
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11459  | https://doi.org/10.1038/s41598-023-38542-7

www.nature.com/scientificreports

Classification of brain lesions 
using a machine learning approach 
with cross‑sectional ADC value 
dynamics
Peter Solar 1,2, Hana Valekova 1,2, Petr Marcon 3, Jan Mikulka 3, Martin Barak 1,2, 
Michal Hendrych 2,5, Matyas Stransky 3, Katerina Siruckova 3, Martin Kostial 3, 
Klara Holikova 2,4, Jindrich Brychta 1 & Radim Jancalek 1,2*

Diffusion-weighted imaging (DWI) and its numerical expression via apparent diffusion coefficient 
(ADC) values are commonly utilized in non-invasive assessment of various brain pathologies. Although 
numerous studies have confirmed that ADC values could be pathognomic for various ring-enhancing 
lesions (RELs), their true potential is yet to be exploited in full. The article was designed to introduce 
an image analysis method allowing REL recognition independently of either absolute ADC values 
or specifically defined regions of interest within the evaluated image. For this purpose, the line of 
interest (LOI) was marked on each ADC map to cross all of the RELs’ compartments. Using a machine 
learning approach, we analyzed the LOI between two representatives of the RELs, namely, brain 
abscess and glioblastoma (GBM). The diagnostic ability of the selected parameters as predictors for 
the machine learning algorithms was assessed using two models, the k-NN model and the SVM model 
with a Gaussian kernel. With the k-NN machine learning method, 80% of the abscesses and 100% of 
the GBM were classified correctly at high accuracy. Similar results were obtained via the SVM method. 
The proposed assessment of the LOI offers a new approach for evaluating ADC maps obtained from 
different RELs and contributing to the standardization of the ADC map assessment.

Cerebral ring-enhancing lesions (RELs) embody a diversified group of brain pathologies with a broad differential 
diagnosis; in conventional magnetic resonance imaging (MRI), however, the lesions appear to be very similar1,2. 
In general, RELs can be classified into three pathological components based on MRI. The central compartment 
is formed by a necrotic or cystic area, surrounded by a middle compartment of a ring-like contrast enhancement 
due to the leaky blood–brain barrier (BBB). The peripheral part of RELs comprises perilesional edematous brain 
tissue characterized by T2 hyperintensity2–4.

The main RELs comprise, for instance, high-grade gliomas, cerebral abscesses, metastases, lymphomas, and 
tuberculomas.5–8. Early diagnosis is crucial for some brain lesions, including brain abscesses, due to the need 
for urgent and specific therapy. The histopathological assessment of the tissue samples requires invasive surgi-
cal intervention, and therefore increasing interest is paid to non-invasive diagnostics exploiting advanced MRI 
techniques. Although RELs display a similar pattern in MRI, they constitute pathologies with different biological 
backgrounds affecting the random motion of the water molecules in different manners9–11. Each pathology thus 
has a specific diffusion pattern that is usable for non-invasive MRI diagnostics.

Advanced MRI techniques, such as diffusion-weighted imaging (DWI), are widely employed in MRI proto-
cols for examining brain tumors. Nonetheless, the true potential of these methods does not always materialize 
in practice. The quantitative expression of DWI is the apparent diffusion coefficient (ADC), which reflects 
the numerical value of the restriction on water molecule diffusion within the region of interest (ROI)12. Sev-
eral factors, including increased cellularity, tissue viscosity, cellular swelling, and the consequent reduction in 
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extracellular space, restrict the Brownian movement of water molecules “trapped” in the intracellular space, 
leading to decreased ADC values13.

The potential of ADC values in differentiating between commonly identified RELs or even glioma grading has 
been published11,14–17. Moreover, the interest in ADC values in connection with novel molecular and genetic char-
acteristics of brain tumors, in particular, is gaining in importance18–20. Currently, most of the relevant research 
that utilizes ADC data uses ADC mean, ADC min, and ADC max in various ROIs21–26. However, standardiza-
tion is currently lacking in the assessment of ADC maps. The differences between the methodologies applied in 
measuring ADC maps may be a major limitation for effective comparison of the results proposed in articles that 
examine the problem. The distinct features of RELs comprising 3 standard compartments give rise to uncer-
tainty regarding the reproducibility of absolute ADC values when ROI delineation across the published studies 
is different. To overcome the limits of measuring ADC values, we focused on their dynamics across all the REL 
compartments instead of using absolute regional values. This new and more comprehensive evaluation of ADC 
maps could better represent the biological background of various brain pathologies. The aim of our study was 
to verify whether the dynamics of ADC values across the REL compartments employing cross-sectional Line of 
Interest (LOI) analysis can be used for the differential diagnosis of the two main pathologies, i.e., the glioblas-
toma (GBM) and brain abscess. In this context, a prominent objective lies in selecting suitable predictors for 
training machine learning algorithms to increase the probability of classifying these brain pathologies correctly.

