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Abstract—

Automatically identifying the structural substrates underlying cardiac abnormalities can 

potentially provide real-time guidance for interventional procedures. With the knowledge of 

cardiac tissue substrates, the treatment of complex arrhythmias such as atrial fibrillation and 

ventricular tachycardia can be further optimized by detecting arrhythmia substrates to target for 

treatment (i.e., adipose) and identifying critical structures to avoid. Optical coherence tomography 

(OCT) is a real-time imaging modality that aids in addressing this need. Existing approaches for 

cardiac image analysis mainly rely on fully supervised learning techniques, which suffer from the 

drawback of workload on labor-intensive annotation process of pixelwise labeling. To lessen the 
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need for pixel-wise labeling, we develop a two-stage deep learning framework for cardiac adipose 

tissue segmentation using image-level annotations on OCT images of human cardiac substrates. In 

particular, we integrate class activation mapping with superpixel segmentation to solve the sparse 

tissue seed challenge raised in cardiac tissue segmentation. Our study bridges the gap between the 

demand on automatic tissue analysis and the lack of high-quality pixel-wise annotations. To the 

best of our knowledge, this is the first study that attempts to address cardiac tissue segmentation 

on OCT images via weakly supervised learning techniques. Within an in-vitro human cardiac OCT 

dataset, we demonstrate that our weakly supervised approach on image-level annotations achieves 

comparable performance as fully supervised methods trained on pixel-wise annotations.

Index Terms—

Optical coherence tomography; cardiac tissue analysis; deep learning; image segmentation; 
weakly supervised learning

I. INTRODUCTION

CARDIOVASCULAR disease is the leading cause of death in the United States, with 

atrial fibrillation alone affecting at least 2.3 million people [29]. Treatment of complex 

arrhythmias such as atrial fibrillation and ventricular tachycardia is through catheter 

ablation, which directly destroys the cardiac substrates that cause irregular impulse 

propagation. However, this treatment is sub-optimal, due to the lack of capability to 

accurately identify optimal ablation targets. With the knowledge of patients’ heart structure, 

the ablation strategy can be further optimized by avoiding critical structures and identifying 

arrhythmia substrates, such as areas with increased amounts of adipose tissues. Recent work 

has shown that an increased amount of adipose tissues within the myocardium is a substrate 

for cardiac arrhythmias [7], [8], [12], [46].

Optical coherence tomography (OCT) is a non-destructive optical imaging modality that 

could provide an ideal balance between a penetration depth of 2 mm with a resolution 

of 4–10 μm [40]. Recent advances have demonstrated the capability of OCT on capturing 

myocardial structures such as Purkinje network [54], atrial ventricular nodes [20], sinoatrial 

nodes [5], and myofiber organization [18]. In addition, it can be used to resolve critical 

tissue substrates of arrhythmias, such as fibrosis and adipose tissues [38]. With the 

development of OCT-integrated catheters [14], OCT can image the heart wall in real time 

through percutaneous access [50], which holds promise to aid catheter ablation.

To benefit from the real-time capacity of OCT imaging, analysis of OCT images is expected 

to be automated for timely decision making. Evaluation of adipose tissue distribution 

within a human atrial sample requires pixel-wise analysis of large volumetric datasets [15]. 

Manually annotating adipose tissues within a single OCT volumes can take a well-trained 

annotator over 10 hours. Therefore, automated identification of cardiac tissues, especially 

adipose tissue, in OCT images is greatly needed.

Current automated analysis on cardiac OCT images is mostly based on fully supervised 

learning models [22], [23], [34]. These models were limited and suffered from the drawback 
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of manual workload in the labeling process. To avoid overfitting, a large amount of data 

is required to support the model training. For segmentation tasks, the labeling process is 

extremely time-consuming and has limited accuracy. Moreover, OCT images are volumetric, 

adding an additional challenge to labeling. Thus, automatic analysis with weakly supervised 

learning models is of great interest.

Although recent studies have conducted retinal OCT analysis [51], [55], transferring OCT 

retinal segmentation to cardiac solution for weakly supervised cardiac OCT segmentation 

is still elusive for three reasons. First, cardiac adipose and fibrosis tissues can appear in 

multiple sub-regions with irregular shapes and infiltrating patterns. Thus, cardiac OCT 

images are more complicated than retinal substrates with rather regular layered structures. 

Second, boundaries between cardiac substrates are more blurry than between the retinal 

layers. Third, cardiac substrates have a larger variance among patients than retinal tissues.

In this study, we present a weakly supervised learning framework for cardiac tissue 

segmentation using image-level labels. Our training approach has two stages, namely pseudo 

label generation and segmentation network training. We first use the class activation map 

(CAM) results obtained from a binary classification network to generate adipose location 

seeds. Then, we develop a superpixel-based segmentation algorithm to generate pseudo 

labels followed by segmentation training. Our contributions are as follows:

1. We propose a weakly supervised learning framework for cardiac tissue 

segmentation. Our model is trained without the need of pre-training or domain 

adaptive learning.

2. We combine CAM with superpixel segmentation to effectively address the 

tissue segmentation challenges caused by irregular shape and blurry boundary 

in cardiac OCT images.

3. We evaluate our approach on a human cardiac dataset and demonstrate that 

our weakly supervised model achieves comparable performance with fully 

supervised algorithms.

