Table 7.
No. | NN | DT | LR | RF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | Accuracy | Sensitivity | Specificity | Accuracy | Sensitivity | Specificity | Accuracy | Sensitivity | Specificity | |
1 | 66.4 | 62.1 | 69.9 | 75.9 | 82.1 | 84.0 | 62.1 | 68.9 | 68.1 | 74.2 | 78.2 | 79.5 |
2 | 68.5 | 72.1 | 72.1 | 80.2 | 86.4 | 86.4 | 65.4 | 69.2 | 69.8 | 76.5 | 72.1 | 82.6 |
3 | 70.4 | 69.4 | 74.2 | 85.6 | 89.4 | 89.5 | 67.8 | 71.5 | 72.9 | 78.9 | 77.5 | 86.8 |
4 | 73.9 | 74.5 | 79.2 | 87.6 | 88.9 | 88.6 | 69.8 | 70.2 | 74.1 | 80.5 | 76.5 | 84.5 |
5 | 72.5 | 76.5 | 75.5 | 89.4 | 90.5 | 90.5 | 70.5 | 72.1 | 75.1 | 81.9 | 89.9 | 88.4 |
6 | 75.4 | 79.5 | 79.2 | 88.4 | 91.5 | 91.5 | 75.1 | 76.5 | 70.5 | 83.9 | 86.4 | 89.8 |
7 | 76.4 | 76.8 | 75.4 | 90.2 | 94.2 | 92.4 | 72.1 | 75.4 | 76.0 | 84.4 | 90.1 | 90.5 |
8 | 79.2 | 77.6 | 77.6 | 93.5 | 97.5 | 96.5 | 74.5 | 79.5 | 77.9 | 87.1 | 93.1 | 93.5 |
9 | 78.2 | 80.5 | 81.2 | 94.5 | 98.4 | 95.4 | 76.5 | 76.8 | 78.5 | 89.4 | 95.4 | 94.2 |
10 | 80.2 | 79.8 | 80.7 | 97.1 | 100 | 96.4 | 77.2 | 77.5 | 77.2 | 87.2 | 92.1 | 93.1 |
11 | 77.6 | 78.0 | 77.1 | 96.1 | 100 | 95.2 | 77.1 | 80.0 | 74.1 | 84.6 | 89.1 | 90.2 |
12 | 82.8 | 88.5 | 77.0 | 96.5 | 100 | 96.7 | 78.2 | 78.1 | 78.4 | 85.4 | 90.2 | 89.8 |
13 | 83.2 | 85.3 | 81.0 | 95.4 | 100 | 94.2 | 74.1 | 74.7 | 73.5 | 85.6 | 88.5 | 91.2 |
NN: neural network, DT: decision tree, LR: logistic regression, RF: random forest.