Skip to main content
. 2023 Jul 3;16:1153641. doi: 10.3389/fnmol.2023.1153641

TABLE 7.

Multiple linear regression model with neuroimaging features explaining migraine frequency, after controlling for age, BMI, and disease duration.

Model Predictors β SE T score p-Value VIF R 2 D-W value
1 Age −0.487 0.742 −0.656 0.516 1.495 0.105 0.763
BMI 1.375 1.560 0.882 0.384 1.447
Duration 0.342 0.226 1.513 0.140 1.196
2 Age −0.078 0.506 −0.155 0.878 1.520 0.617 2.067
BMI 1.038 1.061 0.978 0.336 1.465
Duration 0.114 0.163 0.702 0.488 1.361
ROI 6 to C1 1.659 0.404 4.109 <0.001** 1.053
ROI 1 −2.587 0.654 −3.953 <0.001** 1.177
3 Age −0.496 0.458 −1.084 0.288 1.641 0.738 1.856
BMI 0.813 0.928 0.876 0.389 1.477
Duration 0.115 0.145 0.790 0.436 1.420
ROI 6 to C1 1.253 0.389 3.217 0.003** 1.290
ROI 6 to C2 −0.505 0.375 −1.347 0.189 2.072
ROI 1 −1.571 0.765 −2.054 0.049* 2.118
ROI 4 −0.991 0.596 −1.662 0.108 1.644
ROI 6 −1.070 0.621 −1.722 0.096 1.409

*p < 0.05; **p < 0.01; n = 36. β, parameter estimate; SE, standard error; VIF, Variance Inflation Factor; D-W value, Durbin-Watson value; BMI, body mass index; ROI 6 to C1, the rsFC of left SPG to left MOG; ROI 6 to C2, the rsFC of left SPG to left AG; ROI 1, right supramarginal gyrus; ROI 4, left middle occipital gyrus; ROI 6, left superior parietal gyrus.