II. RELATED WORK

Regarding tissue analysis on cardiac OCT images, [16] imaged and analyzed features on 

dense collagen, loose collagen, fibrotic myocardium, normal myocardium, and adipose 

tissue for automatic classification. In [42], segmentation was obtained from the variance 

map through compressive sensing reconstruction. In [38], the distributions of adipose tissues 

and fiber orientations were retracted and mapped throughout human left atrium, while in 

[6], the visualization of cardiac fibers in the atrium, ventricle, atrioventricular node, and 

sinoatrial node were presented. Overall, conventional cardiac OCT image analysis relies on 

handcrafted features for tissue characterization or fiber orientation-based methods to focus 

on myofibers.

Superpixel is a classic unsupervised segmentation method that has been widely used in 

biomedical data analysis. Without requirement on pre-annotated training sets, the superpixel 

based methods group the pixels into homogeneous clusters according to the similarity 
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among pixels. [53] combined superpixel with LogitBoost adaptive boosting to detect 

glaucomatous damage in 3D OCT images. In [44], the superpixel technique was applied 

to generate the flexible kernels of local statistics on the Jones matrix-based polarization 

sensitive OCT.

Deep learning approaches have achieved great success in OCT image segmentation tasks 

[19], [25], [32], [36], [41], [43], [47]. [47] developed a fully convolutional network with 

Gaussian process based post processing for retinal OCT segmentation. [13] proposed a novel 

framework that combined a hybrid convolutional neural network and graph search method 

for retinal layer boundary detection. [4] developed a fully convolutional network-based 

AV-Net for artery-vein classification. Their model contained a multi-modal training process 

that involved both en-face OCT and optical coherence tomography angiography (OCTA) to 

provide the intensity and geometric profiles. [23] trained a fully supervised segmentation 

network for cardiac tissue segmentation and used model uncertainty to estimate tissue 

heterogeneity. Existing work mainly relies upon fully supervised learning techniques.

In contrast to fully supervised methods, weakly supervised approaches use higher level 

labels including scribbles [26], [35], bounding boxes [28], [52], and image-level labels [51] 

to guide the pixel-level segmentation training process. [51] successfully segmented lesions 

by calculating the differences between the input abnormal images and normal-like retinal 

OCT images from a CycleGAN model. [55] employed a few shot learning technique for 

retinal disease classification and applied a GAN to enrich normal OCT images with OCT 

images of rare diseases. [27] proposed a Noise2Noise [33] based weakly supervised learning 

model for OCTA image reconstruction task. The image-level label is the most convenient 

and easiest supervision among all weak annotations, as it does not require any detailed 

annotations in the input images. As a result, it cannot be directly used for segmentation 

guidance, due to the lack of location clues for the target tissues. By generating the initial 

location seeds, CAM [57] provides a practical solution to solve this issue, and thus has been 

widely adopted as the first step of weakly supervised learning frameworks. [10], [21], [56]. 

[56] developed an end-to-end approach named reliable region mining for weakly supervised 

semantic segmentation. Combined with CAM, their model applied additional conditional 

random field operation to get reliable object regions. In [10], a boundary exploration based 

segmentation approach was proposed to explore object boundaries in the segmentation 

training process. Researchers in [21] deployed an iterative learning framework to gradually 

expand the seeded regions.

III. PROBLEM ANALYSIS

Our study is conducted on a cardiac dataset that was acquired from 44 human hearts with 

a median age of 62 years. The dataset contains both healthy hearts, end-stage heart failure, 

atrial fibrillation, coronary heart disease, cardiomyopathy, and myocardial infarction. A 

detailed clinical characteristic is presented in Section V-A. These various disease conditions 

might alter the visual features of cardiac substrates, raising the following unique challenges 

on the algorithm design:
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In-depth image and focal plane.

OCT provides in-depth cross-sectional images in which the x-axis and y-axis are not 

interchangeable. The signal intensity decreases with increasing axial (depth) distance due 

to light attenuation as it travels in the tissue. In addition to the depth, the signal intensity is 

also affected by the system optics and configuration. The optical focus, corresponding to one 

depth (horizontal row of pixels), will have a higher intensity than regions deeper within the 

image. As a result, noise distribution within a 2D image is not uniformly distributed.

Various features and irregular shapes.

As shown in Fig. 1, adipose regions present great variations among cardiac OCT images 

from human donors with cardiovascular disease due to heterogeneous heart remodeling. 

In Fig. 1(a), intra-scan inconsistency can be clearly observed in the two sub-regions. 

Meanwhile, in comparison with Fig. 1(b), the size of fat cells in Fig. 1(a) is much smaller 

and the number of fat cells is larger, as indicated in the histology images. In addition, the 

distance to the endocardium tissue can also affect tissue appearance. Adipose tissues in Fig. 

1(c) are deeper in the myocardium and appear darker and blurrier than in Fig. 1(b). Finally, 

the features and shapes can be further impacted by experimental conditions. In Fig. 1(d), 

the OCT image was obtained from tissues submerged in phosphate buffered saline (PBS). In 

this sample, the adipose tissues have very low contrast with the surrounding normal tissues. 

Thus, algorithms relying on shape constraints or boundary exploration cannot be easily 

extended to this task.

Similar pattern among adipose tissue and noise.

Image noise and artifacts are inevitable during the acquisition process. Features of adipose 

tissue are very similar to those of speckle noise and artifacts. To avoid over-smoothing the 

adipose regions, we do not deploy any image registration/denoising algorithm.

Data imbalance and limited training data.

In human cardiac samples, the majority of regions are normal tissues, such as myocardium 

and endocardium, rather than targeted adipose tissues. In our dataset, only around 11% 

OCT images show visible clusters of adipose tissues. At the pixel level, pixels belonging 

to adipose tissues only account for 2.6% of the total pixels to label. Even for images that 

contain adipose tissues, the ratio of number of adipose-related pixels over the total number 

of pixels is very small. Hence, the samples that are informative for model training are very 

limited.

