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Abstract 1 

The cerebellum is crucial for sensorimotor adaptation, using error information to keep the sensorimotor 2 

system well-calibrated. Here we introduce a population-coding model to explain how cerebellar-3 

dependent learning is modulated by contextual variation. The model consists of a two-layer network, 4 

designed to capture activity in both the cerebellar cortex and deep cerebellar nuclei. A core feature of the 5 

model is that within each layer, the processing units are tuned to both movement direction and the 6 

direction of movement error. The model captures a large range of contextual effects including 7 

interference from prior learning and the influence of error uncertainty and volatility. While these effects 8 

have traditionally been taken to indicate meta learning or context-dependent memory within the 9 

adaptation system, our results show that they are emergent properties that arise from the population 10 

dynamics within the cerebellum. Our results provide a novel framework to understand how the nervous 11 

system responds to variable environments.  12 
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Introduction 13 

Humans are incredibly flexible in how we adapt our motor behavior across variable environments. We 14 

readily compensate for the added weight of a heavy winter coat when reaching for an object or adjust the 15 

force required as we sip on our morning coffee. The cerebellum is recognized as playing a key role in this 16 

adaptation process1,2. Impaired adaptation is one of the hallmarks of cerebellar pathology, observed 17 

across a range of tasks from experimentally-induced lesions in animal models3–5 or neurological disorders 18 

in humans6,7. Moreover, anatomical and physiological studies have led to computational models in which 19 

the cerebellum uses error information to improve subsequent, similar movements8,9. This form of learning 20 

operates implicitly, automatically recalibrating the sensorimotor system without the need for awareness 21 

or drawing on cognitive resources7,10,11. The current paper aims to understand the neural computations 22 

that support flexible adaptation and how this recalibration process is modified by context and 23 

environmental uncertainty. 24 

 25 

Previous research has suggested that cerebellum-dependent learning is cognitively impenetrable, 26 

responding to error in a “rigid” manner even when the correction fails to improve task performance10,12–27 

15. Moreover, unlike many learning processes, adaptation is not sensitive to the statistical properties of 28 

the perturbations16,17. However, this view of a rigid, inflexible system has been challenged by recent 29 

evidence showing that implicit adaptation is modulated by experience18. For instance, when participants 30 

are exposed to a previously experienced perturbation, the rate of relearning is slower than had been 31 

originally observed18. Not only does this result suggest a degree of flexibility in adaptation, but, 32 

interestingly, this context effect is opposite what is typically observed in studies of relearning: Across a 33 

broad range of task domains (e.g., reward-based learning, language acquisition), relearning is typically 34 

faster, a phenomenon known as savings19–21.  35 

 36 
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The rigidity and atypical effect of experience point to the need for considering the unique properties of 37 

the cerebellum to understand how adaptation is modulated by context and environmental variability. To 38 

this end, we develop a novel computational model of the cerebellum. This model incorporates two core 39 

observations from cerebellar physiology. First, recent studies of oculomotor control have revealed a 40 

fundamental tuning property of Purkinje cells, the primary integrative unit in the cerebellar cortex: These 41 

cells are not only tuned to movement direction but also to the direction of error relative to that 42 

movement22–24. Second, the model includes a two layer network, with the second layer designed to 43 

capture activity in the deep cerebellar nuclei25–28. We posit that units in the DCN exhibit similar tuning 44 

properties as Purkinje cells and that units with similar tuning profiles are linked across these two layers.  45 

 46 

We used the model to generate predictions regarding a range of contextual manipulations and evaluated 47 

the predictions with a series of behavioral experiments. Specifically, we systematically examined the 48 

effect of past experience, error uncertainty, and variation in temporal dynamics in evaluating our model. 49 

Where relevant, we consider several alternative models that have been proposed to elucidate how 50 

context and environmental uncertainty modulate sensorimotor learning29–31. Our population-coding 51 

model provides an excellent fit of the behavioral results, even without positing the direct representation 52 

of context or latent state variables or having the capability to modulate learning parameters through meta 53 

learning. As such, our model provides a comprehensive explanation of core computations that account 54 

for how the cerebellum can keep the sensorimotor system well-calibrated across variable environments. 55 

 56 

Results 57 

Cerebellar Population Coding (CPC) Model 58 

The basic principles of cerebellar-dependent error-based learning are articulated in the classic Marr-Albus 59 

model2,32. Purkinje cells (PC) in the cerebellar cortex receive two types of input (Fig 1a). One source 60 
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originates in the pontine nuclei. This pathway is hypothesized to provides contextual information, 61 

including an efference copy of the motor command. PCs operate as an internal model, utilizing the input 62 

to predict the consequences of the motor command33,34. The second source originates in the inferior olive 63 

with activation of the climbing fibers indicating a mismatch between the predicted and expected sensory 64 

feedback, a teaching signal that is used to update the internal model.  65 

 66 

Here we extend the model to provide a general explanation of how learning is modulated by contextual 67 

variability. A foundational idea for our model is inspired by a recent work showing how PCs in the 68 

oculomotor cerebellar cortex are simultaneously tuned to both movement direction and the direction of 69 

a visual error that arises during that movement22–24. Tuning in terms of movement direction is reflected 70 

in the simple spike activity of the Purkinje cells and tuning in terms of movement error is reflected in the 71 

complex spike activity of these cells (Fig 1b). The latter one induces long-term depression (LTD) of parallel 72 

fiber-PC (PF-PC) synapses, reducing the future efficacy of similar input on PC activity (Fig 1c-d). Importantly, 73 

because the two tuning profiles are in opposite directions22–24, error-related activation reduces the simple 74 

spike activity, resulting in a change that can reduce the error in the future movement (Fig 1e-f).  75 

 76 

A second prominent feature of our model is that plasticity occurs within the cerebellar cortex and deep 77 

cerebellar nuclei (DCN)25,35. Lesion studies of eyeblink conditioning provide one line of evidence indicating 78 

that some aspect of consolidated learning is centered in the DCN. Ablation of the cerebellar cortex can 79 

completely block de novo cerebellar-dependent learning26,36. However, once the learned behavior is 80 

established, it can persist after lesions to the cerebellar cortex even though the kinematics are 81 

disrupted37,38. This dissociation can be explained by the dual-effect of pontine projections to the 82 

cerebellum39: a polysynaptic projection through the granule layer to PC, and a direct excitatory projection 83 

of the mossy fibers to the DCN. We assume that PC and DCN neurons are connected such that they share 84 
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the same tuning direction for movement40, and that learning in the DCN is gated by learning at the 85 

cerebellar cortex (Fig 1a). Specifically, LTD at parallel fiber-PC (PF-PC) synapses will reduce inhibitory PC 86 

input to the DCN, facilitating the emergence of long term potentiation (LTP) at mossy fiber-DCN synapses 87 

(Fig 1e)41. 88 

 89 

In summary, an error signal will decrease the efficacy of parallel fiber input to PCs and increase the efficacy 90 

of mossy fiber input to the DCN (Fig 1d, e). Correspondingly, the net output of the cerebellum will provide 91 

a signal of the required change in movement direction to correct for the error (Fig 1f). 92 

 93 

 94 

 95 

Fig. 1 Illustration of the CPC model. a) Structure of the cerebellar circuit incorporated in the CPC model. 96 

b) Each Gaussian-shaped curve represents the tuning function of a single Purkinje cell (PC) based on that 97 

cell’s preferred error direction. For the simulations, we used 1000 units with preferred directions that 98 

covered 0-π in a uniform manner. c) Illustration of visual errors, with the direction of the error specified 99 

in polar coordinates. d-e) Model-generated adaptation in the cerebellar cortex (d) and deep cerebellar nuclei 100 
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(DCN) (e). After experiencing an error in 0 direction, PCs with a preferred direction close to 0 will have high 101 
probability of generating a complex spike (CS) (d, left) which will result in long-term depression (LTD) for active 102 
synapses from granule cell inputs to that PC (d, right). During the preparation of the next movement, the 103 
strength of the input from the parallel fibers (PF) will decrease due LTD, attenuating the SS activity of the PC. 104 
We assume that attenuation of the inhibitory PC output to the DCN will facilitate long-term potentiation (LTP) 105 
resulting from excitatory mossy fiber (MF) input to the DCN (e, left). DCN activation is determined by the 106 
excitatory input from the MF and the inhibitory signal from the PC (e, right). The frame colors indicate the 107 
corresponding pathway in Panel a. f) DCN activation plotted in a polar coordinate. Activation across the 108 
population of cells results in a vector (purple arrow) indicating the change in hand angle (Δ hand). Note that 109 
the vector points in the same direction as the error (c, left), and thus serves to compensate for the error. 110 
 111 

Behavioral Task and Model Parameterization 112 

We first aim to examine the behavior that emerges from the population dynamics of a network in which 113 

the individual units are tuned to both movement direction and the direction of movement error. For the 114 

work discussed in this section, a single-layer network with this form of representation is sufficient. In the 115 

second half of the Results, we will turn to phenomena that motivate a two layered network that maps on 116 

to the properties of the Purkinje cells within the cerebellar cortex and the deep cerebellar nuclei.   117 