Materials and methods
Population and data acquisition.  This single-center retrospective study was conducted at the Neuro-
surgical Department, St. Anne’s University Hospital, Brno, Czech Republic. In total, we enrolled 40 patients 
operated on for REL with subsequent histopathological verification between January 2017 and December 2022; 
of these subjects, 26 individuals (11 males, 15 females) were diagnosed with GBM (according to 2016 WHO 
classification) and 14 (8 males, 6 females) with brain abscesses. Each patient underwent an MRI examination 
(GE Discovery 750w, 3 T) at the Department of Diagnostic Imaging, St. Anne’s University Hospital, one day 
before surgery. The MRI protocol included 3D T2-weighted images, axial T2 FLAIR, 3D T1-weighted images, 
3D contrast-enhanced T1-weighted images, and diffusion-weighted imaging27. DWI parameters were TR/
TE = 6000/100 ms, slice thickness 5 mm, gap 1.5 mm, FOV 240 × 240 mm, matrix 256. The diffusion changes 
were analyzed via vendor software-based ADC calculation from images acquired using three diffusion gradi-
ents with two b values (0 and 1000 s/mm2). The MRI data of the patients were collected in the DICOM format, 
anonymized, and analyzed retrospectively.

Data processing.  An advanced computer analysis was carried out at the Department of Theoretical and 
Experimental Electrical Engineering, Faculty of Electrical Engineering and Communication, Brno University of 
Technology, Brno, Czech Republic. The processing chain is shown in Fig. 1. The information from the scanned 
ADC images was compressed by acquiring user-selected values under a linear region with 1-pixel width. 
Together with the histological result, the vector of the compressed ADC values formed a set to train the classifi-
cation models. The output of the classifier is the predicted label of the classified lesion.

Cross‑sectional ADC analysis of ring‑enhancing lesions.  To classify the brain pathologies, we cre-
ated a program in Matlab R2020b that allowed us to identify the data acquired within the line segment inserted 
into the image slice and to analyze the selected data; such a procedure then facilitated classifying the pathological 
tissue.

A single representative slice of the ADC map showing the REL in the longest diameter as well as containing 
the characteristic perilesional edema was chosen by a skilled clinician for every patient on the diagnostic MRI 
and loaded into the program to perform the analysis (Fig. 2). For this purpose, five linear lines of interest (LOI) 
were placed into a single representative slice of the ADC map. The LOI function was programmed in Matlab to 
approximate the ADC values between the selected points linearly. The ADC values were then saved as a vector.

In total, 200 cross-sectional lines were analyzed, from which 150 lines from 30 different subjects (75% of the 
data) were used to train the classification algorithms, and 50 lines from another 10 subjects (25% of the data) 
were used for the hypothesis testing. Each radially oriented LOI crossed all compartments of the REL, begin-
ning in an apparently healthy-looking tissue adjacent to perifocal edema with the ADC values close to normal, 

Figure 1.   Block diagram of pathological tissue processing and classification. The output of the MRI is a set of 
scans that can be expressed as a matrix of ADC values with spatial coordinates ADC(x, y, z) . A user-defined 
region of interest can be described by a line equation in the space ROI = A+ t · u , where ROI is a vector of 
coordinates of points on the line, A is a point in the space of scanned ADC values, and u is a direction vector. 
The output of the ADC acquisition block is the vector of ADC values lying on the line ROI , i.e., ADC ∩ ROI.
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around 700–750 mm2/s for brain parenchyma28–30 going across the region of the perilesional brain parenchyma 
that exhibits contrast enhancement and ending in the central core of the REL.

Areas with a specific deviation of the ADC values, extremely high in the brain ventricle and brain cisterns 
while extremely low in the bone and calcifications were avoided, as were analysis of 2 contralaterally oriented 
LOI across the REL.

After that, the specific points were marked on the LOI by a skilled radiologist: A) the most distant border 
of the markable perilesional edema; B) the outer border of the most intense ADC hyperintensity caused by the 
perilesional edema; C) the inner border of the ADC hyperintensity area close to the tumor border, right before 
the ADC starts to decrease; D) the most intense ADC hypointensity representing the REL border with the most 
intense restriction of a diffusion; E) the border of the content of the REL, usually characterized by a homogenous 
area of a higher ADC value; F) the end of the LOI in the center of the REL.

The dynamic changes in the ADC values along the cross-sectional LOI were marked as a curve in the graph 
of the ADC value [mm2/s] plotted on the y-axis. The points of interest outlined above were defined on this curve, 
as follows: (A) the beginning of the elevation of the ADC values at the most distant part of the perilesional brain 
edema; (B) the point of stabilization of the elevated ADC values, the beginning of a plateau on the curve of ADC 
values in the perilesional brain edema; (C) the point where the ADC values start to decrease to the lower values 
around the enhancing ring; (D) the lowest value between the perilesional brain edema and the enhancing ring; 
(E) the point of stabilization of the ADC values in the REL core and (F) the final point on the curve extending 
to the center of the RELs.

Using these points, the curve was then divided into characteristic segments: (A-B) gradient 1 (onset of the 
perilesional brain edema); (B-C) plateau 1 (the perilesional brain edema, including the fluctuation of the elevated 
ADC values); (C-D) gradient 2 (the transition between the perilesional brain edema and the enhancing ring); 
(D-E) gradient 3 (the transition between the enhancing ring and the REL core); (E–F) plateau 2 (the REL core).

The following general equation was used to calculate the gradient ∇f  of the function f (x), which describes 
the intensity of the ADC map under the LOI:

where x and x0 are the x-coordinates of the selected points on the x-axis; f(x) and f(x0) denote their functional 
values.

