, MD, USA).

RNA‑seq and bioinformatics analysis
Jurkat T cells grown to confluence in 100  mm plates in 
complete medium were incubated with 10  µM FLU 
or vehicle for 4  h. Total RNA was extracted using the 
RNeasy Mini Kit (Qiagen, cat. 74,004) with minor 
modification. Briefly, the cells were washed twice with 

cold 1 × PBS and TRIzol reagent (ThermoFisher, cat. 
15,596,026) was used to lyse the cells. Chloroform was 
added to the mixture prior to microfuge centrifugation at 
13,000 rpm for 15 min at 4 °C. The upper aqueous layer 
(containing total RNA) was transferred to microtubes, 
isopropanol was added and loaded into RNeasy columns. 
Columns were washed with buffers RPE and RW1. Total 
RNA was eluted using ribonuclease-free water. Six sam-
ples (3 biological replicates of each condition) were sub-
mitted to the UNSW Ramaciotti Centre for Genomics for 
TruSeq Stranded mRNA-seq preparation and sequencing 
by NextSeq 6000 to produce 75 bp single end reads.

RNA-seq reads were assessed for quality using FastQC 
(v0.11.8) www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​
cts/​fastqc/). Subread was used for aligning reads to the 
Ensembl human genome (GRCh38) and then the feature-
Counts function of Subread was used to quantify reads 
(http://​subre​ad.​sourc​eforge.​net/). Reads assigned to gene 
features ranged from 46.6  M to 53.8  M reads per sam-
ple. The R packages edgeR and limma (voom) [22] were 
used to identify differentially-expressed genes (DEG) 
comparing the FLU treated Jurkat T cells with vehicle-
treated Jurkat T cells. Lowly expressed genes were fil-
tered out leaving those genes with at least 1 count per 
million (CPM) in at least 3 samples (n = 14,475) for fur-
ther analysis. The functions lmFit, eBayes and treat were 
used to identify genes which differed in the FLU treated 
cells with a least a log2 (1.2) fold change. Significantly 
DEG were taken as having an adjusted p < 0.05. R plotting 
functions including plotMDS (limma) and pheatmap R 
package were used to prepare plots. The kegga function 
(limma) was used to perform KEGG pathway analysis.

Gene set enrichment analysis (GSEA)
Gene counts for 27,729 genes with a symbol were nor-
malized using the TMM function of edgeR [23] and used 
as input into the desktop version of GSEA (v4.3.2, Broad 
Institute). GSEA then generated a ranked list and ana-
lyzed the list to ascertain the degree to which a gene set 
was overrepresented at the top or bottom of the list, thus 
generating a normalized enrichment score (NES) for each 
gene set. Gene set analysis was run using the C7 immu-
nologic signature gene set collection and C2 curated 
gene sets from MSigDb. Gene set enrichment was ranked 
by NES and gene sets with a false discovery rate (FDR) 
< 0.25 were considered significant.

Statistics
Analysis was performed using Graphpad PRISM v9. 
If distribution was not normal, Mann–Whitney or 
Kruskal–Wallis test was performed. Normally distributed 
data was analyzed by t test or one-way ANOVA. Plotted 
data represent mean ± SEM. Differences were considered 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://subread.sourceforge.net/
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significant when p ≤ 0.05. Where indicated, *p ≤ 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001.

Results
FLU suppresses melanoma growth in immunocompetent 
mice
We recently determined that FLU can inhibit melanoma 
growth as xenografts in immunocompromised mice [14]. 
To explore whether FLU can influence melanoma growth 
in immunocompetent animals, we used a tumor isograft 
model in which FLU was administered systemically (i.p.) 
to C57BL/6J mice bearing subcutaneous B16F10 tumors 
and commenced treatment after the tumors were estab-
lished. The C57BL/6-B16F10 system is a PD-1 antibody 
resistant mouse model of melanoma growth [13]. Ten 
days after melanoma inoculation, tumors grew rapidly in 
the vehicle group (Fig.  1A, B). On the other hand, FLU 
delayed melanoma growth by several days and caused 
near cessation of growth after 15 days, with tumors in the 
vehicle group measuring ~ 1000 mm3 while those treated 
with FLU measuring ~ 200  mm3 (Fig.  1B). FLU reduced 
tumor growth rate between Day 15 to 17 (Fig. 1C). FLU 

enabled survival in 100% of melanoma bearing mice after 
17 days, whereas survival of tumor-bearing mice treated 
with vehicle after this time was 0% (Fig. 1D).