 118 

To measure implicit adaptation, we used a variant of a visuomotor rotation task. Participants reached to 119 

a visual target and feedback, when present, was limited to a cursor. To restrict learning to implicit 120 

adaptation, we used task-irrelevant clamped feedback in which the radial position of the cursor was 121 

locked to the hand, but the angular position was predetermined for each trial. In most experiments, the 122 

cursor was shifted by a constant angle relative to the target (Fig 2a-b)10. Despite being fully informed of 123 

the non-contingent nature of the feedback and explicitly instructed to ignore the feedback, the reach 124 

angle gradually shifts in the opposite direction of the clamp10,18,42,43. Clamp-induced adaptation has all of 125 

the hallmarks of implicit adaptation and, as with other forms of this type of learning, is dependent on the 126 

integrity of the cerebellum10,44. 127 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2024. ; https://doi.org/10.1101/2023.07.04.547720doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

 128 

To determine the learning and forgetting rates for the units of the CPC model, we conducted an 129 

experiment (Exp 1) in which participants were exposed to 100 trials with clamped feedback (30°) followed 130 

by 60 trials without any feedback. We measured the retention rate from the washout block and then fit 131 

the learning rate from the training phase. The data were also used to determine the scaling factor, a 132 

parameter that transforms neural activation into hand angle. The CPC model provided an excellent fit for 133 

the observed change of hand position (Fig 2c). To rigorously test the model, we fixed the parameters 134 

described above when running simulations to generate predictions for the other experiments.  135 

 136 

  137 

 138 

Fig. 2 Cerebellar population coding captures learning, forgetting, and anterograde interference during 139 
implicit adaptation. a) For online testing, stimuli are presented on the participant’s laptop computer and 140 
movements are made on the trackpad. b) For clamped feedback, the angular position of the cursor is rotated 141 
by 30° with respect to the target, regardless of the heading direction of the hand. c) Perturbation schedule (top) 142 
and results (bottom) for Exp 1. Time course of the mean hand angle is shown in light violet. The CPC model 143 
provides a good fit in both the training and no-feedback washout phases. d) To examine anterograde 144 
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interference, the direction of the clamp was reversed during the training section of Exp 2. The behavioral results 145 
match the prediction of the CPC, using the parameters estimated from Exp 1. e) We mark the direction of a 146 
clockwise error (30°) as 0 in the PC/DCN tuning space, and the direction of an opposite (counterclockwise) error 147 

(-30°) error as π. Memory of the original perturbation (top row) persists in the anti-clamp training phase, 148 
indicated by the activation of neurons tuned to 0 in the bottom row. This residual memory causes anterograde 149 
interference. Shaded area in c, d, e indicates standard error.  150 
  151 

Anterograde Interference  152 

In the following sections, we will examine several key predictions derived from the CPC model concerning 153 

how the experimental context should modulate implicit adaptation. One basic feature of the CPC model 154 

is that, for each unit, learning is fast due to the potent impact of complex spikes whereas forgetting in the 155 

absence of feedback occurs relatively slowly due to a passive decay process (Fig 2c). Given the slow 156 

forgetting, the population activation will be influenced by the persistent activation of units that were 157 

tuned to a recent error. As such, when the perturbation direction is abruptly reversed, the model predicts 158 

that the observed rate of change in performance will be attenuated due to the persistent activation, even 159 

if the learning and forgetting rates are invariant in the model (see Fig 2e). 160 

 161 

To examine this model prediction, we used a task in which the sign of the clamp was reversed after an 162 

initial training block (e.g., 30° followed by -30°, Exp 2, see Fig 2d). Consistent with the model prediction, 163 

the results showed that the rate of adaptation was slower in response to the reversed clamp compared 164 

to the original clamp45–49. Strikingly, the degree of attenuation closely matched the CPC model's prediction 165 

based on the parameter values estimated from Exp 1. These results indicate the population dynamics 166 

within the CPC model can be useful to explain the contextual effects in adaptation.  167 

 168 

Absence of Spontaneous Recovery 169 
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Here we aim to compare the CPC model with several alternative models that have been proposed to 170 

account for contextual effects in implicit adaptation. Anterograde interference has typically been 171 

explained by models positing context-dependent learning mechanisms30,50,51. For example, the contextual 172 

inference (COIN) model assumes that the motor system forms separate memories for different contexts 173 

and chooses which memory to use based on the inferred context29. To account for the results of Exp 2, 174 

COIN would first build a memory for the 30° perturbation and then a second, distinct memory for the -30° 175 

perturbation. Anterograde interference would arise because the introduction of the -30° perturbation 176 

would lead to some degree of recall of the response to the initial perturbation. Over time, this would shift 177 

to a bias to recall the response to the second memory. In contrast to the COIN model, the CPC model does 178 

not posit distinct memories for different perturbations; rather anterograde interference emerges from 179 

the population dynamics.   180 

 181 

The dual state-space (Dual SS) model21,39 offers another account of anterograde interference. This model 182 

posits that learning involves two processes that operate at different rates (Fig S1a). When the 183 

perturbation is reversed, a fast process will quickly respond to the new perturbation and drive adaption 184 

in the opposite direction. However, a slow process will continue to be dominated by its response to the 185 

original perturbation, thus producing anterograde interference. In contrast, the CPC model can account 186 

for anterograde interference without positing different learning/retention rates across units.  187 

 188 

While the COIN, Dual SS, and CPC models make similar predictions about anterograde interference, they 189 

make differential predictions on another memory phenomenon, spontaneous recovery. A paradigmatic 190 

design to elicit spontaneous recovery in sensorimotor learning studies would be to train participants with 191 

a perturbation in one direction, extinguish the adapted behavior by shifting the perturbation in the 192 

opposite direction, and then examine behavior in the absence of feedback (Fig 3a)21. Spontaneous 193 
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recovery refers to the fact that the initial movements during the no-feedback phase are in the opposite 194 

direction of the initial perturbation (Fig 3b top left). By the COIN model, spontaneous recovery occurs 195 

since there is some degree of recall of the original context during the no-feedback phase. By the Dual SS 196 

model, the state of the fast process will decay back to zero (i.e., baseline). However, the state of the slow 197 

process is still shifted in the direction induced by the initial perturbation, resulting in the manifestation of 198 

spontaneous recovery in the no-feedback phase (Fig 3b, S1b). In contrast, the CPC model predicts that 199 

spontaneous recovery will not occur when learning is restricted to the implicit system since the model 200 

does not have a mechanism for context-dependent memory (Fig 3b bottom right).  201 

 202 

To compare the three models, participants in Exp 3 were trained with a 30° clamp in one direction for 100 203 

trials and then presented with the opposite clamp for 15 trials (Fig 3a). Pilot testing had shown that a 204 

reversal of this duration is sufficient to extinguish the shift in hand angle observed to the initial 205 

perturbation. The critical test was the subsequent 30-trials no-feedback block. At odds with the prediction 206 

of COIN or the Dual SS model, we failed to observe spontaneous recovery (Fig 3c; Fig S2b; t(33)=1.2, 207 

p=0.23). While being cautious in drawing inferences from a null result, the absence of spontaneous 208 

recovery is consistent with the CPC model.  209 

 210 

Attenuation in Relearning 211 

As probably an even stronger comparison, all three models make unique predictions in the scenario in 212 

which the initial perturbation is reintroduced after the no-feedback trials (Fig 3a-b, relearning). The COIN 213 

model predicts that relearning should be faster (i.e., exhibit savings) because the system has stored a 214 

memory of the initial perturbation. The Dual SS model predicts that the relearning will be identical to the 215 

original learning, with no saving or attenuation since the system stores no memory of error. The CPC 216 

model predicts that exposure to the opposite error during the washout phase will induce anterograde 217 
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interference; as such, relearning will now be attenuated. As with spontaneous recovery, the results are at 218 

odds with the COIN and Dual SS models, and consistent with the CPC model: Adaptation during the re-219 

exposure block was slower compared to initial learning (Fig 3c; Fig S2a; t(33)=3.1, p=0.004). These results 220 

suggest that population activation within the CPC model accounts for contextual effects that cannot be 221 

captured by alternative models of sensorimotor adaptation.  222 

 223 

 224 

Fig. 3 Context as an emergent property of the CPC model. a) Exp 3 perturbation schedule. To examine 225 
spontaneous recovery, a perturbation in one direction is presented for an extended phase and then reversed 226 
for a short phase. The critical test is in the subsequent no-feedback phase. To test for savings, the original 227 
perturbation is then reintroduced. b) The COIN model predicts spontaneous recovery and savings; the Dual SS 228 
model predicts spontaneous recovery but no saving; the MoE model predicts no spontaneous recovery but 229 
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savings; the CPC model predicts no spontaneous recovery and attenuation upon relearning. Note that, for 230 
visualization, the data from the relearning phase are plotted on top of the original learning phase. c) Empirical 231 
results match both predictions of the CPC model. Shaded area in c indicates standard error. d) Population 232 
activation in the CPC model at three time points. While the hand angle is close to zero at the end of the no-233 
feedback washout, residual activation resulting from both the original and reversed clamps are evident in the 234 
population, indicated by the peak at 0 and π, respectively (middle). The memory of the opposite clamp slowed 235 
down the relearning (bottom). e) In Exp 4, the learning and relearning phases are separated by a variable phase 236 
in which the probability of a perturbation switch is manipulated between participants. f) The COIN and MoE 237 
models predict that during relearning, the learning rate will be modulated by the prior switching rate (i.e., 238 
perturbation variability). The Dual SS model predicts that learning rate will be identical in learning and 239 
relearning regardless of the prior switching rate. The CPC model predicts that, while relearning will be slower 240 
than original learning, the learning rate will not be modulated by switching rate. g) Empirical results are in 241 
accord with the CPC model, showing attenuation during relearning and insensitivity to switching rate.  242 
 243 

