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Abstract

Learning methods, such as conventional clustering and classification, have been applied in 

diagnosing diseases to categorize samples based on their features. Going beyond clustering 

samples, membership degrees represent to what degree each sample belongs to a cluster. Variation 

of membership degrees in each cluster provides information about the cluster as a whole and each 

sample individually which enables us to have insights toward precision medicine. Membership 

degrees are measured more accurately through removing restrictions from clustering samples. 

Bounded Fuzzy Possibilistic Method (BFPM) introduces a membership function that keeps the 

search space flexible to cluster samples with higher accuracy. The method evaluates samples for 

their movement from one cluster to another. This technique allows us to find critical samples in 

advance those with potential ability to belong to other clusters in the near future. BFPM was 

applied on metabolomics of individuals in a lung cancer case-control study. Metabolomics as 

proximal molecular signals to the actual disease processes may serve as strong biomarkers of 

current disease process. The goal is to know whether serum metabolites of healthy human can 

be differentiated from those with lung cancer. Using BFPM, some differences were observed, the 

pathology data were evaluated, and critical samples were recognized.
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1 Introduction

In diagnosing diseases from -omic analysis, some learning methods have been utilized. 

Furey et al. (2000) proposed support vector machine (SVM) method to classify tissues 

based on gene expression samples [1]. Shen et al. (2009) discussed some clustering 

techniques mostly latent variable models to reduce data dimension [2] and identify subtypes 

of breast and lung cancer. Liu et al. (2005) applied supervised learning strategies using 

genetic algorithms and SVM method to reduce discriminant gene features and overcome 

the complexity of large scale microarrays data [3]. In addition to partitioning samples, 

membership functions allocate a degree (between zero to one) to each sample [4]. In some 

methods, partial assignments are not covered and samples with degree one from one cluster 

have zero degree in other clusters. In some other methods, samples with degrees less than 

1 from one cluster can obtain partial membership degrees in other clusters depending on 

how far their degrees are from 1 [5]. To reduce the limitations of clustering procedures and 

sample analysis, Bounded Fuzzy Possibilistic Method (BFPM) [6] identifies membership 

degrees with respect to all clusters in contrary to methods that sharply separate samples. 

Using BFPM, we evaluate sample movement based on assigned membership degrees to 

predict the behavior. Studying membership degrees in addition to clustering provides better 

insights on samples and may lead to prevention and more effective treatments. Here, we 

apply BFPM on a set of samples featured by metabolites. Metabolomics is an emerging 

technology platform that has shown early success in identifying biomarkers and mechanisms 

of diseases [7], [8]. The hypothesis is whether we can differentiate serum metabolites of 

healthy individuals from those with lung cancer. Actually, we want to differentiate not only 

healthy vs. Lung Cancer, but also associate patterns with clinics-pathological behaviour 

of lung cancer. The rest of this paper is organized as follows. Some of the well known 

approaches in machine learning are explored in Section 2. Different data types in machine 

learning have been studied in Section 3. Several advanced research activities have been 

explored as related work in Section 4. A case study on metabolites is discussed in Section 5. 

Tissue and serum samples are compared in this section too. Future plans and discussions are 

studied in Section 6, and a brief conclusion is presented in Section 7.

2 An overview to clustering methods and membership functions

Clustering is a form of unsupervised learning methods that categorizes samples based 

on their similarities. Unlike supervised methods, there is no training step in clustering 

approaches [9], [10]. Assume a set of n samples presented as numerical feature-vector data 

O = {o1, o2, …, on} in d dimensional search space as oj = {oj1, oj2, …, ojd} categorized in c clusters. 

Samples are assigned membership degrees represented as a c × n matrix U = [uij] known 

as partition or membership matrix, where uij is the membership degree for the jtℎ sample 

(object) in the itℎ cluster. The most common membership functions can be categorized as 

crisp, fuzzy, probability, possibilistic, and bounded fuzzy possibilistic methods.