Mathematical modeling:

Let X = Xi; i = 1, …, N  denote the set of images. For each image Xi ∈ X = i = 1, …, N , 

the image-level annotation yi ∈ 0, 1  indicates whether or not Xi contains the adipose 

tissues. The training data is denoted by Dtr = Xi, yi ; i = 1, …, N′ , which consists 

of N′ images X1, …, XN′ with corresponding image-level annotations y1, …, yN′. Let 

X′ = Xi; i = 1, …, N′ . The goal of our approach is to build a segmentation network 

fseg X; θ  with network parameters θ, so that it can generate the pixel-wise segmentation 

masks Pred, which has binary label Pred ω  at each pixel position ω in X.
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IV. METHODOLOGY

In this paper, we propose a weakly supervised learning framework for cardiac tissue 

segmentation tasks. Fig. 2 shows the pipeline of our proposed framework. As shown, our 

training approach consists of two major stages: pseudo label generation and segmentation 

network training. The pseudo label generation module is formed by two components: we 

first apply the CAM approach to generate initial adipose seeds and then we use superpixel-

base segmentation method to propagate the adipose seeds into pseudo pixel-wise labels. A 

detailed pseudo algorithm for the pseudo label generation module is listed in Algorithm 

1. In the segmentation module, we introduce a novel loss function with a special focus 

on the adipose seed regions to increase the detection performance of our segmentation 

network. The proposed method addresses the issue of great variation among adipose tissues 

for two reasons. First, the proposed method relaxes a predicting precise irregular boundary 

issue to a rough localization of adipose seed issue using CAM. Without the need of prior 

knowledge, the CAM can be used to indicate the location of potential adipose tissues. 

Second, we determine the actual boundary of detected adipose using an unsupervised way, 

superpixel segmentation, thus bypassing the challenge of learning from large amounts of 

adipose regions with great boundary variation.

A. Pseudo Label Generation

1) CAM-Based Seed Localization: The first stage of our model is to find reliable 

adipose seeds to indicate the location of adipose tissues. We follow the learning steps in 

[57] to get the initial CAM to indicate the location of adipose regions. To identify the 

extent of target tissue regions, we employ the global average pooling (GAP) layer to the 

last convolution layer of the classification network. The final prediction of the network is 

classified by a fully connected layer. After model training, the CAM results for the adipose 

tissues are obtained as follows:

Madipose ω =
j

μjfj ω

where fj ω  is the activation of unit j in the last convolutional layer at spatial location ω and 

μj is the weight corresponding to the adipose tissue for unit j.

The class activation maps have strong responses on regions with artifacts and high-intensity 

noise. To increase the reliability of pseudo label generation, we apply a boundary masking 

algorithm on the class activation maps to filter out adipose seeds that are located in 

the background regions (false positive caused by noise) and regions close to the tissue-

background boundary (false positive caused by artifacts). We adopt the cardiac layer 

segmentation algorithm from [16] and use the boundary of the top generated layer as the 

tissue-background interface. After getting the tissue surface, we remove adipose seeds above 

or close to the tissue-background boundary.

2) Superpixel-Based Seed Propagation: Superpixels are generated as in [2] with an 

approximate number of superpixels as 2000. An entire superpixel is labeled as adipose tissue 

if one of its inner pixels is labeled as adipose tissue. Upon the generation of superpixels, 
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the initial segmentation pseudo labels can be further improved to eliminate the following 

two misclassifications: 1) The adipose seeds may omit some adipose regions, and 2) the 

adipose seeds may incorrectly mark the normal regions as the adipose regions, due to the 

artifacts and intensity noise. To further remove the noisy annotations, we apply the Markov 

spatial regularization strategy [19] to add the ignored regions and remove the noisy adipose 

superpixels which only contain the normal tissues. Since the adipose cells are clustered 

in the cardiac tissue, the neighbors of an adipose region are more likely to belong to the 

adipose tissue clan, while small isolated adipose superpixels are more likely to be the normal 

regions corrupted by noise. Based on these criteria, we develop a simple yet effective spatial 

regularisation strategy: the label of a superpixel will be updated if most of its neighbors (≥ 

80%) belong to another class.

Algorithm 1:Algorithm Framework for Pseudo Label Generation Module .
Input:Training dataset X = X1, X2 ,…, Xn with
image − level labels Y = y1, y2 ,…, yn ;
Output:Pixel − wises pseudo labels .
Procedure:
Step 1 : Train localization network from X and Y .
Step 2 : Apply the CAM method to generate the initial
tissue seed results C = c1, c2 ,…, cn .

Step 3 : Apply the boundary masking on C and get
updated tissue seeds C .

Step 4 : Apply superpixel − based propagation method on C
to generate the initial pseudo segmentation labels S .

Step 5 : Update S with the spatial regularisation strategy
and get the final pseudo segmentation labels S .

B. Segmentation Network Training

Adipose tissues are sparse compared with normal tissues, such as myocardium and 

endocardium. Without special consideration, the segmentation performance might be 

severely limited due to data imbalance. To overcome this challenge, we use an adipose 

seed loss, inspired by [31], to optimize our segmentation network. In comparison with 

the original form of seed loss in [31], our adipose seed loss function only focuses on the 

regions of target tissues while the background regions are omitted. The final outputs of our 

segmentation network are pixel-wise segmented adipose location results.