Data analysis.  The analysis of the data defined by the LOI was carried out in order to select the predic-
tors for the machine learning algorithms. Figure 3b shows the waveform of the values represented by the red 
LOI (Fig. 3a). Based on the data analysis, the following predictors were chosen (from left to right): the gradient 
of the leading edge of the onset of the perilesional brain edema (gradient 1), ∇ADCErise ; the median ADC values 
(plateau 1), ADCE ; the standard deviation of the ADC values, σADCE

(plateau 1); the transition between the per-
ilesional brain edema and the enhancing ring (gradient 2), ∇ADCEfall ; the transition between the enhancing ring 
and the REL core (gradient 3), ∇ADCTrise

 ; the median ADC values (plateau 2), ADCT ; the standard deviation 
of the ADC values, σADCT

 (plateau 2). To discriminate between the glioblastoma and abscess, a set of boxplots 
was created.

The data used for the box plots were also analyzed using statistical tests (the non-parametric Wilcoxon test 
and the Kruskal–Wallis test). A test of the normality of the data was employed first, followed by the appropriate 
test to determine the statistical significance of the data under study.

(1)∇fx0 ≈
f (x)− f (x0)

x − x0
,

Figure 2.   The representative images of the examined pathologies on ADC map calculated from DWI with b 
value 0—(A) glioblastoma, (B) abscess.
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Data classification.  The input of the classifier can be defined as a vector fv containing the features and, in 
the training phase, also the result of a histological examination that corresponds to the actual classification of 
the pathology:

To classify the data, we used two models: the k-NN model and the SVM model with a Gaussian kernel. The 
relevance of the models was tested via fivefold cross-validation. Both models classified the lesion type based on 
the input vector containing the nine characteristics mentioned above.

k‑NN model.  The k-Nearest Neighbors algorithm (k-NN) is a method of supervised machine learning that 
can identify patterns via classifying features represented by multidimensional vectors into two or more classes. 
At the training stage, the training set is preprocessed so that all the symptoms have the mean value of 0 and vari-
ance of 1; the results are then placed, by each feature of the training set, in the N-dimensional space. During the 
classification stage, the feature in question is placed in the same space, and the number k of its nearest neighbors 
is identified; the feature in question is then classified in the same class as most of its nearest neighbors.

SVM model.  The Support Vector Machine algorithm (SVM)31 is trained by maximizing the distance between 
the marginal samples (also referred to as support vectors) and a discriminative hyperplane by maximizing the f 
in the equation:

where y is defined as + 1 for a class A sample and –1 for a class B sample, α is the Lagrangian multiplier, and �x 
is the feature vector of the individual sample. On real data, this is often too strict because of noisy samples that 
might cross their class boundary. This is solved using a combination of techniques known as the kernel trick 
and soft margining32,33.

Classification performance.  A confusion matrix is used to evaluate the results of the machine learning 
algorithms. There are two classes, P and N. The output of the predicted class is true or false. The blue diagonal 
represents the correct predictions, and the orange diagonal indicates the incorrect predictions (Fig. 4). If the 
sample is positive and is classified as such, i.e., a correctly classified positive sample, it counts as a true positive 
(TP); if it is classified as negative, it is considered a false negative (FN) or Type II error. If the sample is negative 
and classified as negative, it is regarded as true negative (TN); if it is classified as positive, it counts as false posi-
tive (FP)34.

One of the most commonly used classification performance measures is Accuracy (Acc). It is defined as a 
ratio between the correctly classified samples and the total number of samples35:

(2)fv =

(

∇ADCErise ,ADCE , σADCE ,medADCE ,∇ADCEfall ,∇ADCTrise ,ADCT , σADCT ,medADCT

)

(3)f (α1, . . . ,αn) =
∑

αi −
1

2

∑

i

∑

j

αiαjyiyj�xi · �xj

Figure 3.   (a) Image slice and a line of interest (LOI) running from the periphery to the core of the ring-
enhancing lesion. Inset shows a higher magnification of the region marked by the LOI, including its division 
using points A–F. (b) Graph showing the selected points from the LOI.
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Another data evaluation metric comprises sensitivity and specificity. The sensitivity – or, by another defini-
tion, the true positive rate (TPR) or recall—of a classifier relates the positive correctly classified samples to the 
total number of positive samples, and it is expressed according to Eq. (4)35:

The next evaluated quantity was the false negative rate (FNR), namely, the proportion of incorrectly classified 
positive samples. Thus, the FNR complements the sensitivity measure and is defined as

To suppress the effect of over- and underfitting the models, we relied especially on the cross-validation 
method and the early-stopping method, the latter allowing us to stop whenever a small change occurred in the 
model performance on the validation dataset. Furthermore, the accuracies during the training, validation, and 
testing were compared.

Ethical approval.  This retrospective study was approved by the Ethics Committee of St. Anne’s University 
Hospital Brno (registry no. EK-FNUSA-06/2023). Written informed consent was not required for this retrospec-
tive study because all patient identifying information was removed from the study data; the requirement of con-
sent was waived by the Ethics Committee of St. Anne’s University Hospital Brno. All methods were performed in 
accordance with institutional and national ethical standards and with the 1964 Helsinki Declaration and its later 
amendments or comparable ethical standards.