2.1 Crisp methods

Crisp methods classify samples in non-empty and mutually disjoint subsets, presented by 

Eq. (1).
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Mℎcn = U ∈ ℜc × n ∣ uij ∈ {0, 1}, ∀j, i;

0 < ∑
j = 1

n
uij < n, ∀i; ∑

i = 1

c
uij = 1, ∀j

(1)

In these methods uij can obtain values either zero or one. uij = 1 means that the jtℎ sample 

is a member of the itℎ cluster, and uij = 0 indicates that the jtℎ sample does not belong 

to the itℎ cluster. Crisp methods are mostly used in some partitioning approaches such as 

hierarchical methods, SVM, decision trees, and network fusion methods where samples are 

sharply separated [11].

2.2 Fuzzy or probability methods

Fuzzy or probability methods, presented by Eq. (2), make the search space more flexible for 

samples to participate in more than one cluster by partial membership degrees [12].

Mfcn = U ∈ ℜc × n ∣ uij ∈ [0, 1], ∀j, i;

0 < ∑
j = 1

n
uij < n, ∀i; ∑

i = 1

c
uij = 1, ∀j

(2)

Fuzzy methods have some limitations in membership assignments due to allowing each 

sample to be a member of only one cluster with full membership degree, shown by 

constraint (∑i = 1
c uij = 1) [13], [14].

2.3 Possibilistic methods

Possibilistic methods, presented by Eq. (3), provide wider environment for samples to 

participate in more clusters [15].

Mpcn = U ∈ ℜc × n ∣ uij ∈ [0, 1], ∀j, i;

0 < ∑
j = 1

n
uij < n, ∀i; max

1 ≤ i ≤ c
uij > 0, ∀j

(3)

Possibilistic methods relax the membership condition (∑i = 1
c uij = 1) by ( max

1 ≤ i ≤ c
uij > 0) [16]. 

The method has some drawbacks in its early initializations [17]. These methods also lack of 

definite upper and lower boundaries for each cluster [18]. Without the definite boundaries, 

on one side, the method cannot be implemented precisely, and on the other side, samples 

participate in other clusters with less flexibility.
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2.4 Bounded Fuzzy Possibilistic Method

Bounded fuzzy possibilistic method (BFPM), presented by Eq. (4), provides the most 

flexible environment for samples to participate in multiple clusters, and even obtain full 

membership degrees from all clusters.

Mbfpm = U ∈ ℜc × n ∣ uij ∈ [0, 1], ∀j, i;

0 < ∑
j = 1

n
uij < n, ∀i; 0 < 1 ∕ c ∑

i = 1

c
uij ≤ 1, ∀j

(4)

BFPM covers crisp, partial, and full membership degrees for samples with respect to all 

clusters and allows them to obtain membership degrees from any cluster, with no limitation. 

Based on membership assignments and Eq. (1)-Eq. (4), it can be concluded:

Mℎcn ⊂ Mfcn ⊂ Mpcn ⊆ Mbfpm .

As seen, each learning method makes use of a specific membership function in learning 

procedure. This study focuses on BFPM membership function as a superset of other 

membership functions to provide the most flexible searching space, besides assigning more 

precise membership degrees with respect to all clusters. In addition to membership function, 

there are other important parameters in learning methods which affect the accuracy of 

selected approaches. Similarity functions and data type can be also selected as crucial 

parameters in learning procedures [11], [19]. The most accurate similarity functions lead to 

extracting similar samples [20] with known or labelled samples which consequently result in 

distinguishing a proper category for specific samples [21], [22]. This paper leaves similarity 

functions untouched in following sections, but considers the data types by illustrating data 

type taxonomies and focusing on those that are applied in the case study.