We first introduce the loss function. Let pk ω  denote the network output probability for class 

k at the pixel position ω ∈ Ω with Ω ⊂ ℝ2 and sk ω  denote the pseudo-pixel-wise label where 

k ∈ 0, 1 . The cross-entropy loss (CEL) and adipose seed loss (ASL) is defined as follows:

CEL =− 1
Ω ω ∈ Ω k = 0

1
sk ω log pk ω (1)
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ASL =− 1
Ω1 ω ∈ Ω1

s1 ω log p1 ω (2)

where Ω1 = ω ∈ Ω:s1 ω = 1  is the set of spatial locations that are pseudo-labeled with class 

1 (i.e., the adipose class). Compared with the CEL (1), the ASL (2) only focuses on the 

regions of adipose tissue, and thus, it helps to reduce the impact of the false negatives in the 

pseudo segmentation labels.

We also use Dice loss (DL) in our loss function to learn the context information. The DL is 

defined as:

DL = 1 − 1
2 k = 0

1 2∑ω ∈ Ω pk ω sk ω
∑ω ∈ Ω pk ω 2 + ∑ω ∈ Ω sk ω 2 (3)

Finally, our segmentation network fseg X; θ  is jointly optimized by the combination of CEL, 

ASL, and DL:

Loss = α1 ⋅ CEL + 1 − α1 ⋅ ASL + α2DL (4)

where α1 and α2 are weight hyper-parameters. The sum of CEL and ASL is equivalent to a 

weighted loss. For better understanding, we use the form in (4) to separate the weight of 

CEL and ASL.

V. EXPERIMENT EVALUATION

A. Dataset

We evaluate the performance of our proposed model on the human cardiac dataset 

previously used in [15]. It consists of in-vitro cohort of 385 images taken from 44 human 

atria and ventricles using the Thorlabs OCT system. The samples were acquired through 

a National Disease Research Interchange approved protocol from Columbia University. All 

specimens were de-identified and considered not human subjects research, according to the 

Columbia University Institutional Review Board under 45 CFR 46. Table I presents the 

clinical characteristic of the human donor hearts. A detailed feature analysis study among 

different group of people was presented in [39]. The source of the Thorlabs OCT system 

was centered at 1325 nm with a bandwidth of 150 nm. The axial and lateral resolutions 

were 6.5 and 15 μm in air, respectively. All datasets were acquired at 28 kHz. Each OCT 

image is of size 512 × 800 pixels with a field of view of 2.51 mm × 4 mm. We crop the 

images into small overlapping patches with size of 512 × 128 pixels. Three experts, blinded 

to the algorithm design, annotate the OCT images under the guidance from a pathologist. 

All images are carefully annotated at pixel level with visual cron-check on corresponding 

histology images. Our evaluation is conducted on a five-fold cross validation strategy with 

validation sets randomly divided over human
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B. Implementation Details

Seed localization network.—To avoid overfitting, we only train a localization network 

with three hidden layers for adipose tissue seed generation. We use the ReLU function as 

the activation function. The number of channels in each hidden layer is 32, 32, and 64. 

We applied the GAP layer to the last convolutional layer to learn the cluster pattern of 

adipose tissues. The output of the GAP layer is classified with a fully connected layer. The 

digital resolution of output CAM drops down to 1
4  of original digital resolution after passing 

through the localization network. The networks are optimized on cross entropy loss via 

Adam optimizer [30] with random Glorot uniform initialization [17]. The batch size used for 

training is 16. Over the cross validation sets, all networks converged within 300 epochs with 

a learning rate of 1e−3. After normalizing, the background threshold in CAM generation is 

0.15.

Segmentation network.—We employ the classic medical segmentation network UNet 

[48] as the baseline of our learning framework. In the loss function (4), the hyper-parameter 

α2 is 0.5 while α1 ∈ 0, 1  is determined by the proportion of adipose tissues in the training set: 

α1 = 1 if the ratio of adipose images is less than 5%. Otherwise, α1 = 0.5. All segmentation 

networks were randomly initialized and converged within 200 epochs with a learning rate 

of 0.1−3, batch size 32, and weight decay 10−4. Our study is based on the Keras [11] and 

TensorFlow [1] deep learning frameworks. All experiments are conducted on a computer 

with the following features: an Intel core i9–9900 K (16 M Cache, up to 5.00 GHz) CPU 

and a RTX 2080 Ti GPU. The number of training images in a cross-validation set is 

around 300 images, with a size of 512 × 800 pixels. In the preprocessing stage, the training 

images were cropped into around 1800 overlapping patches (512 × 128 pixels) to enrich the 

training size. The total execution time for a single trial, which includes the following steps: 

preprocessing, classification network training, generation of pseudo labels, and segmentation 

network training, is less than 3 hours.

C. Evaluation Metrics

In our experiment, we use accuracy and precision to evaluate the overall accuracy and the 

detection performance of adipose seed results. For pseudo label generation and segmentation 

evaluation, we use true positive rate (detection rate), false positive rate, and Dice coefficient 

(F1 score) to evaluate the tissue segmentation performance.