Insensitivity to Error Consistency  244 

The preceding sections demonstrate how the CPC model can account for the dynamics of implicit 245 

adaptation in various contexts without positing flexible context-dependent memory like the COIN model.  246 

A different form of flexibility concerns the operation of meta-learning processes that modulate model 247 

parameters across contexts. This idea is central to the Memory of Error (MoE) model52, which posits an 248 

optimization the learning parameters based on experienced errors during the training. For example, the 249 

learning rate should increase when recently experienced errors are consistent (stable context), and the 250 

rate should decrease when recently experienced errors are inconsistent. In contrast, the CPC model does 251 

not include a meta-learning process of this sort. Experience-dependent changes in the response to an 252 

error will arise because recently experienced errors have transiently altered the population dynamics of 253 

the system (e.g., Fig 3d).  254 

 255 

To compare the MoE and CPC models, we examined how the consistency of error modulates adaptation. 256 

In Exp 4, we tested the response to a clamp with a fixed sign (e.g., 30°) before and after a phase in which 257 
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the sign of the clamp varied. To manipulate consistency, we varied the switching probability in the variable 258 

phase, setting it to 12.5%, 50%, or 90% in a between-subject manipulation (Fig 3e). A key prediction of 259 

MoE is that the rate of relearning will be modulated by the switching frequency (Fig 3f bottom). In contrast, 260 

the CPC model predicts that the rate of relearning will be independent of switching frequency.   261 

 262 

The results were consistent with the CPC model: The learning rate during the relearning phase was not 263 

modulated by the switching rate during the preceding variable phase (Fig 3g; Fig S2c; F(2,101)=0.18, 264 

p=0.84). Interestingly, relearning was markedly slower during the relearning phase compared to original 265 

learning (F(1,101)=37.7, p<0.001). This attenuation is another manifestation of anterograde interference 266 

resulting from the opposite errors experienced in the variable-clamp block. We note that these results are 267 

not only at odds with the MoE model, but also with the COIN and Dual SS models. As with the MoE model, 268 

COIN predicts that the learning rate will be inversely related to perturbation variability (Fig 3f); The Dual 269 

SS model predicts that relearning will be identical to that observed during the initial learning phase for all 270 

conditions.  271 

 272 

To summarize the results from Experiments 1-4, we have examined a variety of tasks used to examine the 273 

effect of context on sensorimotor adaptation, comparing the CPC model to three prominent alternative 274 

models (Table 1). The results suggest that the population dynamics within the CPC model provide a 275 

parsimonious explanation of how perturbation history influences adaption without positing context-276 

dependent memory or meta-learning processes.  277 

 278 

 279 

 280 
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 CPC Dual State Space21,39 MoE52 COIN29 

Anterograde interference (EXP 2) ✓ ✓ ✗ ✓ 

Attenuation in relearning (Exp 3) ✓ ✗ ✗ ✗ 

No spontaneous recovery (Exp 3) ✓ ✗ ✓ ✗ 

Invariant to error consistency (Exp 4) ✓ ✓ ✗ ✗ 

Slower adaptation after variable 
perturbation (Exp 4) ✓ ✗ ✗ ✗ 

Fast single trial learning for variable 
perturbation (Exp 4/5/8) ✓ ✓ ✗a ✗a 

Different retention rates for variable 
and fixed perturbations ✓ ✓ ✗ ✓ 

Minimal attenuation of the 
asymptote in half washout (Exp 6) ✓ ✗ ✗ ✓ 

Fast single trial learning around the 
asymptote (Exp 6) ✓ ✓ ✗ ✗ 

Stable process is gated by the 
volatile Process (Exp 7).   ✓ ✗ ✗ ✗ 

 281 
Table 1. Comparison of the CPC model and Other Models of Sensorimotor Adaptation. 282 
Summary of model performance on a set of core phenomena. In evaluating each of the alternative models, we 283 
used an implementation based on that presented in the associated paper (recognizing that a reasonable variant 284 
might be possible to capture more of the phenomena). The credit assignment model assumes that the agent 285 
performs Bayesian inference to decompose the observed error into perturbation sources that vary across 286 
different time scales and estimate the optimal policy to compensate for them.  287 
a Both COIN and the MoE models have difficulty explaining why a large change in behavior would be observed 288 
in response to random perturbations given their optimality assumptions. One would expect an optimal 289 

system to show a minimal or attenuated response to a random perturbation. 290 
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 291 

Tuning properties result in variable changing rates across the population units 292 

A central proposition of the Dual SS model is that adaptation includes two processes with different 293 

learning rates (Fig 4a)21,39,53. However, within a single layer of the CPC model, an epiphenomenon of 294 

population coding is that units will appear to operate in different time scales even if the learning rate 295 

parameters are identical across all units (Fig 4b). When an error is observed, cells with a preferred 296 

direction centered on this error will display relatively fast learning and quickly saturate (Fig 4c-d). In 297 

contrast, cells with a preferred direction slightly misaligned with the error direction will not only learn 298 

slower due to the weaker climbing fiber input but will also take longer to saturate. As such, by the CPC 299 

model, the change in movement direction is determined by the collective activation of all units, and thus, 300 

can be regarded as a composite process of units with different learning trajectories arising from their error 301 

tuning.  302 

 303 

 304 

Fig. 4 Emergent variation in learning rate across the population units. a) Learning curve from Tsay et al (2022) 305 

in which participants were exposed to a 30° clamp. This function can be described as sum of a fast process that 306 

contributes to the rapid change in hand angle early in learning and a slow process that continues to accumulate 307 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2024. ; https://doi.org/10.1101/2023.07.04.547720doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

over time. The best-fitted Dual SS model and the relative contribution of the fast and slow processes are shown. 308 

b) CPC model can account for learning function without positing different learning rates. c) By the CPC model, 309 

the contribution from different units will vary over time due to their tuning for error direction. We mark the 310 

direction of the error as 0 in the unit tuning space. Cells tuned to error direction (i.e., 0) respond strongly, 311 

driving rapid early learning while saturating quickly. Cells with tuning slightly misaligned with the error direction 312 

(e.g., 0.2π) have a small error response but saturate slower; as such they make a relatively large contribution 313 

late in training. d) Panel c plotted in polar space. Each vector corresponds to a cell with the orientation indicating 314 

the cell’s preferred error direction and the length indicating its activation strength.  315 

 316 

Different retention rates in adaptation 317 

We have shown the tuning features of cerebellar units and their population dynamics within the CPC 318 

model explain a wide range of contextual effects in implicit adaptation, outperforming alternative models. 319 

While we have used a two-layered model in these simulations, the predictions would also hold in a single-320 

layered CPC model. However, the anatomy and physiology of the cerebellum suggest that plasticity effects 321 

in the cerebellar cortex and deep cerebellar nuclei can be quite distinct, perhaps constrained by different 322 

computational principles21,39,40. We explore this issue in the following section, first examining the evidence 323 

to suggest computational differences between the layers and then testing predictions to ask how the 324 

layers interact with each other.  325 

 326 

As shown above, experimental tasks that focus on learning rates are not ideal for assessing the existence 327 

and/or dynamics of different layers: A single-layered system can appear to be operating at multiple speeds. 328 

As an alternative, we employed a variable perturbation task in which the sign and size of the perturbation 329 

were varied across trials (Exp 5, Fig 5a). With this design, the forgetting rate of the system can be 330 

empirically measured as the ratio of the change of hand angle in response to the perturbation just 331 
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experienced (1-back) relative to the previous perturbation (2-back, see Methods). Consistent with 332 

previous studies10,54,55, we found prominent trial-by-trial adaptation in response to the random 333 

perturbations. Surprisingly, the observed retention rate of 0.5 indicates that about half of the learning 334 

from the previous trial was forgotten over the 3 s inter-trial interval (Fig 5c). This low value stands in 335 

marked contrast with the empirically estimated retention rate from designs in which the perturbation is 336 

fixed (e.g., Exp 1, 0.98, Fig 4b,c). When we ran the same analysis on data from published studies using 337 

variable or fixed perturbations, we observed a similar marked difference in the retention rate18,55–57.     338 

 339 

This result could suggest that there are two adaptation processes with different retention rates. 340 

Alternatively, it might be taken to indicate the operation of a meta-learning process, where the forgetting 341 

rate is ramped up in response to a variable environment. To differentiate those two hypotheses, we ran 342 

an experiment (Exp 6) in which we first employed a fixed perturbation for an extended block and then 343 

followed this with a half-washout phase in which 50% of the trials had no feedback and 50% had clamped 344 

feedback (Fig 5d). Interestingly, there was a considerable drop in hand angle after each no-feedback trial, 345 

much larger than what would be predicted by a single-layered model parameterized with a retention rate 346 

estimated from a typical fixed design (Fig 5e). Indeed, the magnitude of those single-trial changes is 347 

comparable to what is observed in a variable design. A meta-learning model would attribute the drop in 348 

retention rate to the variable context (namely, the mixture of no-feedback and clamp trials). However, at 349 

odds with this hypothesis, the asymptote in the half-washout block largely persisted (Fig 5d). Thus, the 350 

retention rate of the system appears to have remained fixed between the learning and half washout 351 

blocks. As such, the large trial-by-trial changes in hand angle and a persistent asymptote are consistent 352 

with the dual rate hypothesis. 353 

 354 

 355 
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 356 
Fig. 5 Operation of volatile and stable processes in cerebellum-dependent adaptation. a) Trial-by-trial change 357 
of hand angle (Δhand) as a function of the perturbation size on trial n-1 (1-back), n-2 (2-back), and n-3 (3-back) 358 
in Exp 5. b) Left: Similar analysis applied to the data from the variable phase of Exp 4 for the 50% switching 359 
condition. Right: The two-layer CPC model can account for the large, yet transient change in hand angle 360 
observed in response to a random perturbation. A single-layered CPC model predicts negligible change due to 361 
its high retention rate measured from Exp 1. c) Estimate of retention rate in experiments using variable or fixed 362 
perturbations. Re-analysis of data from Wei: 55; Tsay-1: Exp 2 56; Tsay-2: EXP 2 58, Avraham: Exp1 43. All of the 363 
depicted experiments used a design with a single target location. d) In Exp 6, half washout phase entails a 50/50 364 
mix of clamp and no-feedback trials. Consistent with the CPC model, only a small reduction in hand angle was 365 
observed during the half washout phase whereas the meta learning model with a changeable retention rate 366 
predicts the hand angle will be reduced by 40%. Purple functions indicate behavioral results. e) Large trial-by-367 
trial changes of the hand angle in the half washout phase can only be predicted by the two-layered CPC model 368 
rather than a single-layered model. f) The volatile process is hypothesized to produce LTD at the parallel fiber-369 