3 Data Type

In learning methods, one of the most important factors is type of data. Lack of well 

consideration on data types misleads learning methods to recognize objects from the same 

category and eventually lose needed information. The first and the most important factor 

in learning methods is the ability to differentiate data objects in order to choose accurate 

approaches in learning procedures with respect to each particular object. Each type of object 

has its own properties and influences on final results, regardless of type of learning method. 

To differentiate data types and their impacts on learning approaches, analysing data types 

from different points of view is indispensable. This paper explores different types of objects 

with regard to their behaviour and their structures. Structural-based and behavioural-based 
categories are two main data type categories, and each one of the categories includes 

different subcategories, briefly explored as follows.
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3.1 Structural-based Category

Data objects are categorized into different groups according to their structures listed as 

single or multivariable, complex, and advanced objects.

• Single or Multi-variable objects

– Single-variable object: Objects of a single variable can be presented 

by X = {x1, x2, …, xn}, where n is the number of objects (xi).

– Multi-variable object: Objects with more variables on data set or 

population X = {X1, X2, …, Xn}, where n is the number of objects and 

Xi = {x1, x2, …, xd} presents each object with d variables or dimensions.

• Complex objects: Due to the growth of data in recent years, learning methods 

need to consider data objects in different structures rather than above mentioned 

categories. Data objects that are categorized as complex objects are listed as 

follow.

– Structured Data Object: HTML files.

– Semi-structured Data Object: XML files.

– Unstructured Data Object: text files.

– Spatial Data Objects: maps/medical images.

– Hypertext: messages, reports, documents,… .

– Multimedia: videos, audio, musics, and ….

• Advanced Objects: The need of evaluating data objects in an accurate and 

efficient way leads to considering a set of objects with common properties as a 

new object or a superset of some objects to accelerate the learning procedures. 

Advanced objects can be categorized as follow.

– Sequential Patterns.

– Graph and Sub-graph Patterns.

– Objects in Interconnected Networks.

– Data Stream, or Stream Data.

– Time Series.

3.2 Behavioural-based Category

In addition to the structure of data object, learning methods need to consider the behaviour 

of each data object individually in order to evaluate the influences of each particular object. 

According to model-based approaches, data objects are divided into different categories by 

attempting to optimize the fit between the data and some mathematical models, when the 

data objects are generated by a mixture of underlying probability distributions [23]. The 

data model can be extracted from a Gaussian mixture, a regression-based, or a proximity-
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based model. Data objects are categorized into three main categories with respect to their 

behaviour known as Normal, Outlier, and Critical objects [24].

• Normal Objects Data object can be considered as normal object, if the object 

follows one of the discovered data patterns.

• Outliers Data objects that do not fit the model of the data, and do not obey 

the discovered patterns of the data are considered as outliers [25]. Outliers are 

far from the rest of objects in data sets and may change the behaviour of the 

model if they are considered in learning procedures and measurements. Outliers 

are mostly known as noise or exceptions and are usually removed from data sets 

in most applications. There are however some applications that perform based on 

anomaly analysis while some statistical distributions and probability models are 

used to check the occurrence of outliers [26].

• Critical Objects Unlike outliers, a data set may contain objects that follow the 

discovered patterns and do fit into more than one even all data models. The 

model and pattern of the data remain unchanged by considering critical objects, 

as these objects obey the patterns of the data and they are in the discovered 

patterns. Critical objects are mostly known as partial or full members of several 

clusters or partitions. Removing critical objects from data sets result in losing 

useful information, so these objects cannot be removed from any cluster that they 

participate in. The other important property of critical objects is that they have 

potential ability to move from one cluster to another (object’s movement) by 

getting small changes even in one dimension in feature spaces [27].

Further to the data type’s taxonomies, this paper provides some experimental verifications 

on multi-variant, normal and critical objects with regard to lung cancer samples. The idea is 

to evaluate the relations between different data types and some particular diseases. This 

paper also considers outliers in its experimental verifications without discussing about 

outlier detections.