Results
Cross‑sectional analysis of the ADC maps.  The relevant boxplot (Fig. 5a) shows, on the one hand, the 
median of the ADC values obtained from the perilesional brain edema (plateau 1; medADCE

 ; E-GBM: glioblas-
toma; E-ABS: abscess) and, on the other, the median of the ADC values for the core of the GBM and the brain 
abscess (plateau 2; medADCT

 ; T-GBM: glioblastoma; T-ABS—abscess). The median ADC values were calculated 
from the respective LOI data related to the pathologies in question.

The data from each boxplot (Fig. 5a–c), taken separately, do not have a normal distribution. Using the non-
parametric Wilcoxon statistical test, we found that there was a statistically significant difference between the 
median ADC values obtained from the perilesional brain edema (plateau 1; p < 0.05) in the GBM and those 
from brain abscess. Similarly, there was a statistically significant difference (p < 0.05) in the median ADC values 
obtained from the plateau 2 region in the core of the two pathologies.

Comparisons of the standard deviations of the ADC values in the perilesional brain edema (plateau 1; σADCE
 ; 

E-GBM: glioblastoma; E-ABS: abscess) and the standard deviations of the ADC values in the core of the enhanc-
ing lesions (plateau 2; σADCT

 ; T-GBM: glioblastoma; T-ABS—abscess) are shown in Fig. 5b. The standard devia-
tions were calculated from the respective LOIs data related to the pathologies in question.

The standard deviation values derived from the GBM and the brain abscess did not have a normal (or Gauss-
ian) distribution. Using the Wilcoxon test, we found that the standard deviation of the ADC values obtained from 
the perilesional brain edema (plateau 1) in the GBM was not significantly different compared to the standard 
deviation of the ADC values in the brain abscess. Similarly, the differences in the standard deviation of the ADC 
values between the enhancing cores (plateau 2) of both RELs were not statistically significant.

The analysis of all the edges processed is shown in Fig. 5c: the gradient of the leading edge of the onset of the 
perilesional brain edema (gradient 1; ∇ADCErise ), the gradient of the decreasing edge of the transition between 
the perilesional brain edema and the enhancing ring (gradient 2; ∇ADCEfall ), and the gradient of the leading 
edge of the transition between the enhancing ring and the enhancing core (gradient 3; ∇ADCTrise

 ); the gradients 
are displayed in detail in Fig. 3

The data representing the individual gradients did not show a normal distribution either. The non-parametric 
Kruskal–Wallis test exhibited no statistically significant differences between the data obtained from the individual 
gradients (gradients 1, 2, and 3) for the GBM and the brain abscess.

(4)Acc =
TP + TN

TP + TN + FP + FN
.

(5)TPR =
TP

TP + FN
.

(6)FNR =
FN

FN + TP
= 1− TPR.

Figure 4.   An example of a confusion matrix.
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Machine learning.  The data described by the box plots were used for the machine learning method. A 
confusion matrix and the classification performance parameters to classify the training data via the k-NN model 
(Fig. 6) and the SVM model (Fig. 7), based on the 7 predictors (Table 1) representing the data related to the 
perilesional edema, enhancing core of the RELs, and edges between the transition zones according to the LOIs.

However, the k-NN method performed better, with a testing accuracy of 90% in the abscess classification; 
the GBM, however, exhibited an almost flawless performance.

Discussion
The conventional MRI remains the standard method of modern neuroimaging, providing general information 
about the location and extent of various brain pathologies. Despite these state-of-the-art imaging methods, dif-
ferentiating some RELs remains a challenge. In addition to the conventional MRI approaches, such as T1 and 
T2 weighted images, advanced methods like DWI and its numerical expression by ADC maps are widely used. 
The ADC values reflect the restriction of water molecule diffusion and thus better characterize the biological 
background of the various RELs36. However, the ADC map acquisition and assessment methodology has not 
been standardized and lacks uniformity, mainly because of the different types of REL segmentation. Comparing 
the ADC values between the studies is severely limited by these issues, together with the inter-individual as well 

Figure 6.   Confusion matrix, True positive rate (TPR), and False negative rate (FNR) for the training (a) and 
testing (b) stages of the k-NN model.

Figure 7.   Confusion matrix, True positive rate (TPR), and False negative rate (FNR) for the training (a) and 
testing (b) stages of the SVM model.

Table 1.   List of predictors used for machine learning.

Predictors for machine learning Line of interest

Onset of perilesional brain edema A–B (gradient 1)

Median of ADC values in perilesional brain edema B–C (plateau 1)

Transition zone between perilesional brain edema and enhancing ring C–D (gradient 2)

Transition zone between enhancing ring and enhancing core D–E (gradient 3)

Median of ADC values in center of enhancing core E–F (plateau 2)

Standard deviation of ADC values obtained from perilesional brain edema B–C (plateau 1)

Standard deviation of ADC values obtained from enhancing core E–F (plateau 2)
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as intra-individual variations of the different RELs. We present a novel method for measuring the ADC values, 
using a cross-sectional analysis of the ADC value dynamics.

The standard method to measure the ADC values in the different RELs is based on compartmentalization 
according to T1 weighted images on MRI. Generally, studies using The ADC values to distinguish similar RELs 
focused on three different compartments: the core, the contrast-enhanced ring, and the perilesional zone cor-
responding to the brain edema3,37,38.