FLU inhibits PD‑1 levels without affecting levels of PD‑L1 
and stimulates CD3+ cell accumulation
Immunohistochemical staining of the tumors revealed 
that systemic FLU treatment suppressed PD-1 expres-
sion, both peritumorally (Fig.  2A) and intratumorally 
(Fig. 2B). FLU also caused the dramatic accumulation of 
CD3+ cells as compared with animals treated with vehicle 
(Fig. 2C). In contrast, FLU treatment did not affect levels 
of PD-L1 (Fig. 2D).

FLU inhibits PD‑1 protein expression in Jurkat T cells
Western blotting with extracts of Jurkat cells, a model 
human T cell line, revealed that FLU reduced PD-1 pro-
tein expression within 24 h (Fig. 3A). These findings were 
supported by separate experiments using flow cytometry 
(Fig. 3B).
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Fig. 1  FLU suppresses melanoma growth in immunocompetent mice. A Schedule of mouse treatments. B C57BL/6J mice bearing s.c. B16F10 
tumors were administered with FLU or vehicle (200 mg/kg or 20 ml/kg, respectively, i.p.) once daily on a 5 days-on/2 days-off schedule. Treatment 
commenced on Day 7. Tissues were collected for further analysis on Day 17. Data represent mean ± SEM. n = 6 mice/group. Statistical significance 
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Fig. 2  FLU inhibits PD-1 levels without affecting PD-L1 and stimulates CD3+ cell accumulation. Immunohistochemical analysis was performed 
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peritumoral, B intratumoral PD-1+, C peritumoral skin CD3+ and D intratumoral PD-L1+. IOD and tissue area were assessed using Image-Pro Plus® 
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RNA‑seq reveals that FLU modulates gene expression
To gain insights into FLU’s mechanism of action, we 
exposed Jurkat T cells to FLU or vehicle for 4 h prior to 
harvest and bulk next generation RNA sequencing (RNA-
seq). We chose this early time point to help identify regu-
latory factors that regulate PD-1 expression controlled by 

FLU. Multidimensional scaling (MDS) (Fig.  4A) showed 
clear separation between treatment groups (3 biological 
replicates per group). RNA-seq revealed that from a pool 
of 14,475 genes (12,259 protein coding, 2216 non-pro-
tein coding) (Additional file 1: Table S1) there were 1218 
DEG (Additional file  2: Table  S2); 687 genes increased 
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expression and 531 reduced expression by FLU with an 
adjusted p value of < 0.05 (Additional file  2: Table  S2). 
Surprisingly, RNA-seq revealed that at the 4  h time-
point, FLU increased pdcd-1 (PD-1) mRNA levels by 2.3 
fold (Additional file 2: Table S2). Among genes with the 
largest fold increase in expression with FLU compared 
to vehicle were galectin 12 (LGALS12, 51.1 fold), serine 
protease 56 (PRSS56, 25.6 fold), endothelin converting 
enzyme like 1 (ECEL1, 20.1 fold), formin 1 (FMN1, 18.5 
fold) and ecto-nucleotide pyrophosphatase/phosphodi-
esterase (ENPP1, 14.3 fold) (Additional file  2: Table  S2, 
Fig. 4B, C). On the other hand, genes with the largest fold 
reduction in expression with FLU were interleukin 26 

(IL26, 0.22 fold), c–c chemokine receptor type 2 (CCR2, 
0.23 fold), zinc finger and BTB domain containing 16 
(ZBTB16, 0.28 fold) and tripartite motif containing 67 
(TRIM67, 0.31 fold) (Additional file 2: Table S2, Fig. 4B, 
C).