D. Evaluation of Pseudo Label Generation

Adipose tissue seed localization.—The binary accuracy for our proposed localization 

network achieves very stable performance on all validation sets. Fig. 3 presents two 

representative adipose seed results generated from our localization network. In Fig. 3, the 

detected tissue-background boundary is delineated in red, and the accurately located adipose 

seeds are marked in blue, with misclassified adipose seeds marked in green. As seen, the 

boundary masking algorithm can effectively remove the misclassified edges and background 

noise from the original adipose seed results. Meanwhile, these results also demonstrate the 

capability of recognizing various types of adipose features using our proposed network. In 

the lower-left region of Fig. 3(a) and lower region of Fig. 3(b), the adipose region is out-of-
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focus, and the wall of adipose cells is not distinctive. In the majority of parts of Fig. 3(b), the 

adipose regions are in focus and appear in the honeycomb structures. These adipose regions 

are correctly identified using our proposed approach. In Table II, we report the accuracy 

and precision of adipose seeds before and after boundary masking. As shown, both accuracy 

and precision are improved after applying the boundary masking algorithm. In particular, the 

precision of adipose seeds has been significantly increased by approximately 20%, which 

further demonstrates the effectiveness of boundary masking on accuracy improvement.

In Fig. 4, we show two representative samples that were obtained from different chambers. 

In each sample, the adipose tissues are located in multiple regions with different 

appearances. As shown, our model can successfully localize the adipose tissue in a single 

sample with different adipose appearances. These results indicate that our model is able to 

solve the various feature challenges described in Section III.

Pseudo label generation.—Fig. 5 shows two superpixel segmentation results with 

accurately segmented pixels marked in blue and false negatives marked in red. In Table 

III, we provide a quantitative evaluation of our spatial regularisation strategy on samples 

with adipose tissues. There is an increase of 2% in Dice coefficient after applying it.

Localization network architecture.—To avoid overfitting, we apply a small localization 

network with 32, 32, and 64 channels on CAM generation. To learn the impact of network 

architecture on pseudo label generation, we conduct sensitivity analysis on models with 

more parameters: a deeper network with 32, 32, 32, and 64 channels and a wider network 

with 64, 64, and 64 channels in corresponding convolutional layers. Table IV presents the 

evaluation metrics on pseudo labels generated from different networks over the adipose 

samples. The quality of pseudo labels from deeper and wider networks is slightly worse than 

our proposed network. This discrepancy is probably caused by the noise and artifacts in the 

OCT images, as these large models might overfit to some non-robust features [24].

Sensitivity analysis on the number of superpixels.—The number of superpixels K
is the most important hyperparameter in the pseudo label generation module, with larger 

K values leading to smaller sizes of superpixels. To learn the impact of K on pseudo label 

quality, we report the evaluation metrics of pseudo labels with different K values in Fig. 

6. Along with increased K values, the true positive rate slightly decreases while the false 

positive rate is improved. Thus, we empirically set K = 2000 to balance the true positive rate 

and false positive rate in our study.

E. Evaluation of Segmentation Performance

1) Cross Validation Experiments: We use fully supervised models trained from pixel-

wise accurate segmentation masks as the baseline for comparison. Table V summarizes the 

averaged results and the standard deviation of our proposed weakly supervised approach and 

fully supervised baselines. To fully evaluate our model, we report the results calculated from 

all samples.
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Weakly supervised learning vs fully supervised learning.: Our weakly supervised model, 

trained from image-level labels, achieves comparable quality results to the fully supervised 

model that trained on pixel-wise labels. In addition, our dataset was acquired within a time 

frame that spanned over five years. During this time frame, imaging setup, such as sample 

freshness, imaging condition, and tissue preparation, varied among experiments. Thus, our 

results also demonstrate the generalization ability of our model against imaging condition 

variance, showing its strong potential on real-world clinical applications.

Comparison with different segmentation models.: In addition to the classic UNet model, 

we also evaluate the performance of our approach with other state-of-the-art segmentation 

models including DeepLab V3 [9] and FCN [37]. The evaluation metrics of these models 

are shown in Table V. As shown, all models achieve comparable results (true positive rate 

> 0.80, false positive rate < 1.5 over all samples), which indicates the genericity of our 

framework on weakly supervised tissue identification.

Comparison with existing weakly supervised learning framework.: We compared our 

method with two existing weakly supervised learning frameworks: reliable region mining 

(RRM) [56] and CycleGAN [51]. As shown in Table V, our methods generally produce 

a higher true positive rate and a lower false positive rate than RRM and cycleGAN, 

independent of segmentation models (i.e., U-Net, FCN, and DeepLab). RRM is based on the 

concept of conditional random field (CRF). CRF was originally designed for natural images 

where the boundary of objects was with high contrast, and pixel-wised affinity could be 

calculated accordingly. However, the blurry boundary of adipose regions within OCT images 

can add additional challenges in tissue segmentation and thus lead to lower performance 

of RRM. In contrast, the combination of superpixel design and Markov regularization can 

contribute to addressing the unique challenges that adipose and speckle noise happen to be 

similar.

Our approach also achieves higher performance than the CycleGAN-based method [51], 

which relies heavily on spatial constraints. In our problem setting, the adipose tissue could 

appear in any region under the endocardium. The morphological change is significant 

compared to those within retinal images [51]. Furthermore, their model detected the bottom 

layer (RPE) of the retina to avoid the interruption of background noise. However, in the 

cardiac OCT dataset, there does exist a distinctive bottom layer to avoid background noise.