PC synapse; the stable process is hypothesized to produce LTP at the mossy fiber-DCN synapse. g-h) The dual 370 
rate version of the CPC model (h) provides a better fit of the learning function in Exp 1 compared to the classic 371 
dual SS model (g).  372 
 373 
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Differential Plasticity in the Cerebellar Cortex and DCN 374 

Physiological studies have shown that learning in the cerebellar cortex appears to be more stable 375 

compared to the DCN. For example, learning-induced changes in the firing rates of simple spikes in 376 

Purkinje cells may decrease after a few trials39,59,60 whereas changes in the DCN typically last for days25,35. 377 

Given the evidence reviewed in the previous section pointing to the existence of a system composed of 378 

units with distinct retention rates, we instantiated this difference in the two-layer CPC model such that 379 

plasticity within the cerebellar cortex/PC can produce changes that are weakly retained whereas plasticity 380 

within the DCN is more persistent (Fig 5f and S3).   381 

 382 

This conjecture bears similarity to that proposed in previous dual rate models (e.g., Dual SS model)21,39,61. 383 

However, there are significant differences between these previous models and the two-layer CPC model 384 

characterizes the dynamics of the two processes. First, a key feature of state-space models is that 385 

adaptation reaches an asymptote when the trial-by-trial effects of learning and forgetting cancel each 386 

other out. However, it is difficult to simultaneously fit both the acquisition and washout phases in 387 

response to a fixed perturbation with a state-space model, even with the degrees of freedom conferred 388 

by a dual rate variant (Fig 5g). In contrast, we posit that learning saturates because of a limit to 389 

neuroplasticity within the units54. Given this assumption, the CPC model can readily fit the full learning 390 

and forgetting function in adaptation (Fig 5h).  391 

 392 

A stronger comparison of the two models is provided by the half-washout phase of Exp 6. The SS model 393 

predicts that during this phase, the asymptote will eventually drop to 50% of the original asymptote 394 

because learning occurs in just 50% of the trials, those with feedback (Fig S6). This prediction holds even 395 

in state-space models that posit learning at multiple time scales21,62. However, as noted above, the 396 
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asymptote only showed only a slight decrease when clamped feedback was presented in 50% of the trials, 397 

consistent with the predictions of the CPC model (Fig S6b).  398 

 399 

A second difference is that, unlike the state space model, the population dynamics within the CPC model 400 

enabled it to account for various context effects discussed in Exp 2-4 (See Table 1). Moreover, by 401 

extending the dual coding feature in a two-layered system, the CPC model predicts a novel context effect 402 

in a random design experiment, one in which the sign of the perturbation is randomized: The trial-by-trial 403 

change in hand angle will decrease over the course of an experimental session even if the 404 

learning/retention rates of both layers are fixed. Early in the session, learning within both a volatile and 405 

stable layer will contribute to the change in performance. However, gradual changes will accumulate in 406 

units tuned to both directions within the stable layer, eventually reaching their asymptotic level of 407 

plasticity. Thus, late in the session, learning is essentially dependent solely on the rapid changes occurring 408 

within the volatile layer. The net effect is that the overall learning rate will decrease over the course of 409 

training (Fig S7a-b), another example in which an apparent change in learning rate is emergent from the 410 

dynamics of the system. In contrast, the dual state-space model predicts that the overall learning rate 411 

should be constant since only the fast process makes a significant response to random perturbations. The 412 

data are again consistent with the CPC model: The overall learning rate decreases over the course of a 413 

block of trials in which the size and direction of the perturbation is randomized (Fig S7c).  414 

 415 

Learning within the DCN is gated by the cerebellar cortex. 416 

Given that the output of the PCs is the primary input to the DCN, we can ask how learning within the DCN 417 

is modulated by activity in the cerebellar cortex. By the CPC model, learning in the DCN is scaled by the 418 

change in simple spike activity of the PCs; in effect, the stable process is gated by the labile process. While 419 
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this hierarchical organization has been proposed previously in the discussion of dual-rate models of 420 

adaptation39, it has not been tested empirically.   421 

 422 

One way to test the gating hypothesis is to manipulate the duration of the inter-trial interval. The change 423 

in hand angle arising from a volatile process decreases with the passage of time. If the volatile process 424 

gates the stable process, increasing the ITI should result in a much slower change in hand angle in a fixed 425 

design (Fig 6b). In contrast, if the two processes operate in parallel (PARALLEL model), the operation of 426 

the stable process will not be influenced by variation in ITI. Higher asymptotic values in a short ITI 427 

condition would be solely due to the greater contribution of the volatile process.  428 

 429 

To evaluate the gating hypothesis, we employed a variable design in Exp 8, using a 7 s ITI. By comparing 430 

this long ITI condition to a short one (Exp 4) which involved the same design but in which the next trial 431 

started as soon as the hand was repositioned at the start location (0 s ITI), we estimated the decay rate 432 

of the volatile process across time. Based on the estimated parameter, we predicted the learning function 433 

in response to a fixed perturbation (Exp 9), again comparing a 7 s and 0 s ITI conditions (Fig 6b). To measure 434 

learning within the stable process (DCN), we ignored the first five trials since these would have a significant 435 

contribution from the volatile process. Over the next five trials, we found that the change in hand angle 436 

was much higher in the short ITI condition (Fig 6d), suggesting that the learning in the stable layer (DCN) 437 

is modulated by the volatile layer (PC).  438 

 439 

Furthermore, consistent with the prediction of the CPC model, the long ITI condition showed a slower 440 

decrease in hand angle compared to the short ITI condition in the initial washout trials (Fig 6e), suggesting 441 

a smaller contribution of the volatile process in the long ITI condition. This difference diminished in late 442 

washout trials since the residual memory here comes from the state of the stable process.  443 
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 444 

However, we note that this version of the CPC model fails to capture one prominent feature in these data, 445 

the convergence of the two functions at asymptote (Fig 6c & f). The CPC model predicts that the advantage 446 

for the short ITI condition should persist, resulting in a lower asymptote in the long ITI condition. We 447 

modified the CPC model (Fig 6g), adding an inhibitory connection from the DCN to the inferior olive, a 448 

pathway that has been identified in physiological studies63,64. The inhibitory signal to IO will reduce its 449 

input strength to the cerebellar cortex, thus decreasing the number of PCs that generate complex spikes65. 450 

Assuming the strength of this inhibition decays across time (ITIs), more learning units can be recruited in 451 

the long ITI condition though plasticity within each unit is reduced due to the decay of memory during the 452 

long ITI (Fig S5). The revised CPC generates learning functions that provide good fits in both ITI conditions 453 

(Fig 6h & i). Importantly, after re-estimating all of the parameters using this variant of the CPC, we 454 

observed negligible effects on the predictions reported for the other experiments (Fig S8). In sum, these 455 

results point to a hierarchical arrangement in which the volatile process gates the operation of the stable 456 

process. 457 

 458 

The revised two-layer CPC model can account for another classic learning effect, contextual interference, 459 

referring to the phenomenon in which performance gains are slower when training involves multiple 460 

contexts (e.g., reaching towards multiple directions) compared to training in a single context, but 461 

retention is better in the former69,70. This phenomenon, at least in the context of implicit adaptation, is an 462 

emergent property of the parallel operation of volatile and stable learning processes (see Supplementary 463 

result 1, Fig S9). 464 

 465 
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 466 

Fig. 6 The stable process is gated by the volatile process. a) Trial-by-trial change in response to a variable 467 
perturbation with a short (data taken from Exp 4, p(switch)=0.5 condition) or long ITI (Exp 8). b) Predictions of 468 
learning functions under the gating assumption of the CPC model and alternative model in which the two 469 
processes operate independently (PARALLEL). c) Learning functions in Exp 9 using either a short or long ITI. 470 
Consistent with the CPC model, the difference between the two functions is reduced over time. d) Model 471 
predictions and results from Exp 9 for the change of hand angle across trials 5-10. The change of hand angle is 472 
higher in the short ITI condition. e) The retention rate is larger in the initial no-feedback trials in the long ITI 473 
condition since the volatile process is weakened by the passage of time. However, the retention rate is similar 474 
across the two ITI conditions late in washout, consistent with the hypothesis that only the stable process 475 
remains operative. f) Hand angle ratio between short ITI and long ITI conditions deviates from the predictions 476 
of both models. The ratio falls between the two model predictions early in training and is smaller than predicted 477 
by both models late in training. g) Revised CPC model includes inhibitory projection from DCN to the IO. This 478 
suppresses the error signal conveyed by the climbing fibers. This suppression is assumed to decay with time, 479 
becoming negligible in the long ITI condition in the revised CPC model. h-i) Predictions of the revised CPC model 480 
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provide a good fit to the learning curve (h) as well as the change in the ratio between the long and short ITI 481 
conditions (i) in Exp 9. Shaded area and error bar indicate standard error. 482 
 483 