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis was performed to determine whether 
DEGs following FLU treatment were over-represented 
in specific pathways. The up-regulated genes were over-
represented in 25 pathways (p < 0.01), the top hit was 
amoebiasis, not surprising for an anthelmintic. FLU 
also up-regulated genes in pathways associated with 
hematopoeisis and PI3K-Akt signaling (Additional file 3: 
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Fig. 3  FLU inhibits PD-1 expression in Jurkat T cells. A Western blotting was performed with extracts of Jurkat T cells treated with FLU (10 µM) 
or vehicle for 24 h. Membranes were treated with antibodies to PD-1 or β-actin then with secondary antibodies for detection. B Alternatively, 
cells treated with FLU (10 µM) or vehicle for 24 h were tested for PD-1 immunopositivity by flow cytometry. Data is representative of 3 
biologically-independent experiments. Error bars represent SEM. Statistical significance was assessed by t test
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Table S3A and Fig. 5). Pathways associated with cancer, 
MAPK signaling and cytokine-cytokine receptor inter-
actions were among those which had a significant over-
representation in both up-regulated and down-regulated 
genes (Additional file 3: Tables S3A, B and Fig. 5).

Given FLU’s effects on PD-1 expression in Jurkat T 
cells and its ability to induce CD3+ T cell accumulation 
in tumors whose growth it inhibits, we performed GSEA 
on gene sets in the C7 collection representing cell states 

and perturbations within the immune system. This iden-
tified a large number of immunologic signature gene sets 
that correlated with FLU treatment (605 sets FDR < 0.25) 
(Additional file  4: Table  S4), including genes associated 
with T cell function, differentiation and proliferation 
(Fig.  6A–C). GSEA performed with the C2 collection 
identified 210 gene sets correlated with FLU treatment, 
including those associated with cell metabolism and cell 
signaling (Additional file 5: Table S5 & Fig. 6D) providing 
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further biological insight into the potential actions of 
FLU.

FLU stimulates JUN and FOS expression
FLU caused after 4 h a 2.2 fold increase in mRNA levels of 
the transcription factor, JUN (Additional file 2: Table S2, 
Fig. 5A, C), a member of the basic leucine zipper (bZIP) 
transcription factor family. Interestingly, recent studies 
show that overexpression of JUN in T cells can reinvigor-
ate T cells and improve anti-tumor potency [24]. JUND 
and JUNB expression was modulated 1.61 and 0.67 fold, 
respectively, by FLU, while another immediate-early 
gene EGR1 [25–28] was modulated 0.45 fold (Additional 
file 2: Table S2). FLU induction of JUN at the level of pro-
tein was confirmed by Western blotting which showed 
that JUN levels were induced within 2  h and peaked at 
6  h (Fig.  7A). This, to the best of our knowledge, is the 
first demonstration of FLU’s induction of JUN in any cell 
type. FLU also caused a transient induction of FOS pro-
tein, peaking at 2  h, with substantially earlier induction 

kinetics compared with JUN (Fig. 7A), which may explain 
why RNA-seq detected increased levels of JUN but not 
FOS (Additional file 2: Table S2, Fig. 5A, C). Others have 
also noted more acute and less sustained induction of 
FOS protein than JUN [29, 30]. These experiments also 
showed that FLU inhibited PD-1 protein expression 
within 2–4 h (Fig. 7B).

Finally we determined whether FLU’s suppres-
sion of PD-1 was reliant upon AP-1. We exposed Jur-
kat T cells to FLU after preincubation with T5224 
(3-(5-(4-(cyclopentyloxy)-2-hydroxybenzoyl)-2-((3-
hydroxybenzo[d]isoxazol-6-yl)methoxy)phenyl)pro-
panoic acid), a small molecule benzophenone-based 
selective inhibitor of AP-1 (FOS/JUN) binding to DNA 
[31, 32]. FLU suppressed PD-1 protein expression which 
was prevented by T5224 (Fig.  7C) suggesting that PD-1 
inhibition by FLU relies, at least in part, upon AP-1.