Although the adipose tissues and the noise are similar on pixel-wise, they are different on 

cluster-wise. The walls of adipose cells can be differentiated from the background when the 

adipose regions are close to the endocardial surface (first layer). As the location of adipose 

regions appears deeper within the tissue, within the OCT image, it is farther from the focus 

and thus is blurred and has a lower contrast with the background. The superpixel, as a 

basic unit, carries more regional information than a single pixel, thus showing promise to 

distinguish the adipose and noise. In addition, the use of Markov spatial regularization could 

also help to filter isolated noise by removing noise if the majorities are non-adipose regions 

and expanding regions if the majorities are adipose regions.
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Ablation study.: Performance drops are observed in Table V when the boundary masking 

algorithm and spatial regularisation strategy are removed. In particular, after removing the 

boundary masking algorithm, the true positive rate is severely decreased along with an 

increased standard deviation. This result indicates the necessity of using a boundary masking 

algorithm to improve adipose seed quality at the early stage of pseudo-label generation. 

In comparison with the false positive rate, the true positive rate has notable changes after 

applying the spatial regularisation, which shows its effectiveness in false negative correction. 

We further conduct experiments to assess the influence of different loss functions in our 

proposed model. As shown in the last four rows of Table V, our model which is optimized 

with adipose seed loss and Dice loss achieves the best true positive rate, while the version 

without adipose seed loss (CE loss and Dice loss), achieves the best false positive rate in 

ablation study. The use of seed loss can notably increase the model detection performance 

but meanwhile, hinder the false positive rate. In contrast, the cross entropy loss is more 

efficient in controlling the false alarms. These results show that the use of seed loss can 

efficiently reduce the impact of false negatives in the pseudo labels. This detection rate and 

false alarm trade-off can be balanced through adjusting the weights of seed loss and cross 

entropy loss.

2) Representative Segmentation Results: In this section, we present the visual 

output of our proposed weakly supervised model in overall performance, small adipose 

tissue region detection, and 3D segmentation.

Overall performance.: Fig. 7 shows the predicted tissue maps on four human cardiac 

samples. In Fig. 7(a) and (b), our model accurately localizes the adipose tissue regions 

in arbitrary shapes. Meanwhile, in Fig. 7(a), we can also observe the over-segmented 

regions (regions at the left corner) in the ground truth figure. Human annotators tend 

to over-segment the regions below the penetration depth, while for the network, it may 

identify these regions as non-adipose tissues because of the low signal-to-noise ratio. 

This over-segmentation tendency can lead to decreased values in evaluation metrics. In 

Fig. 7(c), our model successfully identifies the adipose tissues in the multiple regions 

with different penetration depths. In Fig. 7(d), we show a human atrium sample that is 

slightly off the focus. Similar to previous results, our models still accurately differentiate the 

adipose tissues from other tissues, showing their robustness over different image qualities. 

In all cases, the predicted results are highly consistent with the ground truth labels. These 

results demonstrate the learning ability of our model via image-level labels, showing its 

effectiveness in clinical tissue identification.

Identifying small adipose tissue regions.: Fig. 8 presents two images obtained from nearby 

regions within the same human heart. As shown, Fig. 8(a) and (b) are very similar and 

they all contain large regions of fibrosis tissue. However, in Fig. 8(a), there is a small 

cluster of adipose tissue surrounded by the fibrosis tissues, while in Fig. 8(b), there is no 

adipose tissue. As shown, this is a very challenging segmentation task due to the size of 

adipose tissue and the blurry boundary between different tissue types. Our model accurately 

delineates the adipose tissue regions in Fig. 8(a) and it does not put any false alarm in 

Fig. 8(b). In both cases, our model successfully distinguishes adipose tissues from other 
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cardiac substrates. These results further demonstrate the strong learning ability of our model, 

as it can learn the most discriminative features via image-level labels, rather than simply 

memorizing the training samples.

Visualization of 3D segmentation.: Fig. 9 shows a typical result of 3D visualization 

of adipose tissue segmentation. We sequentially apply the trained network to segment 

consecutive Bscans and align segmented Bscans in 3D space. As shown, the segmented 

boundaries accurately delineate the morphological changes in the adipose tissues. Even 

though our model is trained on a small quantity of training data with image-level labels, it 

still successfully segments adipose regions of various sizes. These results indicate that our 

model has great potential to be applied to assess adipose tissue regions in catheter-based 

ablation operations.

VI. DISCUSSION

In this study, we propose a weakly supervised learning framework for cardiac adipose tissue 

segmentation on OCT images. Our approach contains two powerful modules: the pseudo 

label generation and the segmentation network training. In the pseudo label generation 

module, we use the superpixel-based propagation algorithm to address the sparse location 

seed challenge raised in the CAM results. Benefiting from our boundary masking algorithm 

and spatial regularisation strategy, the quality of the pseudo labels has been significantly 

improved for the training guidance. In the segmentation network training module, we 

introduce a novel loss function to increase adipose tissue detection performance. By 

evaluating on a human cardiac dataset with cross-validation strategy, our model achieves 

comparable results with the fully supervised baseline, showing its effectiveness on tissue 

characterization.

Our study can provide valuable detail on adipose distribution within myocardium 

regions, holding promise to improve cardiac therapies including ablation procedure and 

endomyocardial biopsy. Previous research has shown that the accumulation of adipose 

tissue in ventricular myocardium is associated with severe cardiac arrhythmias such as left 

ventricular tachycardia and arrhythmogenic right ventricular cardiomyopathy. By pointing 

out the location of abnormalities, our study could directly improve the radiofrequency 

ablation treatment, reducing the risk of treatment recurrence and complications. In addition, 

the knowledge of adipose distribution could also provide referral suggestions on ablation 

parameters for lesion formation, as the biophysical properties are various among different 

tissue types. Moreover, our approach also holds promise to be extended for weakly 

supervised segmentation of adipose tissue in other applications, such as adipose detection in 

breast cancer classification.

