Table 2.
Summaries of the semi-empirical regression models for removing PRO and PMT from their individual solutions, Eqs. (6)– (9)
Dependent response | Model summary – Single solutions | Variables blend and individual desirability (d) – Single solutions | Variables blend and composite desirability (D) – Binary mixtures | ||
---|---|---|---|---|---|
R2% | R2 – adj% | R2 – pred% | |||
%R(PRO) | 99.22 | 98.38 | 95.56 |
AD = 108 mg/13 mL, [PRO] = 100 ppm, CT = 10 min, PyTemp = 700 °C (d = 1.0000, %R(PRO)sin = 98.64%) |
AD = 110 mg/13 mL, [DRUG] = 100 ppm, CT = 10 min, PyTemp = 700 °C (D = 1.0000, %R(PRO)bin = 98.63%, %R(PMT)bin = 94.14%) |
%R(PMT) | 99.01 | 97.96 | 94.00 |
AD = 120 mg/13 mL, [PMT] = 100 ppm, CT = 32 min, PyTemp = 700 °C (d = 1.0000, %R(PMT)sin = 95.87%) |
|
qe (PRO) | 99.98 | 99.95 | 99.84 |
AD = 20 mg/13 mL, [PRO] = 100 ppm, CT = 10 min, PyTemp = 700 °C (d = 1.0000, qe (PRO)sin = 47.08 mg/g) |
AD = 20 mg/13 mL, [DRUG] = 100 ppm, CT = 120 min, PyTemp = 700 °C (D = 1.0000, qe(PRO)bin = 47.08 mg/g, qe(PMT)bin = 39.84 mg/g) |
qe (PMT) | 99.95 | 99.89 | 99.72 |
AD = 20 mg/13 mL, [PMT] = 100 ppm, CT = 120 min, PyTemp = 700 °C (d = 1.0000, qe (PMT) = 39.94 mg/g) |