Skip to main content
. 2023 Jul 15;13:11463. doi: 10.1038/s41598-023-38706-5

Table 4.

Hyperparameters in proposed machine learning models.

Model Hyperparameters
RF n_estimators = 100, *, criterion = 'entropy'
SVM kernel = 'liniar', degree = 2, gamma = 'scale', cache_size = 100, decision_function_shape = 'ovo'
AD n_estimators = 100 algorithm = 'SAMME', random_state = 40
KNN n_neighbors = 1, *, weights = 'uniform', algorithm = ‘kd_tree’, leaf_size = 20, p = 2, metric = 'euclidean'
DT criterion = 'entropy', splitter = 'best', max_depth = 100, ccp_alpha = 0.0
GNB priors = None, var_smoothing = 1e-09

Where the hyperparameters are not explicitly defined, they are considerate as default.