4 Related Work

Sayes et al. (2007) gathered useful information related to feature selection techniques 

from machine learning and data mining to mention the importance of choosing the proper 

features in learning procedures [28]. Authors discussed about some approaches in different 

categories of features selections approaches known as Filter, Wrapper, and Embedded or 

Hybrid methods. Advantages and disadvantages of using any type of feature selection 

techniques have been explored by the authors. The discussion was mostly related to 

classification techniques where the learning methods have some background knowledge 

about the features in advance, and the knowledge helps the learning method to supervise 

the training strategy. The goal of the paper was to deal with the data sets that suffer 

the lack of enough samples or need to work on high dimensional search space [29]. The 

paper also evaluated the feature selection approaches according to structure of data objects 

either from uni-variant or multivariant category. Moving towards working with big data 

in high dimensional search space [30], the art of using feature selection for choosing the 

most important features to reduce the complexity and also obtaining the better accuracy is 
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undeniable [31]. Zou et al. (2016) discussed about the pros and cons of filter and wrapper 

methods by studying the challenges of different methods on big data in dimensionality 

reduction from high to low dimensional search space [32]. The authors proposed a new 

distance function named Max-Relevance-Max-Distance based dimensionality reduction in 

their feature selection strategy in classification problems. Max-relevance-max-distance has 

been used in proteinprotein interaction prediction and image classification. One of the 

challenges in classification is identification of the border of each class. Using genome 

information as instrumental variables, Yazdani et al. (2016) have introduced an approach 

for the border identification based on effect size and directionality between variables [33], 

[34]. Unlike classification methods, clusterings make use of unsupervised methods. Xu 

et al. (2015) applied a clustering algorithm named shared nearest neighbor (SNN)-Cliq 
to cluster single-cell transcriptomes with regard to group cells that belong to the same 

cell types based on gene expression patterns [35]. The authors implemented their method 

using the most well-known Euclidean distance function to evaluate the neighbours and 

applied their method on human cancer and embryonic cells. Further to the authors, in 

single-cell transcriptome analysis, clustering helps to group individual cells based on their 

gene expression levels, which consequently lead to characterizing cell compositions in 

tissues to obtain better view on the physiology and pathology of the tissues and the 

developmental process. Lu et al. (2015) considered the causes of cancers by paying more 

attention to molecular abnormalities [36]. They followed the idea of personalized cancer 

therapy (PCT), by determining the exact alterations and molecular abnormalities of a 

specific cancer, where different types of cancer are caused by different genetic abnormalities 

(e.g., mutation, deletion, replication, translocation, and so on). The importance of using 

bioinformatics techniques in mathematical and computational systems in assessing genomic 

and molecular abnormalities has been covered by the authors. Kunz et al. (2017) considered 

lung cancer as a late diagnosis and limited intervention treatment, which bioinformatics 

can contribute to the development of non-invasive diagnostic tools for early lung cancer 

diagnosis [37]. They explored several bioinformatics methods and tools on microRNAs and 

non-coding RNAs. The authors explored different pathologic types of Non-Small Cancer 

Cell (NSCC) adenocarcinoma (AC) and squamous cell carcinoma (SQ) as 85% of the 

most often diagnosed subtype, whereas small-cell lung carcinoma (SCLC) as 15%) of the 

most aggressive subtype but less observed, in addition to list several tools for different 

proposes in genome browser, Folding prediction, Functional classification, Functional 
analysis, Interactions/pathways, Promotor analysis, nRNA sequence database, and so on.