The REL core usually represents the region of necrosis marked by high metabolic requirements, strong 
hypoxia, or reaction to internal or external harming agents (cytokines, reactive oxygen species, microbial toxins, 
etc.). Due to the action of these factors, cellular components such as membranes, organelles, and proteins become 
fragmented and dissolve, and the viscosity of the contents of the central region is thus variable. In many RELs, the 
core is formed by exudation or secretion from the pathological tissue. In these cases, the central part of the RELs 
has a more liquid character, low cellularity, and low metabolic activity; thus, there is no contrast enhancement 
in the MRI. These alterations in the core of the RELs are associated with the viscosity, which negatively affects 
the diffusibility of the water molecules, resulting in lower ADC values. This is a dominant hallmark for brain 
abscesses, where the central cavity contains dead neutrophils, bacteria (or fungi/parasites), and necrotic cellular 
detritus leading to high viscosity and low ADC values. Conversely, an increased diffusibility and the consequent 
higher ADC values are more often found in glioblastoma2,39,40. Due to the heterogeneity of the RELs, the core 
may not provide a typical image on the ADC maps.

The REL core is surrounded by a contrast-enhanced ring corresponding to a higher cell density, typical of 
brain tumors. This layer is usually characterized by pronounced destruction of the BBB, higher neovasculariza-
tion, and increased vascularity with tight extracellular spaces, resulting in diffusion restriction and lower ADC 
values41–43. However, the biological background of the enhancing ring is different in those RELs that were caused 
by infectious etiology. In the case of a brain abscess, the enhancing ring is formed by a thick fibrous capsule 
containing fibroblasts, newly formed vessels, collagen fibers, and immune cells or Langhans giant cells in a 
tuberculoma44.

The vasogenic edema around RELs forms the background of the peripheral compartment. Vasogenic brain 
edema is characterized by alterations in the blood–brain barrier (BBB) as a reaction of the surrounding brain 
tissue to the pathology, resulting in fluid leakage from the vessels to the brain parenchyma. In addition to the 
elevated BBB permeability, perilesional edemas are supported by forming new and aberrant brain vessels around 
some RELs. These changes increase the extracellular space and lead to a higher ADC45,46.

The ADC map measurements are currently based on the standard radiological concept of dividing RELs into 
the 3 compartments mentioned above. However, the histological findings show that the boundaries between the 
compartments (the core, enhancing ring, and perilesional edema) are not sharply delineated. Due to this fact, we 
can assume that a standard measurement of the ADC values in selected LOI is accompanied by a loss of some 
valuable information on the transition zone between the compartments. Thus, our study defines three more 
bridging compartments where the ADC values change dynamically: a) the transition between the core and the 
enhancing ring, b) the transition between the ring and the perilesional brain edema, and c) the transition between 
the perilesional brain edema and the normal-like brain tissue. To verify the usability of these additional zones 
and the impact on the differential diagnosis of the RELs, we focused on an LOI crossing all standard compart-
ments and transition zones in the major RELs, i.e., the GBM and the brain abscess.

The LOI periphery is characterized by a transition between the healthy brain tissue and the perilesional brain 
edema. Using our method of cross-sectional LOI analysis in the centripetal direction, we established that the 
ADC gradient at the onset of the perilesional brain edema showed no differences between the GBM and the brain 
abscess (Fig. 5c). This finding is in accordance with those by Toh et al., who presented no significant differences 
in the ADC values in the distal zone of the perilesional brain edema between both pathologies11. The result 
proves the hypothesis that the adjacent brain edema compartment represents a common reaction of the brain 
tissue to various pathologies caused by the structural disintegration of the BBB endothelial cells. However, the 
perilesional edema in the GBM is affected by the glioma cells scattered around the tumor mass45. This biological 
background in the GBM was probably reflected in the cross-sectional LOI analysis across the perilesional brain 
edema compartment that showed a significant increase in the median ADC values in the GBM compared to the 
brain abscess (Fig. 5a).

Approaching the enhancement ring, the brain edema becomes more infiltrated by cells corresponding to the 
pathologies; therefore, the transition zone between the perilesional edema and the enhancing ring is character-
ized by a decline in the ADC values. Although our result supports the finding by Toh et al., who showed different 
ADC values in the immediate zone of the perilesional brain edema between the GBM and the brain abscess, the 
authors did not account for the dynamics of the ADC values through the transmission compartment11. Compared 
to previous studies, the dynamics of the ADC values in this transition compartment provide valuable informa-
tion which is not obvious in standard ADC map evaluation. Additionally, the gradient between the perilesional 
brain edema and the enhancing ring was lower in the brain abscess, thus suggesting that the gradient of the LOI 
in the brain abscess was higher than in the GBM (Fig. 5c).

This pattern might be at least partially explained by the massive infiltration of the glioma cells into the brain 
edema in the proximity of the enhancing ring, resulting in lower ADC values compared to the brain abscess. In 
addition to the infiltrative glioma cells, vascular proliferation may also play a significant role, similarly to the 
tumor-associated immune cells present in the border zone between the edema and the enhancing ring in the 
GBM. These changes lead to a restriction in the water diffusion, thus reducing the ADC values. Contrariwise, 
a brain abscess is a circumscribed form of brain inflammation characterized by limited cellular infiltration into 
the perilesional brain edema; therefore, the increase in the ADC values is more rapid. Also, the products of the 
inflammatory cells, as well as bacterial toxins, contribute to increased vascular permeability and increased ADC 
values.
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The compartment of the enhancing ring is too thin for a broad analysis of the ADC values due to the low 
resolution of the ADC maps. Moreover, this compartment has been partially evaluated by adding transition com-
partments directly adjacent to the enhancing ring; thus, we did not compare this compartment in our analyses.