Fig. 5  Heat map representation of genes significantly up- or down-regulated by FLU in Jurkat T cells. These genes are associated with the A 
MAPK pathway, B PI3K-Akt signaling pathway, C pathways in cancer, D JAK-STAT signaling pathway, and E cytokine-cytokine receptor interactions. 
RNA-seq was performed with total RNA prepared from Jurkat T cells treated with 10 µM FLU for 4 h. Heatmaps were constructed based on z-scores 
of normalized expression values for the DEG and display expression levels between the biologically-independent samples. Each row is scaled using 
the scale function of the heat map tool which takes the z-score across each row
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Discussion
Immune checkpoint inhibitor therapy has fundamen-
tally changed the clinical management of advanced 
melanoma and a range of other cancers. Monoclonal 
antibody blockade of the PD-1/PD-L1 system seeks to 
re-orientate immunoediting toward immunosurveil-
lance and immune-mediated tumor recognition and 
lysis. Adjuvant use of immune checkpoint inhibitors in 
melanoma is now directed by clinical practice guide-
lines [33]. Recent research has demonstrated survival 
advantage from neoadjuvant-adjuvant immune check-
point inhibitor therapy in melanoma, suggesting ben-
efit in supporting the immune system to recognise the 
tumor prior to excision [34]. Notwithstanding this, 
ablative surgical intervention remains the primary 
treatment modality for local or locoregional melanoma 
given that objective response rates and response dura-
bility remain unsatisfactory for most patients. Toxicity 
remains a concern and dosing require hospital attend-
ance. Repurposing existing therapeutic agents may 

improve response, durability and offer additional “con-
current” therapies; whilst mitigating adverse events and 
providing for an “at home” per oral regime. Given the 
potential for these repurposed agents to target signal-
ing upstream of PD-1/PD-L1, a non-surgical approach 
to melanoma may be realised.

This study provides the first demonstration that the 
anti-parasitic drug FLU inhibits melanoma growth in 
immunocompetent mice with PD-1 inhibition through 
AP-1. RNA-seq analysis revealed that hundreds of genes 
were differentially expressed in a human T cell line 
exposed to FLU. One of these genes was the prototypic 
AP-1 family member, JUN. T5224, a small molecule that 
blocks AP-1 binding to DNA [31, 32], prevented FLU 
suppression of PD-1 expression. That FLU inhibits both 
tumor growth and PD-1 protein expression in immuno-
competent mice suggests the potential use of this anthel-
mintic as a repurposed, small molecule inhibitor for 
melanoma and possibly other cancer types.

Fig. 6  Representative GSEA of gene sets enriched by FLU in Jurkat T cells. Representative C7 gene sets enriched by FLU were those associated 
with T cell A function, B differentiation and C proliferation. Representative C2 gene sets enriched by FLU were those associated with cell metabolism 
and cell signaling (D)
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Previous studies have determined that FLU can inhibit 
breast cancer, gastrointestinal cancer, melanoma, neu-
roblastoma, oral carcinoma, leukemia and myeloma in 
mice [18]. However, to the best of our knowledge, the 
present study is the first to show that FLU can inhibit 
melanoma growth with suppression of PD-1 in immuno-
competent mice and builds upon our earlier demonstra-
tion in immunodeficient mice [14]. Our previous study 
[14] showed that FLU can abrogate growth and metas-
tasis of human melanoma grown as xenografts in SCID 
mice. FLU inhibited levels of phospho-(Tyr705) STAT3, 
PD-1 and myeloid-derived suppressor cell (MDSC) accu-
mulation within the tumors [14]. On the other hand, the 
present study investigated the effect of FLU on murine 
melanoma growth in immunocompetent mice, we found 
FLU inhibited tumor growth and suppressed PD-1 levels 
in the tumor microenvironment. While we did not inves-
tigate the involvement of MDSC or macrophages, we 
found that FLU increased immunostaining for the pan T 
cell marker CD3+ and inhibited PD-1 expression in Jurkat 

cells, a model human T cell line. Moreover, unlike our 
previous work [14], this study incorporates the results of 
differential gene expression and bioinformatics analysis 
which provide new insights on transcriptional changes 
effected by FLU.