Discussion 484 

To support flexible behavior, an organism needs to choose an action appropriate for a given context and 485 

execute a movement to achieve the desired outcome. A large body of work has sought to delineate the 486 

principles of these learning processes, with one prominent question centering on how the processes 487 

incorporate context and respond to uncertainty. Here we address this question with respect to the 488 

cerebellum, a subcortical structure long recognized as essential for keeping the sensorimotor system 489 

precisely calibrated in the face of fluctuations in the environment or state of the agent. We developed a 490 

population-coding model incorporating two key features: 1) Units are tuned to both movement direction 491 

and error direction, and 2) learning occurs at different rates in the cerebellar cortex and deep cerebellar 492 

nuclei, with the former characterized by a fast, volatile process and the latter characterized by a slower, 493 

stable process. Our CPC model provides a parsimonious account of a diverse range of learning phenomena 494 

and offers new insight into the temporal dynamics of learning (Table S1).  495 

 496 

Context Dependency as an Emergent Property of Population Coding  497 

Importantly, there is no explicit role of context in the CPC model in the sense that a context does not 498 

trigger the retrieval of its associated response. Rather the signatures of context-dependent learning and 499 

environmental uncertainty emerge naturally from a population of tuned elements that operate in an 500 

inflexible manner. In this way, the CPC model diverges from classic models in the behavior that emerges 501 

when a previously encountered context is re-experienced. Under such circumstances, classic models 502 

predict savings in relearning given that the context facilitates the retrieval of the appropriate response29. 503 

In contrast, the CPC model accounts for the fact that when a previously experienced perturbation is 504 

encountered, implicit adaptation not only fails to show savings, but actually can show attenuation18. This 505 
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attenuation can be seen as another manifestation of anterograde interference: Due to the tuning 506 

properties of neurons in the cerebellar cortex and DCN, persistent activation in response to error in one 507 

direction will interfere with the response to an error in a different direction. 508 

 509 

Given the impressive flexibility in human motor learning, it might be surprising that implicit adaptation 510 

does not explicitly track the context or uncertainty of the environment29,50,66. We propose that this rigidity 511 

reflects a degree of modularity between processes associated with action selection and those related to 512 

movement implementation. The cerebellum is part of a system designed to use error information to 513 

ensure the accurate execution of a planned movement. The emphasis here is on “planned movement” 514 

rather than “desired outcome” to underscore the point that this system appears to operate independent 515 

of the task goal; indeed, participants will adapt to sensory prediction errors even when the change in 516 

behavior is detrimental to task success10,12. This modularity provides a means to keep the system properly 517 

calibrated across changes in the internal state of the organism (e.g., perceptual biases, fatigue), factors 518 

that need not require a change in action planning. In contrast, other learning systems are designed to use 519 

error information related to task success to determine if the selected action was optimal given the current 520 

context. These systems would be optimized to track contextual shifts in determining the appropriate 521 

policy. Consistent with this hypothesis, contextual effects such as savings and sensitivity to uncertainty 522 

are observed in adaptation tasks that benefit from changes in action selection52,67,68.  523 

 524 

Hierarchical Organization Within the Cerebellum for Implicit Adaptation 525 

The behavior observed in adaptation studies is assumed to reflect the function of learning processes that 526 

operate at different time scales21,61. It has been suggested that fast and slow processes correspond to 527 

explicit and implicit learning processes62. By using variable and fixed designs, we provide evidence that 528 

learning limited to just the implicit system operates at different timescales, a notion similar to the original 529 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2024. ; https://doi.org/10.1101/2023.07.04.547720doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

framing of the Dual SS model.21,39 However, rather than view these as processes that operate in parallel, 530 

our empirical and modeling results highlight a hierarchical organization in which accumulated learning 531 

from a volatile process will constrain the learning rate of a stable process. This organization readily maps 532 

onto a two-layered network formed by the cerebellar cortex and DCN, with the output from the former 533 

gating learning within the latter. The neurophysiological evidence is consistent with this assumption. 534 

While the change of SS activation in the PCs can happen within a few trials22,59, changes within the DCN 535 

can maintain learning across days25,35. Reflective of the hierarchical organization, we showed that there is 536 

an asymmetric dependency such that the synaptic strength in the cerebellar cortex determines the PC 537 

output that modulates learning within the DCN.  538 

 539 

We recognize that a two-layered model is clearly a simplification. Indeed, to explain the asymptotic 540 

convergence in the long and short ITI conditions, we had to incorporate a third layer into the model, 541 

creating a closed loop by adding a projection from the DCN to the IO. While the anatomy supports the 542 

existence of this pathway, to achieve convergence, we added two specific features to the dynamics of this 543 

pathway. First, the intensity of the inhibition from the DCN to the IO exhibits intensity decrease over 544 

time71,72. Second, the projection is generic, inhibiting IO units independent of the directional tuning of the 545 

DCN neuron. These two assumptions need to be tested in future physiological studies. 546 

 547 

Generalization of the CPC model  548 

Though our model focuses on the cerebellum and sensorimotor learning, the core computational 549 

principles may offer insight into how the nervous system responds to environmental uncertainty. The 550 

population-coding aspect of the CPC model is similar to models of perceptual learning that include a basis 551 

set of tuned elements73. For example, in models of time perception, contextual effects on perceived 552 

duration have been proposed to reflect the interaction of units tuned to different durations74,75. Applied 553 
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to this domain, the CPC model could be used to derive specific predictions of how temporal perception is 554 

modulated by uncertainty and establish boundary conditions for interference. Moreover, the two-layer 555 

network in the CPC model provide a novel framework to understand of how learning can involve multiple 556 

processes that follow different temporal dynamics, a phenomenon widely observed in cognitive tasks. For 557 

instance, value learning has been hypothesize to reflect the joint operation of a fast, volatile process and 558 

a slow, stable process70. While these processes are typically viewed as operating in parallel, the CPC model 559 

offers an example of how a hierarchical framework might prove more parsimonious.   560 
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Methods 561 

Cerebellar Population Coding (CPC) model 562 

Here we extend the classic Marr-Albus model, focusing on how learning is modulated when the 563 

environment is variable. A foundational idea for our model is inspired by a recent work showing how PCs 564 

in the oculomotor cerebellar cortex are simultaneously tuned to both movement direction and the error 565 

that is associated with that movement 22,23.  566 

 567 

To examine the implications of these tuning properties for cerebellar-dependent learning, we incorporate 568 

PC tuning into a learning model. Specifically, we formalize the teaching signal, the complex spike (CS) 569 

activity of a PC with a preferred direction of 𝑖	(0≤ 𝑖 < π) in response to a movement error e (Fig 1d) as: 570 

[1]	𝐶𝑆!" = 𝑉𝑀(θ# , 𝑖, 𝑠)F(ρ#) 571 

where 𝑉𝑀(	𝑖, 𝑠) is the probability density function of a simplified circular (von Mises) distribution with a 572 

mean of 𝑖 and standard deviation of 𝑠. θ# and ρ# refer to the direction and the size of e, respectively, and 573 

𝑛 is the trial number. Given we only applied one error size across all experiments, F(ρ#) is not relevant 574 

and set as 1 here55,57. The form of this non-linear relationship is not relevant in the experiments with a 575 

fixed perturbation; for those experiments, the exponent was set to 1.  576 

 577 

Following the Marr-Albus model, the occurrence of a CS suppresses the strength of the parallel fiber input 578 

synapse (𝑤) through long-term depression (LTD): 579 

[2]	𝑤!"$% = −𝑙𝐶𝑆!" + 𝑓(𝑤& −𝑤!") + 𝑤!" 580 

where 𝑙  (𝑙 > 0) and 𝑓  (0 < 𝑓 < 1) are the learning and forgetting rates, respectively, and 𝑤&  is the 581 

baseline synaptic strength. Since the level of single spike (SS) activity will be greatest for cells coding a 582 

movement direction opposite to the error, the modulation of synaptic strength will drive the next 583 

movement in a direction that corrects for the observed error. 584 
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 585 

The preceding paragraph describes how parallel fiber synapses onto PCs are modified. A second 586 

prominent site of plasticity is at deep cerebellar nuclei25,35. Importantly, PC and DCN neurons are 587 

organized such that they share the same tuning direction for movement40. We posit that learning at the 588 

DCN is gated by learning at the cerebellar cortex. Specifically, LTD at parallel fiber-PC (PF-PC) synapses will 589 

reduce inhibitory PC input to the DCN, resulting in long term potentiation (LTP) at the mossy fiber-DCN 590 

synapses (𝑚) (Fig 1e): 591 

[3]	𝑚!
"$% = (𝑤& −𝑤!")ß(𝑚'() −𝑚!

") + 𝛼(𝑚& −𝑚!
") + 𝑚!