The central transition zone is the intermediate area between the enhancing ring and the inner core. Using 
our method of cross-sectional LOI analysis, we found a lower but not significant slope of the ADC gradient in 
the GBM when compared to the brain abscess (Fig. 5c). This may be due to the high proliferation rate in the 
intermediate area of the GBM, leading to high cellularity43.

The central part of the REL is the most heterogeneous region reflecting the pathology background mentioned 
above. In general, higher ADC values in the GBM core correspond to the extensive necrotic area with high water 
diffusion. On the other hand, an elevated viscosity in the core of the brain abscess leads to restricted diffusion, 
resulting in low ADC values2,39,40. This is in accordance with the result of our cross-sectional LOI analysis, which 
exposed higher median ADC values in the GBM core compared to the brain abscess (Fig. 5a). However, in some 
cases, higher ADC values typical of the GBM were also found in brain abscesses11. Conversely, lower ADC values 
mimicking brain abscesses were also found in the GBM11,47.

We found several differences in the assessed parameters using the cross-sectional LOI analysis and a subse-
quent comparison between the GBM and the brain abscess targeting the characteristics of each not only main 
but also transitional compartment (Fig. 5a–c). However, using statistical tests, the differentiation of the GBM 
from the brain abscess was not very accurate when comparing the individual parameters obtained by analyzing 
the ADC values in the ROI cross-section. We found that the data obtained from the LOI did not have a normal 
distribution; therefore, to increase the ability to distinguish the GBM from the brain abscess, we included all of 
the parameters in a multiparametric evaluation using machine learning algorithms. In Table 1, we can observe 
an overview of all the predictors derived from the LOI and subsequently used in machine learning. Our methods 
were able to distinguish the two representative RELs, meaning the GBM and the brain abscess, at high accuracy 
(Figs. 6 and 7). To classify the studied pathologies, we used two machine learning methods, namely, the k-NN 
and the SVM. Utilizing the test data, we achieved very good results for both methods. However, the k-NN method 
performed better, with 80.0% of the abscesses classified correctly during the testing; the GBM delivered an accu-
racy of 93.3%. Using the SVM method, a correct prediction was achieved in 70.0% of the abscesses, and 90.0% of 
the glioblastomas. However, in future research, we still plan to use the two methods, albeit complemented with 
other convenient approaches and datasets: Combining such tools and options appears to have the potential of 
delivering very promising results.

Unlike the previous methods, the proposed methodology for discriminating between the two RELs with 
different pathological backgrounds joins together the advantage of very fast diagnosis with simplicity and uni-
formity in the data extraction, processing, and interpretation. Moreover, in contrast to the commonly published 
approaches, there is no need for multidimensional image analysis, spatial modeling, volumetry, or other complex 
ADC image processing operations.

Despite the promising results, our study has several limitations. To define the brain tissue structures that affect 
the ADC value, we have to describe the size of a pixel on the ADC maps. We analyzed ADC maps with the pixel 
size of 0.8 × 0.8 mm and slice thickness of 5 mm; this means that the ADC value for a voxel was calculated from 
the volume of 3.2 mm3. However, the biological basis of an area of this size can be heterogeneous, containing 
different numbers and types of cells, vessels, extracellular matrices, and other elements. Nonetheless, one pixel 
could comprise multiple GBM or brain abscess zones, including transition ones.

Another limitation is the small number of patients, partially compensated for by the higher volume of LOIs 
acquired from the GBM and the brain abscess. Moreover, the number of patients varied between the individual 
groups. In general, brain abscesses are less common than GBMs; thus, there were twice as many patients with a 
GBM than with a brain abscess.

Conclusions
Our study proposes a new approach for evaluating ADC maps obtained from different RELs. Along with an 
assessment of the ADC value dynamics in the individual REL compartments, including transitional ones, we 
were able to distinguish GBMs from brain abscesses with high accuracy. Moreover, the proposed method can 
contribute to standardization in ADC map evaluation. Considering the promising results of our procedures 
for evaluating the ADC values in different compartments of RELs, the effectiveness of the research outcomes is 
presently verifiable in prospective clinical trials.

Data availability
The datasets analyzed during the current study are available from the corresponding author upon reasonable 
request.

Received: 21 February 2023; Accepted: 10 July 2023

References
	 1.	 Omuro, A. M., Leite, C. C., Mokhtari, K. & Delattre, J.-Y. Pitfalls in the diagnosis of brain tumours. Lancet Neurol. 5, 937–948 

(2006).
	 2.	 Reiche, W. et al. Differential diagnosis of intracranial ring enhancing cystic mass lesions–role of diffusion-weighted imaging (DWI) 

and diffusion-tensor imaging (DTI). Clin. Neurol. Neurosurg. 112, 218–225 (2010).
	 3.	 Carloni, A. et al. Can MRI differentiate between ring-enhancing gliomas and intra-axial abscesses?. Vet. Radiol. Ultrasound https://​

doi.​org/​10.​1111/​vru.​13098 (2022).

https://doi.org/10.1111/vru.13098
https://doi.org/10.1111/vru.13098


10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11459  | https://doi.org/10.1038/s41598-023-38542-7

www.nature.com/scientificreports/

	 4.	 Schwartz, K. M., Erickson, B. J. & Lucchinetti, C. Pattern of T2 hypointensity associated with ring-enhancing brain lesions can 
help to differentiate pathology. Neuroradiology 48, 143–149 (2006).