5 Methodology

Extracting knowledge from datasets can be obtained by running different learning methods, 

either supervised (classification) or unsupervised (clustering) methods. The accuracy of 

classification techniques is mostly measured through the percentage of the correct labelled 

samples and strongly depends on the correct selection of samples and the number of samples 

in each class [38]. A large number of samples in one class dominates the accuracy and 

using some techniques such as t-test are needed to control the quality for the small sizes 

[38]. Therefore, in this study, we aim to utilize clustering techniques due to the different 

number of case and control individuals in our dataset. Furthermore, clustering techniques 
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can lead to presenting the degree that cases are different from controls. We here employ 

BFPM clustering method to illustrate the similarity between samples. Moreover, covering 

sample movements and having a flexible search space encouraged us to present Algorithm 1 

[5] in clustering methods based on BFPM membership function. The former concept leads 

to computing the potential ability of each sample to participate in another cluster, and the 

latter one is to cluster samples based on a flexible search space (diversity). Using BFPM, 

facilitates finding critical samples those that are about to move from healthy to cancer 

category or vice versa.

5.1 BFPM Algorithm

BFPM algorithm is introduced to assess the behaviour of healthy, cancer, and critical 

samples in addition to provide a flexible clustering search space. The algorithm aims to 

reveal information about healthy and lung cancer samples through analysing metabolites.

Algorithm 1 BFPM Algorithm

Input: X, c, m
Output: U, V
Initialize V;

while max
1 ≤ k ≤ c

{‖V k, new − V k, old‖2} > ε do

uij = ∑
k = 1

c ‖Xj − vi‖
‖Xj − vk‖

2
m − 1

1
m

, ∀i, j (5)

V i = ∑j = 1
n (uij)mxj

∑j = 1
n (uij)m

, ∀i ; (0 < 1
c ∑

i = 1

c
uij ≤ 1) . (6)

end while

Eq. (5) shows how the algorithm calculates uij based on a distance function, here Euclidean 

distance. Eq. (6) describes how the prototypes vi will be updated in each iteration using 

BFPM membership function presented by Eq. (4). The algorithm runs until reaching the 

condition:

max
1 ≤ k ≤ c

{‖V k, new − V k, old‖2} < ε

The value assigned to ε is a predetermined constant that varies based on type of samples 

and clustering problems. U is the (c × n) partition matrix, V = {v1, v2, …, vc} is the set of 

c cluster centres (prototypes) in ℜd, m is the fuzzification constant to provide different 

distance measurements, and ‖ ⋅ ‖A is any inner product A-induced norm. Different values 

of m provide different distance functions in different norms. In the proposed algorithm the 

Euclidean distance function, which is presented by Eq. (7), is utilized as a similarity function 

in membership assignments.
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DE = ∑
i = 1

d
∣ ol − oj ∣2

= (ol1 − oj1)2 + (ol2 − oj2)2 + … + (old − ojd)2
(7)

where d is the number of features or dimensions, and ol and oj are two different samples in d
dimensional search space.

5.2 Case Study

Metabolomics is emerging as an important technology platform that measures chemistry 

which represents an integrated readout of upstream genetic, transcriptomic, and proteomic 

variation [39], [40]. In a case and control lung cancer study, we want to know if there is 

any difference between serum metabolites of case and control. We also want to evaluate the 

pathology data through tissue metabolites.

Study Sample: Serum and tissue samples were obtained from the Harvard/MGH lung 

cancer susceptibility study repository. Informed consent was obtained from lung cancer 

patients and healthy controls prior to banking samples and after the nature and possible 

consequences of the study were explained. There are 231 samples, 101 are tissue samples 

and 101 are serum samples of the same individuals with lung cancer and 29 are serum 

samples of healthy individuals. In total, 61 metabolites (spectral regions) were measured 

in the following process. Researchers were blinded to the status of the samples during 

all measurement and experimental steps. Samples were stored at −80° C until to analysis. 

High resolution magic angle spinning magnetic resonance spectroscopy (HRMAS MRS) 

measurements were performed using our previously developed method on a Bruker Avance 

(Billerica, MA) 600 MHz spectrometer. Measurements were conducted at 4° C with a 

spin-rate of 3.6 Hz and a Carr-Purcell-Meiboom-Gill sequence with and without water 

suppression. Ten μL of serum or ten μg of tissue were placed in a 4 mm Kel — F zirconia 

rotor with ten μL of D2O added for field locking. HRMAS MRS spectra were processed 

using AcornNMR-Nuts (Livermore, CA), and peak intensities from 4.5 — 0.5 ppm were 

curve fit. Relative intensity values were obtained by normalizing peak intensities by the total 

intensity of the water unsuppressed file. The resulting values which were less than 1% of 

the median of the entire set of curve fit values were considered as noise and eliminated. 