Previous research has shown that the accumulation of adipose tissue in the ventricular 

myocardium is a substrate for cardiac arrhythmias, which is associated with left ventricular 

tachycardia and arrhythmogenic right ventricular cardiomyopathy. Additionally, about 75% 

to 80% of cases of sudden cardiac death are caused by ventricular arrhythmias, and over 

80,000 people are detected with supraventricular tachycardia annually [29], [45]. However, 

there are no existing methods for real-time image guidance of ablation procedures, to the 
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best of our knowledge. Current guidance of ablation procedures is through the measurement 

of electrograms. Low voltage measurements can be due to increased amounts of collagen 

(scar or fibrosis) or adipose. Knowledge of the substrate will provide the necessary feedback 

to determine how to interpret functional measurements. Future OCT-enabled assessment 

of the presence of adipose (true positive rate) will provide a valuable addition to an 

electrophysiologist’s toolbox for treating cardiac arrhythmias.

Similar to the experiments in RRM, we notice that other weakly supervised methods that 

were originally developed in computer vision might not be easily applied to our unique OCT 

task. For instance, SEC [31] is a CRF-based method. Note that the CRF-based method is 

originally designed for natural images where the boundary of objects is high contrast and 

continuous. However, some adipose regions in OCT images do not satisfy this condition, 

especially when the adipose cells are in out-of-focus regions. Likewise, the pairwise affinity-

based IRN [3] approach is also hard to handle such subtle feature variation challenges in 

OCT adipose images. In addition, the IRN framework relies upon multiple instances of 

CAM, where each object is considered as a single subject for instance segmentation. Such 

design cannot be easily integrated with adipose tissue which shows a sparse distribution 

within the myocardium (shown in Fig. 3), as this sparsity could lead to over hundreds 

of instances in a single OCT image. Moreover, erasing-based methods [49] could not be 

applied to our problem setting as normal tissue can be likely removed with fat cells due to 

the blurry boundary of the adipose region.

One limitation of this study is that the results are evaluated on a benchtop OCT system. 

To move towards the aid of ablation procedures, a catheter-based OCT system is needed, 

as it can help to optimize the treatment strategy by providing real-time cardiac substrate 

information. In the future, we will extend our current work into catheter-based in-vivo OCT 

images. Such extension will require further investigation of challenges such as image quality 

degeneration and motion disturbance. Compared with benchtop OCT images, catheter-based 

OCT images are with lower image quality, suffering from lower contrast and motion effects. 

Without special consideration, the decreased image contrast may hinder the performance 

of the model. Motion disturbance caused by breath and heartbeat is another important 

factor that could lead to performance degradation. These disturbances could be partially 

corrected by applying low-pass filters. In the future, we will also extend our proposed 

weakly supervised framework to other OCT segmentation tasks, such as breast images and 

retinal images. Moreover, the segmentation performance is limited by the generated pseudo 

labels. In the future, we will explore the direction of semi-supervised learning if a separate 

set of pixel-wise labels is available for training.

VII. CONCLUSION

In this paper, we propose the first weakly supervised learning framework for adipose 

tissue segmentation in human cardiac OCT images. We design a novel CAM-superpixel 

segmentation approach that converts the sparse CAM results into pseudo-pixel-wise labels 

for training. In addition, we also present and analyze the necessity and effectiveness of 

proposed steps and loss functions. Experimental results on the human cardiac dataset 
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demonstrate that our model achieves comparable performance with models trained under 

full masks, showing the learning capability of our proposed model on image-level labels.

In the future, we will extend our work in the following aspects. First, we will evaluate 

the performance of our current work into catheter-based in-vivo OCT images or synthetic 

in-vivo OCT images generated by generative models and image kernels. Second, we will 

validate the effectiveness of our model on other OCT segmentation tasks to open up 

opportunities for broader applications.
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Fig. 1. 
Representative OCT images from cardiac dataset. Sample (a) is obtained from right 

ventricle. Sample (b) and sample (c) are obtained from right atrium. Sample (d) is obtained 

from left atrium submerged in PBS solution. The features of adipose tissue present great 

variations among different locations and imaging conditions. The unclear boundary and 

irregular shape of adipose tissues add unique challenges for automated segmentation. Scale 

bar: 500 µm.
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Fig. 2. 
Algorithm training flow of the proposed weakly supervised segmentation approach. 

The framework consists of two separate modules, namely pseudo label generation and 

segmentation network training. In pseudo label generation module, pixel-wise pseudo 

annotations are generated by the integration of CAM and superpixel methods. In 

segmentation network training module, a segmentation network is trained on the pseudo 

labels with a novel loss function.
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Fig. 3. 
Comparison of tissue seeds before and after the boundary masking algorithm. Red: the 

detected tissue-background boundaries; blue: accurately annotated adipose seeds; green: 

false positives. As shown, the boundary masking algorithm can effectively remove the false 

positive adipose seeds caused by the artifacts and noise. Benefiting from it, the adipose seeds 

are more precise to be propagated for segmentation guidance. Scale bar: 500 µm. Sample (a) 

is obtained from the left ventricle. Sample (b) is obtained from the right ventricular septum.
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Fig. 4. 
The tissue seed results in samples with different adipose features. Sample (a) is obtained 

from the left atrium. The highlighted regions in sample (a) are two regions with different 

focal statuses. The red box is within the focal plane while the green box is out of focus. 