	 5.	 Khatri, G. D., Krishnan, V., Antil, N. & Saigal, G. Magnetic resonance imaging spectrum of intracranial tubercular lesions: One 
disease, many faces. Pol. J. Radiol. 83, e524–e535 (2018).

	 6.	 Kunimatsu, A. et al. Machine learning-based texture analysis of contrast-enhanced MR imaging to differentiate between glioblas-
toma and primary central nervous system lymphoma. Magn. Reson. Med. Sci. 18, 44–52 (2019).

	 7.	 Tateishi, M. et al. An initial experience of machine learning based on multi-sequence texture parameters in magnetic resonance 
imaging to differentiate glioblastoma from brain metastases. J. Neurol. Sci. 410, 116514 (2020).

	 8.	 Xiao, D. et al. Distinguishing brain abscess from necrotic glioblastoma using MRI-based intranodular radiomic features and 
peritumoral edema/tumor volume ratio. J. Integr. Neurosci. 20, 623–634 (2021).

	 9.	 Dasgupta, A. et al. Quantitative mapping of individual voxels in the peritumoral region of IDH-wildtype glioblastoma to distinguish 
between tumor infiltration and edema. J. Neurooncol. 153, 251–261 (2021).

	10.	 Henker, C. et al. Association between tumor compartment volumes, the incidence of pretreatment seizures, and statin-mediated 
protective effects in glioblastoma. Neurosurgery 85, E722–E729 (2019).

	11.	 Toh, C. H. et al. Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion 
tensor imaging. AJNR Am. J. Neuroradiol. 32, 1646–1651 (2011).

	12.	 Sener, R. N. Diffusion MRI: Apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders 
based on ADC values. Comput. Med. Imaging Graph. 25, 299–326 (2001).

	13.	 Badaut, J., Ashwal, S. & Obenaus, A. Aquaporins in cerebrovascular disease: a target for treatment of brain edema?. Cerebrovasc. 
Dis. 31, 521–531 (2011).

	14.	 Ko, C. C. et al. Differentiation between glioblastoma multiforme and primary cerebral lymphoma: additional benefits of quantita-
tive diffusion-weighted MR imaging. PLoS ONE 11, e0162565 (2016).

	15.	 Neska-Matuszewska, M., Bladowska, J., Sąsiadek, M. & Zimny, A. Differentiation of glioblastoma multiforme, metastases and 
primary central nervous system lymphomas using multiparametric perfusion and diffusion MR imaging of a tumor core and a 
peritumoral zone-Searching for a practical approach. PLoS ONE 13, e0191341 (2018).

	16.	 Cindil, E. et al. Validation of combined use of DWI and percentage signal recovery-optimized protocol of DSC-MRI in differentia-
tion of high-grade glioma, metastasis, and lymphoma. Neuroradiology 63, 331–342 (2021).

	17.	 Guzman, R. et al. Contribution of the apparent diffusion coefficient in perilesional edema for the assessment of brain tumors. J. 
Neuroradiol. 35, 224–229 (2008).

	18.	 Ladenhauf, V. K. et al. Peritumoral ADC values correlate with the MGMT methylation status in patients with glioblastoma. Cancers 
(Basel) 15, 1384 (2023).

	19.	 Mastuda, K. et al. Association of ADC of hyperintense lesions on FLAIR images with TERT promotor mutation status in glioblastoma 
IDH wild type https://​doi.​org/​10.​21203/​rs.3.​rs-​25289​25/​v1 (2023).

	20.	 Raab, P. et al. Differences in the MRI signature and ADC values of diffuse midline gliomas with H3 K27M mutation compared to 
midline glioblastomas. Cancers (Basel) 14, 1397 (2022).

	21.	 Lee, E. J. et al. Diagnostic value of peritumoral minimum apparent diffusion coefficient for differentiation of glioblastoma multi-
forme from solitary metastatic lesions. AJR Am. J. Roentgenol. 196, 71–76 (2011).

	22.	 Eidel, O. et al. Automatic analysis of cellularity in glioblastoma and correlation with ADC using trajectory analysis and automatic 
nuclei counting. PLoS ONE 11, e0160250 (2016).

	23.	 Lin, X. et al. Diagnostic accuracy of T1-weighted dynamic contrast-enhanced–MRI and DWI-ADC for differentiation of glioblas-
toma and primary CNS lymphoma. AJNR Am. J. Neuroradiol. 38, 485–491 (2017).

	24.	 Ahn, S. J., Shin, H. J., Chang, J.-H. & Lee, S.-K. Differentiation between primary cerebral lymphoma and glioblastoma using the 
apparent diffusion coefficient: Comparison of three different ROI methods. PLoS ONE 9, e112948 (2014).

	25.	 Zhang, G. et al. Discrimination between solitary brain metastasis and glioblastoma multiforme by using ADC-based texture 
analysis: A comparison of two different ROI placements. Acad. Radiol. 26, 1466–1472 (2019).

	26.	 Toh, C.-H. et al. Primary cerebral lymphoma and glioblastoma multiforme: Differences in diffusion characteristics evaluated with 
diffusion tensor imaging. AJNR Am. J. Neuroradiol. 29, 471–475 (2008).