Spectral regions were defined by regions where 90% or more of samples had a detectable 

value, with 32 regions resulting. Following MRS measurement, tissues were formalin-fixed 

and paraffin-embedded. Serial sectioning was performed by cutting 5μm — thick slices 

at 100μm intervals throughout the tissue, resulting in 10 — 15 slides per piece. After 

haemotoxylin and eosin (H&E) staining, a pathologist with > 25 years experience read the 

slides to the closest 10% for percentages of the following pathological features: cancer, 

inflammation/fibrosis, necrosis, and cartilage/normal. The available dataset is normalized in 

an interval [0, 1] which includes 71 features in total. Features contain five categorical or 

qualitative variables and all of them are nominal, 61 independent numerical or quantitative 

variables (metabolites) which all of them are ratio with discrete values, and five numerical 

variables as ratio type with discrete values. Feature selection techniques also assist the 
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learner to obtain better accuracy, in addition to reduce the complexity of the procedure 

[41], but in here, the features are considered with the same priority and all the features are 

evaluated in the clustering procedure.

5.2.1 Clustering and analysing serum samples—Here, we utilized the BFPM for 

clustering to see behavior of samples tested based on metabolites. The BFPM employs 

membership degrees for clustering samples and provides information about each sample 

individually in addition to insights into reliability of the clusters. In general, the number 

of clusters can be estimated using different techniques, such as visualization of the dataset, 

optimization under probabilistic mixture-model framework, using certain validity indices 

to evaluate the intra-cluster and inter-cluster similarities, and other heuristic approaches 

[42]. However, each of these approaches suffers some sort of bias. For example, validity 

indices can be biased through using some parameters in the evaluation’s procedures such as 

dominant feature in similarity functions [43]. Visualization techniques on the other hand are 

extremely sensitive to the chosen dimensions [44], [45]. In this study however, we analyze 

the results obtained from different number of clusters to find patterns in the data associated 

with clinic-pathological behavior of lung cancer to differentiate healthy from lung cancer 

samples.

Some results of clustering are depicted in Fig. 1 and Fig. 2 where on the X axes, samples 

are located. The first 101 samples are serum metabolites of individuals with lung cancer. The 

last 29 samples are serum metabolites of the healthy individuals. On the Y  axes membership 

degrees for each sample is provided, varying from 0 to 1. Fig. 1.b shows two lines. The 

upper one connects the membership degrees of each sample in the current cluster in Fig. 

1.a. The lower line connects membership degrees of each sample in the second cluster. Here, 

we analyze the serum samples excluding the tissue samples with the aim of highlighting 

similarities and differences among the serum samples. By analysing serum samples with 

regard to both clusters, Fig. 1, we see healthy and cancer samples spread in both clusters. 

This is not surprising due to sharing common parameters between cancer and healthy 

samples. Extracting similarity between healthy and unhealthy individuals through serum 

samples was a lead to increase the number of clusters to check in what extend samples show 

their properties. Therefore, different number of clusters have been chosen and interesting 

information has been obtained accordingly. The most significant achievements were related 

to the results of clustering samples into four clusters, presented by Fig. 2. Digging in Fig. 

2, we could observe differences between healthy and cancer samples, reviewed below. Very 

interestingly, we noticed that no healthy sample is categorized in the diamond cluster. We 

can also see samples in the diamond cluster have high membership degrees that represent 

the reliability of the cluster. Having no healthy sample in the diamond cluster generates 

a hypothesis that these samples must differ from the other cancer samples. Results from 

analyzing covariates of individuals in the diamond cluster and comparing with the rest of 

cancer individuals are summarized in Table 1. These individuals have shorter survival time 

and nearly 15% more with squamous cell carcinoma than adenocarcinoma.