" 592 

where	ß and 𝛼 are the learning rate and the forgetting rate of the DCN input synapse, respectively. The 593 

parameters 𝑚&	and 𝑚'()  represent baseline and maximal synaptic strength, respectively. The latter 594 

constraint is based on empirical results showing that implicit adaptation saturates independent of the 595 

error size. 596 

 597 

In this initial version of the CPC model, we have assumed that the PC layer is dominated by LTD, and the 598 

DCN layer is dominated by LTP.  Classically, PC-layer learning has emphasized LTD1,2,76,77, including recent 599 

evidence from rodent work showing LTD during upper limb reach adaptation3. There is a dearth of 600 

evidence concerning the mechanisms of learning in the DCN. As such, we assumed that learning here 601 

follows a simple Hebbian process, one consistent with LTP. Importantly, our assumptions regarding LTD 602 

and LTP are not critical computationally.  The results would be similar if we assumed the reverse or had a 603 

mixture of LTD and LTP at each layer. Indeed, a more realistic model should incorporate some degree of 604 

bidirectionality given that LTP is also observed in the PC layer23,60. For example, an error signal at 0 could 605 

result in units with a preferred direction at π becoming strengthened by LTP22, presumably because of 606 

their co-activation with a shared parallel fiber input. We expect a model with bi-directional modulation 607 
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would have greater flexibility. However, for the present purposes, the predictions would be largely 608 

unchanged and thus, we opted to go with a simple dichotomy.   609 

 610 

Considering the two sites of plasticity, DCN activity on a repeated trial following a movement error can be 611 

formalized as:  612 

[4]	𝐷𝐶𝑁!"$% ∝ 𝑚!
"$% − g	𝑤!"$% 613 

 614 

where g	is a scaling factor. The output of the population of DCN neurons will correspond to the change in 615 

movement direction in response to an error, a signal that can be used to adjust the movement. This can 616 

be expressed as: (Fig 1f): 617 

[5]	𝒉"$% = −𝜀G𝒗!𝐷𝐶𝑁!"$%

!

 618 

where 𝒉" is a vector representing the hand angle on trial n, 𝒗!  is a vector representing the tuning direction 619 

of unit 𝑖, and 𝜀 is a scaling factor to transfer the neural activity into hand angle. 620 

 621 

We note that we do not specify, for the purposes of this paper, whether the cerebellum is best viewed as 622 

a forward or inverse model. The current implementation of the CPC model most resembles an inverse 623 

model given that the system modifies the motor commends based on the error. However, the model could 624 

be reframed as a forward model with the output a prediction that is fed into an (cerebellar or 625 

extracerebellar) inverse model that refines the motor commands 626 

 627 

Parameterization of the CPC Model  628 

In our simulations of PC and DCN neurons, we modeled 1000 units for each layer and set the standard 629 

deviation of the tuning function (s) to 0.2π. The results of most simulations were not sensitive to these 630 
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two parameters. While anatomical studies show considerable convergence from the PC layer to the DCN, 631 

for simplicity, we opted to impose a one-to-one connection between the PC and DCN. 632 

 633 

We used an empirical approach to estimate the learning and forgetting rate for PF-PC synapses, using the 634 

data from Exp 4 in which +/- 30° clamps were presented with a 50% switching probability. To measure 635 

single trial learning, we calculate the change of hand angle between trial n and trial n-1, flipping the sign 636 

when the clamp on trial n-1 was negative. To measure single trial forgetting, we calculate the change of 637 

hand angle between trial n and trial n-1, flipping the sign when the clamp on trial n-2 was negative. 638 

 639 

PF-PC forgetting (𝑓) is the ratio of single-trial forgetting and single-trial-learning. By definition, retention 640 

rate is 1- (𝑓). We applied the same method to measure the retention for all variable designs and this gave 641 

us an 𝑓 around 0.5. Model simulations indicate that this method can precisely estimate retention when 642 

the perturbation is random. In all of the analyses, we excluded the first 50 trials since learning at this early 643 

stage is influenced by both PC and DCN. For comparing the learning rate between early and late training 644 

in a by variable design, we employed the same general approach but limited the analysis to the first 50 645 

trials to estimate early learning (Fig S8).  646 

 647 

The baseline and maximal strength of MF-DCN synapses can be set to arbitrary values: We used 1 and 648 

1.85 for 𝑚&	and	𝑚'()  , respectively. We measured the retention rate of the MF-DCN synapse (𝛼 ) 649 

empirically using the data from the no-feedback washout phase in Exp 1: 650 

[6]	𝛼 = N𝑚𝑒𝑎𝑛(
𝑦"$%*

𝑦"
)

!"
 651 

where	𝑦" is the hand angle in trial n. The first 20 trials in the washout phase were excluded since they 652 

may be contaminated by a volatile process.  653 
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 654 

The learning rate of the PC (𝑙) and DCN (ß) and the scaling factors (g, 𝜀) were jointly fitted from the 655 

learning block in Exp 1 and the single trial learning in Exp 4. This results in a set of parameters: 𝑙 = .05,	𝑓 656 

= .018, ß = 2, 𝛼 = .5, g = 0.15, 𝜀 = 130. These parameters were fixed in the simulations of all the other 657 

experiments. The only exception is Exp 9, where we set the PF-PC retention rate for the long ITI conditions 658 

(𝑓+) to be 0.3, based on the empirically observed value in the variable design of Exp 8.  659 

 660 

Revised CPC model 661 

The results of Exp 8 led us to develop a post-hoc variant in which the output of the cerebellum modulates 662 

the input, an idea that is consistent with cerebellar anatomy and physiology63,78. The basic version of the 663 

CPC model predicts that learning in a long ITI condition will reach a lower asymptote compared to a short 664 

ITI condition. This occurs because the contribution of the volatile process is suppressed in the long ITI 665 

condition. However, the results of Exp 9 showed that, with a sufficient number of trials, learning in the 666 

long ITI condition eventually reaches the same asymptote as in the short ITI condition. This observation 667 

led us to revise the model by adding an inhibitory pathway from the DCN to the inferior olive63,78. 668 

 669 

We assume that the output of the DCN integrates the activation of directionally tuned units and that this 670 

signal serves as a generic inhibitory signal to the inferior olive. We implemented this generic suppression 671 

by subtracting a common value from the activation of cells tuned to all error directions in the inferior olive 672 

(IO): 673 

[7]𝐼𝑂! = 	1 − 𝜔 ∗G𝑑𝐷𝐶𝑁!"

!

 674 

[8]	if	𝐼𝑂! > 0:	𝑐𝑠+! = 𝐼𝑂! ∗ 𝑐𝑠!; 675 

otherwise:	𝑐𝑠+! = 0 676 
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where 𝜔 represents the strength of suppression. Given the assumption that 𝜔 decreases across time, we 677 

used separate parameter values of 𝜔 for the long and short ITI conditions ∑ 𝑑𝐷𝐶𝑁!"!  is the sum of the 678 

change of all NCD units relative to their baseline activities. 𝑐𝑠′!  is the corrected CS activation value after 679 

taking the DCN-IO pathway into the consideration and replaces the 𝑐𝑠!  term in EQ [1-5]. The retention 680 

rates of the volatile and stable processes (f, 𝛼) in the revised CPC model were set as in the basic two-layer 681 

model. The other parameters (𝑙, ß, 𝜀, 𝜔) were jointly fitted from two data sets, the learning block in Exp 1 682 

and the variable condition in Exp 8. The parameter set is as follow: 𝑙 = .1,	𝑓 = .018, ß = 2, 𝛼 = .5, g = .2, 𝜀 = 683 

210, 𝜔(𝑠ℎ𝑜𝑟𝑡)	= 2.5, 𝜔(𝑙𝑜𝑛𝑔)	= 0. 684 

 685 

Alternative Models for Comparison  686 

Variants of the CPC Model  687 

To help clarify the importance of a two-layer model, we describe two variants of the CPC model. First, we 688 

implemented a single-layer version of the CPC model by modifying Eq 4 to: 689 

[9]	𝐷𝐶𝑁!"$% = 𝑚!
"$% 690 

In this version, the output of the system is solely determined by the strength of the MF-DCN. 691 

 692 

Second, we implemented a model in which the volatile and the stable processes operate in parallel 693 

(PARALLEL) rather than hierarchical as in the CPC model. Since the stable process is insensitive to ITI, we 694 

estimate the MF-DCN synapse (𝑚) by simulations using a short ITI. The simulated value was then used in 695 

simulations of the long ITI condition. For the volatile process, the strength of the PF-PC synapse (𝑤) was 696 

measured separately for the two ITI conditions. 697 

 698 

State-space model 699 

We employed a standard version of a state-space model21,79: 700 
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[10]	𝑥(𝑛 + 1) = 𝑎 ∗ 𝑥(𝑛) + 𝑏(𝑒, 𝑛)𝑒(𝑛) + 𝜀,(𝑛) 701 

where 𝑥 is the internal estimate of the motor state (i.e., the hand movement required to compensate for 702 

the perturbation), 𝑎 is the retention factor, 𝑒(𝑛) is the size of the perturbation in trial 𝑛, 𝑏	is the error 703 

sensitivity for a given error size, and 𝜀,	represents planning noise. 704 

 705 

The actual motor response on trial 𝑛 is given as: 706 

[11]	𝑦(𝑛) = 𝑥(𝑛) + 𝜀-(𝑛)  707 

where 𝑦 is the reaching direction relative to the target, determined by 𝑥(𝑛) and motor noise, 𝜀-	.  708 