	27.	 Ellingson, B. M. et al. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol. 
17, 1188–1198 (2015).

	28.	 Dury, R. J. et al. Meta-analysis of apparent diffusion coefficient in pediatric medulloblastoma, ependymoma, and pilocytic astro-
cytoma. J. Magn. Reson. Imaging 56, 147–157 (2022).

	29.	 Guo, H. et al. Diagnostic performance of gliomas grading and IDH status decoding A comparison between 3D amide proton 
transfer APT and four diffusion-weighted MRI models. J. Magn. Reson. Imaging 56, 1834–1844 (2022).

	30.	 Maier, S. E., Sun, Y. & Mulkern, R. V. Diffusion imaging of brain tumors. NMR Biomed. 23, 849–864 (2010).
	31.	 Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
	32.	 Chang, C.-C. & Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 271–2727 (2011).
	33.	 Scholkopf, B., Smola, A. J., Williamson, R. C. & Bartlett, P. L. New support vector algorithms. Neural Comput. 12, 1207–1245 

(2000).
	34.	 Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 17, 168–192 (2020).
	35.	 Sokolova, M., Japkowicz, N. & Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Per-

formance Evaluation. In AI: 2006 Advances in Artificial Intelligence (eds Sattar, A. & Kang, B.) 1015–1021 (Springer, Berlin, 2006).
	36.	 Villanueva-Meyer, J. E., Mabray, M. C. & Cha, S. Current clinical brain tumor imaging. Neurosurgery 81, 397–415 (2017).
	37.	 Horvath-Rizea, D. et al. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguish-

able ring enhancing lesions-comparison of glioblastomas and brain abscesses. Oncotarget 9, 18148–18159 (2018).
	38.	 Lai, P.-H. et al. Susceptibility-weighted imaging provides complementary value to diffusion-weighted imaging in the differentiation 

between pyogenic brain abscesses, necrotic glioblastomas, and necrotic metastatic brain tumors. Eur. J. Radiol. 117, 56–61 (2019).
	39.	 Chiang, I.-C. et al. Distinction between pyogenic brain abscess and necrotic brain tumour using 3-tesla MR spectroscopy, diffusion 

and perfusion imaging. Br. J. Radiol. 82, 813–820 (2009).
	40.	 Erdogan, C., Hakyemez, B., Yildirim, N. & Parlak, M. Brain abscess and cystic brain tumor: Discrimination with dynamic suscep-

tibility contrast perfusion-weighted MRI. J. Comput. Assist. Tomogr. 29, 663–667 (2005).
	41.	 Fawzy, F. M., Almassry, H. N. & Ismail, A. M. Preoperative glioma grading by MR diffusion and MR spectroscopic imaging. Egypt. 

J. Radiol. Nuclear Med. 47, 1539–1548 (2016).
	42.	 Heynold, E. et al. Physiological MRI biomarkers in the differentiation between glioblastomas and solitary brain metastases. Mol. 

Imaging Biol. 23, 787–795 (2021).
	43.	 Persano, L., Rampazzo, E., Della Puppa, A., Pistollato, F. & Basso, G. The three-layer concentric model of glioblastoma: Cancer 

stem cells, microenvironmental regulation, and therapeutic implications. ScientificWorldJ. 11, 1829–1841 (2011).
	44.	 Thwaites, G. E. Chapter 37-Tuberculosis of the central nervous system in adults. In Tuberculosis (eds Schaaf, H. S. et al.) 401–412 

(WB Saunders, Berlin, 2009). https://​doi.​org/​10.​1016/​B978-1-​4160-​3988-4.​00037-8.
	45.	 Solar, P. et al. Blood-brain barrier alterations and edema formation in different brain mass lesions. Front. Cell Neurosci. 16, 922181 

(2022).

https://doi.org/10.21203/rs.3.rs-2528925/v1
https://doi.org/10.1016/B978-1-4160-3988-4.00037-8


11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11459  | https://doi.org/10.1038/s41598-023-38542-7

www.nature.com/scientificreports/

	46.	 Solár, P., Zamani, A., Lakatosová, K. & Joukal, M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: 
Molecular events and potential treatments. Fluids Barriers CNS 19, 29 (2022).

	47.	 Reddy, J. S. et al. The role of diffusion-weighted imaging in the differential diagnosis of intracranial cystic mass lesions: A report 
of 147 lesions. Surg. Neurol. 66, 246–250 (2006).

Author contributions
P.S., H.V., and R.J. designed the study and wrote the manuscript. P.M., J.M., M.S., K.S., J.B., and M.K. conducted 
the experiments and performed the statistical analysis. All authors edited and reviewed the manuscript.

Funding
This work was supported by the program INTER-EXCELLENCE, subprogram INTER-COST of the Ministry of 
Education, Youth and Sports CR, Grant No. LTC20027.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to R.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Classification of brain lesions using a machine learning approach with cross-sectional ADC value dynamics
	Materials and methods
	Population and data acquisition. 
	Data processing. 
	Cross-sectional ADC analysis of ring-enhancing lesions. 
	Data analysis. 
	Data classification. 
	k-NN model. 
	SVM model. 
	Classification performance. 
	Ethical approval. 

	Results
	Cross-sectional analysis of the ADC maps. 
	Machine learning. 

	Discussion
	Conclusions
	References