Very similar to the diamond cluster that includes no healthy individuals, the square cluster 

includes only three healthy individuals and the rest of 23 individuals have cancer. Table 

2 includes the analysis of individuals in the square cluster in terms of covariates. From 
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Table 1 (analysis of cancer samples in the diamond cluster) and Table 2 (analysis of cancer 

samples in the square cluster), we see percentages of cancer types adenocarcinoma and 

squamous cell carcinoma are different in these two clusters. We may conclude that the 

serum metabolites of individuals with adenocarcinoma cancer is different from squamous 

cell carcinoma cancer and they are different from healthy metabolites. This means not 

only some differences between the serum metabolites of healthy and cancer individuals are 

observed but also the serum metabolites of different types of cancers are different. On the 

other hand, only six out of 101 cancer samples are categorized in the circle cluster where 

more than one third of the healthy samples are categorized. This generates a hypothesis 

that these six cancer samples have distinctive features from other cancer samples. Table 

3 compares the circle samples with the remaining cancer samples. We can see these six 

individuals are almost 8 years younger than the rest of cancer samples and more than 66% 

are adenocarcinoma patients. They are almost 11 years younger than the healthy samples 

in the same cluster. We may conclude younger people with lung cancer have metabolites 

similar to older healthy people.

5.2.2 Critical Samples—According to the properties of data types, critical samples 

follow the patterns of more than one cluster fully or partially. Therefore, critical samples 

obtain membership degrees from more than one cluster [27]. As a result, they are 

distinguishably separated from the other samples in a cluster according to their behaviour 

with respect to both clusters, see Fig. 1.b for a critical sample indicated by a black circle. 

Fig. 1.b shows that the critical sample obtained very similar membership degrees in both 

clusters in comparison with the other serum samples. In Table 4, we compare the critical 

sample with the other cancer samples in the same (square) cluster. In the analysis, we 

noticed that one sample, number 20 in Fig. 1.b, obtained almost similar membership degrees 

from both clusters. It has distinguishably a lower membership degree compared to the other 

samples in the cluster, Fig. 2.a. Critical objects can be chosen with a predefined threshold 

that varies by approaches and datasets. The threshold can be calculated based on the lower 

boundary of the assigned membership degrees to object with respect to all clusters [6]. The 

critical object presented here is selected as an example. The advantage is to know how to 

evaluate and treat those samples with potential ability to move from healthy to unhealthy 

cluster or vice-versa.

5.2.3 Pathology data assessment—The BFPM clustering approach was used on the 

metabolomic case and control data set to evaluate dissimilarity between healthy and cancer 

samples according to the stage of their diseases. Through categorizing the serum samples 

in four clusters in Fig. 2, using BFPM, we found that the diamond cluster includes only 

the cancer samples and not healthy sample. Through further analyses of these samples and 

comparing with the rest of cancer samples with regard to covariates, we noticed that the 

diamond samples have severe cancer, shorter survival time, shorter life time, and more 

squamous cell carcinoma rather than adeno carcinoma cancer. It should be noted that the 

results presented in Table 5 to Table 8 are related to the 101 tissue samples matched 

with the 101 serum samples. From the analysis of the pathology data depicted in Table 5, 

we observed that the diamond samples have more than 7% cancer cell as compared with 

the other cancer samples. However, in terms of necrosis cells, the diamond samples have 
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50% necrosis cells less than other samples. In Table 6 and Table 7, we also analyzed the 

pathology data of the diamond samples. From Table 6, we see almost 86% of the diamond 

samples with short survival time are diagnosed at the stage low and almost 60% have short 

survival time while through pathology they have less than 20% cancer cell. From Table 7, 