 709 

For the dual state-space model, we added a second, slower learning process (𝑥𝑠) with a different retention 710 

rate (𝑎𝑠) and learning rate (𝑏𝑠),  711 

[12]	𝑥𝑠(𝑛 + 1) = 𝑎𝑠 ∗ 𝑥𝑠(𝑛) + 𝑏𝑠(𝑒, 𝑛)𝑒(𝑛) + 𝜀,.(𝑛) 712 

Where 𝑎𝑠 > 𝑎 and 𝑏𝑠 < 𝑏. As such, Eq [11] can be written as: 713 

[13]	𝑦(𝑛) = 𝑥(𝑛) + 𝑥𝑠(𝑛) + 𝜀-(𝑛)  714 

 715 

Memory-of-Error model (MoE) 716 

The Memory-of-Error model describes how the learning rate in the state-space model is modulated by 717 

experience. In the MoE model, error sensitivity (b) is set to an initial value that is modulated by errors that 718 

are experienced during training. Specifically, b(e,n) will increase if the error on trial n+1 shares the same 719 

sign and b(e, n) will decrease if the error on trial n+1 is of the opposite sign. This is formalized as: 720 

[14]	𝑏(𝑒(𝑛), 𝑛 + 1) = a ∗ (𝑏(𝑒(𝑛), 𝑛 + 1) − 𝑏0) + 𝑏0 + 	b ∗ 𝑠𝑖𝑔𝑛(𝑒(𝑛) ∗ 𝑒(𝑛 + 1))	 721 

where b	and a are the learning rate and retention rate of b, respectively. Since the error size is fixed at 722 

30° in our experiments, we replace 𝑏(𝑒) with a single value 𝑏. 723 

 724 
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Contextual Inference (COIN) model 725 

We simulated the Contextual Interference (COIN) using the code provided by Heald et al.29, focusing on 726 

its prediction with respect to savings and spontaneous recovery. We assumed that the introduction of a 727 

perturbation (e.g., clamped feedback) defines a new context and, as such, leads to the establishment of a 728 

new motor memory. Similarly, reversing the sign of the perturbation would define another context and 729 

thus require establishment of another memory. We simulated the clamps as if they were contingent 730 

rotations so that the learning can reach an asymptote. Before each movement, the output is determined 731 

by averaging the state of different contexts weighted by the expected probabilities of the contexts. 732 

Participants observed an error after each movement and update the state estimation.  733 

 734 

Behavioral Experiments  735 

 736 

Participants 737 

A total of 451 participants (297 female, mean age = 28.0, SD = 5.3) were recruited through the website 738 

prolific.co. After eliminating participants who failed to meet our performance criteria (2.8%, see below), 739 

the analyses were based on data from 438 participants. Based on a survey included in a prescreening 740 

questionnaire, the participants were right-handed with normal or corrected-to-normal vision. The 741 

participants were paid based on a rate of $8/h. The protocol was approved by the Institutional Review 742 

Board at the University of California, Berkeley. Informed consent was obtained from all participants. 743 

 744 

Apparatus 745 

All of the behavioral experiments were conducted online using a web-based experimental platform, 746 

OnPoint58, which is written in JavaScript and presented via Google Chrome. It is designed to operate on 747 
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any laptop computer. Visual stimuli were presented on the laptop monitor and movements were 748 

produced on the computer trackpad. Data were collected and stored using Google Firebase.  749 

 750 

Clamp rotation task  751 

We applied clamp feedback in the experiments, under the assumption that learning in response to this 752 

type of feedback is limited to implicit, cerebellar-dependent sensorimotor recalibration. To start each trial, 753 

the participant moved the cursor to a white start circle (radius: 1% of the screen height) positioned in the 754 

center of the screen. After 500ms, the target, a blue circle (radius: 1% of the screen height) appeared with 755 

the radial distance set to 40% of the screen size. The target appears at -45°, a workspace location selected 756 

because it exhibits minimal bias across participants80. The participant was instructed to produce a rapid, 757 

out-and-back movement, attempting to intersect the target. If the movement time (from onset to time at 758 

which movement amplitude reached the target) was longer than 500ms, the message ‘Too Slow’ was 759 

presented on the screen for 500ms.  760 

 761 

There were three types of feedback. On veridical feedback trials, the position of the cursor moved was 762 

matched to the position of the hand, subject to the translation in reference frames (screen assumed to 763 

be vertical, hand movement assumed to be horizontal) and scaling (trackpad space expanded to 764 

encompass most of the screen). On clamped feedback trials, the cursor followed a fixed path. As with 765 

veridical feedback, the radial location of the cursor was based on the radial extent of the participant’s 766 

hand. However, the angular position of the cursor was independent of the position of the hand, instead 767 

determined relative to the position of the target. The clamp angle was set at 30° relative to the target 768 

except for Exp 5 and 8 (see below). On no feedback trials, the cursor was blanked at movement onset.  769 

 770 
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On veridical and clamped feedback trials, after the amplitude of the movement reached the target 771 

distance, the cursor was presented at the target distance for another 50ms then it disappeared. Target 772 

disappeared after 200ms. The cursor was then reset to a random position on an invisible circle with a 773 

radius equal to 10% of the target distance and the participant moved the cursor back to the start circle. 774 

 775 

At the onset of the first block of trials involving perturbed feedback, the experiment was paused, and a 776 

set of instructions were presented to describe the clamped feedback. The participant was informed that 777 

the cursor would no longer be linked to their movement but rather would follow a fixed path on all trials. 778 

The participant was instructed to always reach directly to the target, ignoring the cursor. These 779 

instructions were then repeated twice to emphasize the atypical nature of the feedback. After the first 10 780 

trials with clamped feedback, a new instruction screen appeared in which the participant was asked to 781 

indicate where they were aiming on each trial. If the participant indicated they were reaching somewhere 782 

other than the target, the experiment was terminated. 783 

 784 

Each experiment started with two baseline blocks: First a no-feedback block of 10 trials and second, a 785 

veridical feedback block of 10 trials. For experiments using a fixed design (direction and size of 786 

perturbation remain constant), the direction of the clamp (counterclockwise, CCW; clockwise; CW) was 787 

counterbalanced across participants.  788 

 789 

Experiment 1 790 

Exp 1 was designed to determine the parameters of the CPC model. There was a total of 180 trials. The 791 

two baseline blocks were followed by a learning block of 100 trials with clamped feedback with learning 792 

expected to reach an asymptotic level in response to a fixed perturbation. This was followed by a final no-793 
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feedback block of 60 trials. 30 participants were recruited for Exp 1 (29 valid, 5 males, age: 27.4 ± 4.9 794 

years). 795 

 796 

Experiment 2 797 

Exp 2 was designed to measure antegrade interference. The baseline and initial perturbation blocks were 798 

as in Exp 1. For the final block (150 trials), the direction of the clamp was reversed (e.g., from 30° to -30°). 799 

30 participants were recruited for Exp 6 (30 valid, 10 males, age: 30.3 ± 4.3 years).  800 

 801 

Experiment 3 802 

Exp 3 was designed to assess spontaneous recovery and savings in implicit adaptation. The baseline and 803 

initial perturbation blocks were as in Exp 2. We then included a 15-trial block with the clamp reversed 804 

under the assumption that this would be a sufficient number of trials to bring the hand angle back to 805 

baseline. This was followed by no-feedback block (35 trials) to examine spontaneous recovery and then a 806 

100-trial relearning block in which the clamp feedback was identical to that used in the first perturbation 807 

block. 34 participants were recruited for Exp 3 (34 valid, 16 males, age: 22.7 ± 4.8 years).  808 

 809 

Experiment 4 810 

Exp 4 examined how the consistency of the perturbation influenced implicit adaptation. The first blocks 811 

were identical to Exp 3, providing initial exposure to clamped feedback and then a reversed clamp to bring 812 

the hand angle back to baseline. This was followed by a 300-trial block in which the clamp changed sign 813 

in a probabilistic manner. The probability of a sign change was either 90%, 50%, and 12.5% in a between-814 

subject manipulation. The sequence of clamps was preset to ensure that clockwise and counterclockwise 815 

occurred on 50% of the trials each across the 300 trials. The experiment ended with a relearning block in 816 
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which the initial perturbation was presented for 100 trials. 36/40/36 participants were recruited for 90%, 817 

50%, and 12.5% conditions respectively (34/38/33 valid, 37 males, age: 28.6 ± 5.5 years). 818 

 819 

Experiment 5 820 

To estimate the learning rate and retention at top layer of the CPC model, the PF-PC synapse, we 821 

employed a variable design in which the error size and direction varied across trials. After the two baseline 822 

sections, participants completed a 540-trial random perturbation block. Here the clamp size ranged from 823 

-135° to 135° in steps of 1°. The size/direction was determined at random with the constraint that each 824 

clamp was selected once every 270 trials. 72 participants were recruited for Exp 5 (70 valid, 25 males, age: 825 

26.2 ± 5.2 years). 826 

 827 

Experiment 6 828 

Exp 6 was designed to evaluate different models of asymptotic adaptation. A 10-trial feedback baseline 829 

block was followed by a learning block of 100 trials with clamped feedback. We then alternated between 830 

no-feedback and clamp feedback trials for 60 trials (half-wash phase). 40 participants were recruited for 831 

Exp 6 (38 valid, 8 males, age: 30.7 ± 6.6 years). 832 

 833 

Experiment 7 834 

Experiment 7 was designed to measure the time course of retention during the initial washout phase. 835 