Sample (b) is obtained from the right ventricle. The highlighted regions in sample (b) are 

with different tissue structures. The orange box is with multiple small fat cells while the 

yellow box is with a few big fat cells. Scale bar: 500 µm.
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Fig. 5. 
Comparison of pseudo labels with and without the spatial regularisation strategy. Blue: 

accurately annotated adipose pixels; red: false negatives. The spatial regularisation strategy 

helps to correct the mis-labeled pseudo labels by using the context information from nearby 

regions. After applying it, the false negatives have been significantly reduced. Scale bar: 

500 µm. Sample (a) is obtained from the left atrium. Sample (b) is obtained from the right 

ventricular septum.
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Fig. 6. 
Impact of the number of superpixels on pseudo label quality. The quality of pseudo labels 

only has slight variance on the evaluation metrics (Dice coefficient, true positive rate, and 

false positive rate) among different K values, which indicates the robustness of our model on 

pseudo label generation.
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Fig. 7. 
Representative segmentation results from human atrium and ventricle samples. Our 

proposed approach accurately identifies the adipose tissues located at different regions with 

various sizes and shapes. All prediction results are highly consistent with the ground truth 

labels. Scale bar: 500 µm. Sample (a) and sample (b) contain adipose tissue in arbitrary 

shapes. Sample (c) contains adipose tissue at multiple locations. Sample (d) contains adipose 

tissue located at regions that are slightly off the focus.
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Fig. 8. 
The prediction results of images obtained from nearby regions. Our approach successfully 

pinpoints the adipose tissues from other tissue types, showing its strong identification ability 

on adipose tissues. Scale bar: 500 µm. Sample (a) and sample (b) are obtained from nearby 

regions within the same human heart.
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Fig. 9. 
3D visualization of adipose tissue segmentation. (a): the original OCT volume; (b): the 

original volume overlaid with segmented adipose regions; (c): the segmented adipose 

regions from proposed approach. The segmented boundaries accurately delineate the 

morphological changes in adipose shape.
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TABLE I

CLINICAL CHARACTERISTICS OF HEART DONORS

Characteristic Value

N 44

Demographic profile

 Age in years, median (average) 62 (62.2)

 Female, n (%) 20 (45.5)

Medical history, n (%)

 Heart failure 10 (22.7)

 Cardiomyopathy 8 (18.2)

 Coronary artery disease 11 (25.0)

 Myocardial infarction 10 (22.7)

 Atrial fibrillation 3 (6.8)

 Chronic obstructive pulmonary disease 16 (36.4)

 Diabetes 17 (38.6)

 Hypertension 27 (61.4)

Cause of death, n (%)

 Cardiac arrest 18 (40.9)

 Cardiopulmonary arrest 2 (4.5)

 Respiratory failure 5 (11.4)

 Chronic obstructive pulmonary disease 1 (2.27)

 Congestive heart failure 1 (2.27)

 Others, cardiac related 11 (25.0)

 Others, not cardiac related 6 (13.6)
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TABLE II

EVALUATION METRICS (%) OF ADIPOSE TISSUE SEEDS BEFORE AND AFTER THE BOUNDARY MASKING ALGORITHM

Before After

Accuracy 80.79 ± 1.15 83.91 ± 2.45

Precision 56.43 ± 11.95 75.90 ± 8.18
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TABLE III

EVALUATION METRICS (%) ON TISSUE PSEUDO LABELS BEFORE AND AFTER THE SPATIAL REGULARISATION ON ADIPOSE 

SAMPLES

Method True Positive Rate False Positive Rate Dice Coefficient

Superpixel 71.17 ± 6.36 10.03 ± 2.87 67.09 ± 2.96

Superpixel + Spatial regularisation 71.77 ± 6.72 8.33 ± 2.90 69.70 1 3.34
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TABLE IV

EVALUATION METRICS (%) ON PSEUDO LABELS GENERATED FROM DIFFERENT MODELS ON ADIPOSE SAMPLES

Model  Precision True Positive Rate (%) False Positive Rate (%) Dice Coefficient (%)

Deeper Model 0.93 ± 0.08 64.13 ± 10.76 5.38 ± 0.97 68.29 ± 7.18

Wider Model 0.92 ± 0.07 63.78 ± 3.98 5.31 ± 1.50 68.87 ± 1.59

Proposed 0.93 ± 0.06 71.77 ± 6.72 8.33 ± 2.90 69.70 ± 3.34
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TABLE V

EVALUATION METRICS (%) OF DIFFERENT MODELS ON WHOLE DATASET

Method True Positive Rate False Positive Rate Dice Coefficient

Fully supervised baseline U-Net 82.32 ± 5.69 0.99 ± 0.90 81.57 ± 5.71

Weakly supervised baseline
RRM 76.00 ± 16.36  5.44 ± 2.70 40.39 ± 9.01

CycleGAN 55.19 ± 17.46  7.23 ± 6.44 64.14 ± 17.21

Proposed framework

U-Net 85.52 ± 5.44 1.35 ± 0.74 72.11 ± 10.12

FCN 87.77 ± 1.01 1.49 ± 0.85 72.14 ± 8.94

DeepLab 80.22 ± 4.18 1.45 ± 0.84 67.83 ± 1125

Ablation study

w/o Boundary masking 72.59 ± 8.46 1.37 ± 1.09 70.91 ± 16.95

w/o Spatial regularization 77.84 1 5.67 1.21 ± 1.08 70.77 1 12.54

Adipose seed loss + Dice loss 87.62 ± 8.79 2.24 ± 0.72 64.15 ± 9.82

CE loss + Dice loss 74.04 ± 15.25 0.77 ± 0.30 74.99 ± 14.72

Except fully supervised method, the best and second best performance are marked in red and blue correspondingly.
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