we see more than 45% of the diamond samples have less than 10% necrosis while their 

survival is short. Therefore, from Tables 6 and 7, we may conclude that the diamond samples 

are misdiagnosed through pathology analysis. However, from serum analysis, the diamond 

samples with severe cancer are separated from healthy individuals. In Table 8, we look at the 

pathology of the critical sample. We can see that 100% cells of the sample are benign and 

therefore, the sample is diagnosed at stage low, while the survival time of the critical sample 

is low. Table 9 provides some information related to the star samples, cancer and healthy 

samples in star, presented by Fig. 2 according to covariant variables: five year survival 

(short/long), cancer stage (low/high), average age, smoked cigarette, and cancer type (s/a).

6 Discussion

Bounded Fuzzy Possibilistic Method (BFPM) is a methodology to assign memberships 

to objects which can be used in clustering algorithms. Using BFPM, we clustered case 

and control samples tested by serum metabolites. BFPM can be applied on any dataset, 

as long as they are selected from or converted to the data types discussed above (single 

or multivariable, complex, and advanced objects). There are several parameters that lead 

to different results in clustering algorithms and membership function is considered as one 

of the most important parameters [6]. Clustering methods discussed in this paper utilize 

membership assignments in a way that prevents samples to easily participate in different 

clusters as a full or partial member [24]. However, BFPM due to its feature of membership 

assignments (0 < 1 ∕ c∑i = 1
c uij ≤ 1, ∀ j), allows samples to participate in other, even all, 

clusters with a full or partial membership [5]. Through analysis of healthy and cancer 

individuals at different clusters, we generated some hypotheses. We tried to assess the 

hypotheses through analysis of covariates. In general, the number of clusters is estimated 

using different techniques with pros and cons, discussed in previous sections, but in this 

study we identify the number of clusters through analyzing the results. We noticed no 

healthy individual was in the diamond cluster. Therefore, we hypothesized that diamonds 

are different from the other cancer samples. This hypothesis was strengthened through 

comparison of the diamonds’ covariates and the rest. We also analyzed pathology data. 

Based on our analysis, the tissue samples could not be well clustered. We could also see the 

diamond samples hypothesized with sever cancer through serum metabolite had more than 

7% cancer cell as compared with other cancer samples. However, in terms of necrosis cells, 

the diamond samples had 50% less necrosis cells than other samples. This paper discussed 

critical samples those that follow the patterns of more than one cluster. Knowing the type 

of samples and their potential movements in advance empowers us to cut the extra cost 

for further treatments. The proposed method recognizes critical samples, where most of 

conventional methods have difficulties in their membership assignments to analyze critical 

samples. Most of conventional distance functions (such as Euclidean distance) evaluate 

samples based on their total distance values. New similarity functions, which we introduced 

previously [43] provides an opportunity to work on each metabolite (feature) accordingly. 
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Working on the impact of each metabolite on the final results using the proposed similarity 

functions is considered for a future plan. Analyzing the behavior of samples with respect to 

metabolites in supervised learning methods is also our future plan.

7 Conclusion

Bounded Fuzzy Possibilistic Methods (BFPM) provides an opportunity to identify some 

differences between serum of healthy and lung cancer samples. Using BFPM, we can also 

evaluate the pathology. The method recognizes the critical samples in prevention strategies 

for those samples that are going to move to another cluster. Our findings strengthened the 

hypothesis that there are some differences between serum metabolites of healthy and cancer 

samples.
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Fig. 1. 
serum samples tested by 61 metabolites using BFPM. The first 101 samples on X axis 

are from serum of individuals with lung cancer, and the last 29 samples are from healthy 

individuals. The Y axis represents the membership degrees in an interval [0, 1].
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Fig. 2. 
Serum samples in 4 clusters. No healthy sample in the diamond cluster generates a 

hypothesis that diamond samples are different from the other cancer samples. This 

hypothesis is strengthened through the covariate assessment.
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