After the two baseline blocks, the perturbation block consisted of 31 mini-blocks, each composed of 10 836 

trials with clamped feedback and 10 trials without feedback (620 trials). 57 participants were recruited 837 

for Exp 7 (57 valid, 12 males, age: 28.3 ± 5.4 years). 838 

 839 

Experiment 8 840 
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To quantify the temporal dynamics of volatile processes, we used variable clamped feedback with 841 

extended inter-trial intervals (ITI) in Exp 8. For the long ITI, the interval between the end of one trial and 842 

the start of the next trial was 6 s, 7 s, or 8 s, randomized across trials. The message "wait" was displayed 843 

on the monitor after each trial. Exp 8 included two baseline blocks and a 180-trial learning block in which 844 

a 30° perturbation was randomly selected to be either clockwise or counterclockwise, subject to the 845 

constraint that each direction occurred four times every 8 trials. For the short ITI condition, we used the 846 

data from Exp 4 for the variable condition (0 s ITI). 28 participants were recruited for each condition (27 847 

valid, 13 males, age: 28.1 ± 4.8 years). 848 

 849 

Experiment 9 850 

To understand how the volatile and stable learning processes are jointly modulated by time, we used a 851 

fixed design in Exp 9. The design was similar to that employed in Exp 1 with one notable modification. We 852 

included a 10-trial familiarization block following the two baseline blocks to demonstrate the clamp 853 

feedback. The clamp size in the familiarization block varied from -90° to 90° across trials to show that the 854 

cursor is unaffected by the direction of hand movement. To avoid the influence of pre-exposure to the 855 

error signal on learning, the familiarization block utilized a different target (45°) from the other blocks 856 

(315°). Two groups of participants performed the task with either long ITI (6-8s) or short ITI (0s). 26 857 

participants were recruited for each condition (51 valid, 21 males, age: 26.8 ± 4.6 years). 858 

 859 

Data analyses 860 

Hand angle was calculated as the angle difference a line from the start position to the target and a line 861 

from the start position to the hand position at the target radius. Positive values indicate hand angles in 862 

the opposite direction of the perturbation, the direction one would expect due to adaptation. Trials with 863 

a movement duration longer than 500 ms or an error larger than 70° were excluded from the analyses. 864 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2024. ; https://doi.org/10.1101/2023.07.04.547720doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

We excluded the entire data from participants who had less than 70% valid trials (2.8% participants). 865 

Between-condition comparisons were performed with t-tests or ANOVAs. Learning and relearning were 866 

compared by paired-t-test. For all the statistical tests, we confirmed that the data met the assumptions 867 

of a Gaussian distribution and homoscedasticity.  868 

 869 

Data and Software Availability 870 

The data and code supporting this work are available at https://github.com/shion707/CPC.  871 
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Supplementary Information 1040 
 1041 

Supplemental Result 1: The CPC model accounts for contextual interference. 1042 

 1043 

The two-layer model provides an alternative explanation for another type of context-dependent learning, 1044 

contextual interference. The term is a bit of a misnomer since the phenomenon refers to the fact that, 1045 

while performance gains when training in multiple contexts is slower compared to training in a single 1046 

context, retention is better in the former69,70. As such, exposure to multiple contexts during training 1047 

actually enhances learning as measured by long-term gains. Interestingly, this phenomenon is not limited 1048 

to skill acquisition tasks but is also observed in studies of implicit adaptation81 (Fig S9).  1049 

 1050 

In the revised CPC model, contextual interference occurs due to the parallel operation of volatile and 1051 

stable learning processes. With multiple targets (constituting multiple contexts), the rate of acquisition is 1052 

slower compared to a single target since learning from the volatile process decays between successive 1053 

reaches to a given target. However, early retention is higher since the contribution of the volatile process 1054 

is small. Thus, as with anterograde interference, contextual interference arises from the dynamics of the 1055 

system without postulating any representation of context. 1056 

 1057 

 1058 

 1059 

  1060 
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 1061 
 1062 

Fig. S1 Predictions of the Dual State Space model for Exp 2-3.  The time course of the predicted hand 1063 

angle as well as the underlying states of the fast and slow processes are shown. 1064 
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 1066 

 1067 

Fig. S2 Effect of experience and error consistency on implicit adaptation. a) Attenuation in relearning in 1068 

Exp 3. Adaptation was attenuated in response to re-exposure to a perturbation compared to the initial 1069 

exposure (t(33)=3.1, p=0.004) Data are averaged across each training phase. b) Spontaneous recovery was 1070 

not observed in Exp 3 during the no-feedback phase after washout. Hand angle over the first 5 trials of 1071 

the no-feedback phase (Early) is similar to hand angle over the last 5 trials (Late, t(33)=1.2, p=0.23). c) 1072 

Error consistency did not affect adaptation during initial learning and during relearning in Exp 4. A mixed 1073 

ANOVA showed a main effect of learning/relearning, (F(1,101)=37.7, p<0.001), similar to the antegrade 1074 

interference observed in Exp 6. There was no effect of error consistency (F(2,101)=0.18, p=0.84) or 1075 

interaction between phase and error consistency (F(2,101)=0.12, p=0.88). Box plots indicate median, max 1076 

and min values, and 25% and 75% quartiles.  1077 
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 1078 

 1079 

Fig. S3 Predicted time course of stable and volatile processes in Exps 2-4 and 6. The stable process is 1080 

responsible for anterograde interference (a) and attenuation in relearning (b-c). The volatile process does 1081 

not make a significant contribution to either phenomenon because of its low retention rate. 1082 
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 1084 

 1085 

Fig. S4 Retention increases during the initial washout trials. a) To provide a stronger test of how the rate 1086 

of retention changes (Exp 1), Exp 7 included mini-blocks (10 trials/mini-block) that alternated between 1087 

clamp and no feedback trials. B) We estimated the change in retention rate over time by averaging by trial 1088 

number across the no feedback blocks. Retention is relatively low in the first trials of the washout block 1089 

and gradually rises (F(6,264)=4.64, p<0.001). The dark green curve shows the fit of the CPC model. 1090 
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 1092 

  1093 

Fig. S5 Revised CPC with DCN-IO inhibitory pathway. The original CPC predicts that the asymptote should 1094 

be lower in the long ITI condition compared to the short ITI condition because the latter includes a volatile 1095 

component. However, as shown in Fig 7, the asymptote is similar in the two ITI conditions. This 1096 

observation motivated a revision to the CPC model in which the DCN sends a inhibitory signal to the 1097 

inferior olive. a) Model schematic. DCN-IO inhibition suppresses the error signal to the DCN and cerebellar 1098 

cortex. This suppression is generic given that the output of the DCN integrates activation across 1099 

directionally tuned units. b) When the inter-trial-interval is short, the CS response is suppressed (top). 1100 

Note that the suppression is implemented by subtracting a common value to the IO and thus alters the 1101 

activation in PCs. On the next trial, SS activation is stronger in the long ITI condition since the PF-PC 1102 

synapse will have recovered during the ITI (middle). However, there are a subset of tuned elements that 1103 

in which SS activation is weaker in the long ITI condition (yellow arrows). This weaker activation induces 1104 

adaptation in DCN units tuned to the same direction (bottom). c) State of the volatile and stable processes 1105 

over the course of a fixed design under long and short ITI conditions. The change in the volatile process is 1106 

smaller in the long ITI condition due to forgetting. The stable process is also smaller in the long ITI 1107 
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condition because SS activity at the preferred error direction will dominate learning. However, the long 1108 

ITI condition induces adaptation in neurons with sub-preferred error directions, resulting in larger 1109 

adaptation late in training. 1110 
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1112 

Fig. S6 State-space models fails to explain the learning asymptote. a) A single state motor cannot account 1113 

for fast early learning and slow forgetting. b) The state-space model assumes the asymptote reflect a 1114 

balance between learning and forgetting. As such the asymptote will drop to a half in the half washout 1115 

phase of Exp 6. However, there is only a slight decrease in the asymptote during the half washout, 1116 

consistent with the predictions of the CPC model rather than the dual SS model.  1117 

  1118 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2024. ; https://doi.org/10.1101/2023.07.04.547720doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 60 

 1119 

 1120 

Fig. S7 Contribution of stable and volatile processes in response to variable perturbations. a) The stable 1121 

process (top) contributes to learning during early training and has saturated by the 50th trial. The 1122 

contribution of the volatile process (bottom) remains similar throughout training. b) Change in hand angle 1123 

as a function of trial number when the size and direction of the perturbation varies across trials. The 1124 

change of hand angle is larger in early training because the stable process has not saturated. i) As predicted 1125 

by the two-process CPC model, when exposed to a variable perturbation, the Δhand is larger in early training 1126 

compared to late training. Shaded areas and error bars indicate standard error. 1127 

  1128 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2024. ; https://doi.org/10.1101/2023.07.04.547720doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 61 

 1129 

 1130 

 1131 

Fig. S8 Revised CPC model provides a good fit for the key results for all of the experiments. Dark green 1132 

line depicts model prediction. Error bars (c, g, h, i) and shaded areas (a, b, d, e) indicate standard error. 1133 
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 1135 

Fig. S9 Revised CPC model accounts for effect of number of target locations on adaptation. a) In Tsay et 1136 

al.82, participants were trained with either one target or three targets. In both conditions, participants 1137 

reached to a single target during the washout block. b) Learning functions for the target location probed 1138 

during washout. The 3-target condition showed slower learning but a larger aftereffect. Adding more 1139 

targets is effectively akin to imposing a long ITI since successive reaches to a given target are separated 1140 

by reaches to the other two locations; thus, there is more forgetting but stronger retention due to reduced 1141 

contribution of volatile process. Shaded area in b indicates standard error. Dash lines indicate the 1142 

predictions of the Revised CPC model.  1143 
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