Suppression of peritumoral and intratumoral PD-1 by 
FLU was accompanied by increased CD3+ T cell accu-
mulation in peritumoral skin. Park et  al.also observed 
changes in CD3+ T cell populations in peritumoral skin 
[35], while Haywood et  al.  and Halse et  al.  reported 
changes in peritumoral PD-1 expression [36, 37]. FLU 
inhibited tumor growth and PD-1 levels in this study 
without affecting levels of PD-L1. KEGG and GSEA 
provided novel insight into the potential functions 
of FLU. For example, FLU up-regulated genes associ-
ated with PI3K-Akt signaling, a pathway linked with 
the development of T cell effector function [38] and 
reduced regulatory T cell phenotype and metabolic 
state [39]. This is in line with GSEA that identified a 
range of immunologic signature gene sets correlated 
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with FLU treatment such as those underpinning T cell 
function, differentiation and proliferation. Future stud-
ies should determine the direct effects of FLU on T cell 
state and function.

PD-1 expression is regulated at the level of transcrip-
tion by factors such as signal transducer and activator 
of transcription (STAT) and members of the AP-1 fam-
ily [40–42]. AP-1 is induced by TCR signalling, cooper-
ates with NFAT in T cells and drives IL-2 expression and 
effector function. The present study demonstrates that 
FLU increases JUN expression and that AP-1 is needed 
for FLU’s suppression of PD-1. T5224 has been used 
previously to demonstrate an important role for AP-1 
in prolyl-isomerase expression in Jurkat T cells [43] and 
in pancreatic beta-like cells where it rescued mutant 
CDKAL1-associated beta cell defects [44]. Effects on 
PD-1 levels using T5224 and FLU are supported by recent 
findings by Carnevale et al. showing that increased AP-1 
activity prevents T cell exhaustion and/or T cell anergy 
in Jurkat T cells [45]. Our findings showing differences 
in pdcd-1 mRNA and PD-1 protein expression levels at 
the 4 h timepoint suggest complex regulation. This could 
arise from altered pdcd-1 transcription or mRNA stabil-
ity as a compensatory response to reduced levels of PD-1 
protein in cells exposed to FLU. For example, PD-1 can 
undergo dynamic ubiquitination and proteasomal deg-
radation in T cells [46]. Conversely, inducible FOS pro-
tein but not mRNA levels at this timepoint could reflect 
shorter lived FOS mRNA in cells exposed to FLU.

Repurposing FLU as a compound that can stimulate 
anti-cancer immunity is attractive since the benzimi-
dazole has established safety profiles in humans and 
animals. FLU has been used for the treatment of gastro-
intestinal nematode infections in humans and animals 
since the 1980s. The dose of FLU for use as an anthel-
mintic in humans (oral 100 mg dose twice a day for asca-
riasis, trichuriasis, ancylostomiasis, mixed infections) 
is substantially below the dose used in this cancer study 
(200 mg/kg), which is that we used previously in immu-
nodeficient mice [14]. Spagnuolo et  al.  administered 
FLU at 200  mg/kg daily i.p. for 2  weeks and found that 
it did not induce neuropathy [47]. FLU is a compound 
with an extremely high LD50 (> 5000 mg/kg) in mice, rats 
and guinea pigs [48, 49]  and is metabolized. In human 
liver, FLU is reduced in cytosol by carbonyl reduction 
and NADPH is the preferred coenzyme [50]. This study 
provides the first evidence that FLU can inhibit tumor 
growth with reduced PD-1 expression in immunocompe-
tent mice. Our study suggests the potential use of FLU as 
a repurposed small molecule inhibitor in melanoma and 
potentially other cancers involving PD-1.
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