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Abstract

Interferons (IFNs) are antiviral cytokines that play a key role in the
innate immune response to viral infections. In response to viral
stimuli, cells produce and release interferons, which then act on
neighboring cells to induce the transcription of hundreds of genes.
Many of these gene products either combat the viral infection
directly, e.g., by interfering with viral replication, or help shape the
following immune response. Here, we review how viral recognition
leads to the production of different types of IFNs and how this pro-
duction differs in spatial and temporal manners. We then continue
to describe how these IFNs play different roles in the ensuing
immune response depending on when and where they are pro-
duced or act during an infection.
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Introduction

An effective immune response starts with the recognition of an

invading pathogen by the innate immune system, which is mediated

by a set of receptors called pattern recognition receptors (PRRs)

(Mogensen, 2009; Chow et al, 2015). Once the PRRs detect a virus,

they initiate a series of signaling events, leading to the establish-

ment of an immune response towards the intruding pathogen. The

key mammalian PRRs responsible for the induction of IFN produc-

tion are shown in Fig 1. This concept is conserved throughout meta-

zoan evolution (Holleufer et al, 2021; Slavik et al, 2021) and early

components of this system are found in bacteria as well (Morehouse

et al, 2020). In this review, we focus on the mammalian response to

viral infections but with a particular focus on interferon (IFN), a

group of cytokines that acts as signaling molecules and triggers anti-

viral defenses in cells. IFNs are divided into three types, depending

upon their receptor usage: Type I IFNs encompass multiple subtypes

but here we will only be discussing IFN-a and IFN-b. Type II IFN

only has one member, IFN-c, which does not play a major role in

the induction of an antiviral state, and it is not discussed further

here. Finally, there are type III IFNs, which are also called IFN-k.
Table 1 lists the different subtypes of IFN and classifies them into

types I, II, or III IFNs.

Mammals are complex animals and viral recognition can lead to

widely different outcomes depending on the kind of tissue in which

it happens. The implications of this on the spatial/temporal distribu-

tion of IFN production and the ensuing consequences will be

discussed in detail throughout this review, as we suggest the follow-

ing working model. Recognition of a viral infection in barrier tissues

leads to local IFN responses driven by the local production of IFN-b
and IFN-k, whereas recognition of viruses that have penetrated the

barrier tissue leads to large-scale production of IFN-a and the result

is a systemic IFN response. In the first case, IFN production gener-

ally originates from infected cells whereas in the latter case,

immune cells, such as plasmacytoid dendritic cells (pDCs), can con-

tribute with large amounts of IFN. Notably, pDCs do not need to be

productively infected (defined as an infection that leads to viral

progeny) themselves in order to initiate IFN production (Swiecki &

Colonna, 2015). Finally, microbiota found at mucosal surfaces also

drives a tonic IFN response (Bradley et al, 2019).

Viral recognition

As the name implies, PRRs recognize specific molecular patterns

called pathogen-associated molecular patterns (PAMPs) originating

from the pathogen. The primary PAMP for viruses is nucleic acids,

including foreign nucleic acids structures, like 50-phosphorylated
RNA and dsRNAs that are specifically associated with viral infec-

tions, and generic nucleic acids that may be perceived as foreign

when located in a cellular compartment where they are not nor-

mally found. In mammals, there are three major pathways for the

recognition of a viral infection (see Fig 1). (i) The endosomal toll-

like receptors (TLRs), which can recognize either dsRNA (TLR3)

(Alexopoulou et al, 2001) or a variety of single-stranded nucleic

acids present within endosomes or phagosomes (TLR7, 8 or 9; Lund

et al, 2003; Diebold et al, 2004; Heil et al, 2004; Akira et al, 2006).

(ii) The cytosolic RIG-I-like receptors (RLR), which recognize

dsRNA, 50-phosphorylated RNAs or a combination thereof (Hornung

et al, 2006; Kato et al, 2006; Pichlmair et al, 2006). (iii) Cytosolic

cyclic GMP–AMP synthase (cGAS), which recognizes dsDNA
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present in the cytoplasm and perceives it as a sign of viral infection

(Civril et al, 2013; Sun et al, 2013; Gao et al, 2013a). Upon binding

of the PAMP, the receptor conveys a signal to a distinct downstream

adaptor protein (Fig 1). The TLRs signal via the TIR-domain-

containing adapter-inducing IFN-b (TRIF) or the myeloid differentia-

tion factor 88 (MyD88) (Liu & Ding, 2016), the RLRs signal via

mammalian mitochondrial antiviral signaling protein (MAVS;

Yoneyama et al, 2015), and cGAS produces the secondary messen-

ger cyclic GMP–AMP (cGAMP) to signal via stimulator of interferon

genes (STING; Ishikawa & Barber, 2008; Wu et al, 2013; Gao

et al, 2013b). Once activated, the adaptor proteins recruit and

activate several cellular kinases, like the TANK-binding kinase 1

(TBK1), which leads to the activation of the transcription factors

interferon regulatory factor (IRF) 3 and 7 (IRF7). The abovemen-

tioned PRRs also activate signaling through the NF-jB pathway but

our understanding of the underlying molecular mechanisms remains

incomplete and will therefore not be discussed any further here.

Thus, activation of PRRs ultimately leads to a transcriptional

response creating an antiviral state in the infected cell. IRF3 is cen-

tral in this response as it initiates two defensive mechanisms.

Firstly, activation of IRF3 leads to the production of IFNs, in particu-

lar, IFN-b and IFN-k1 (Osterlund et al, 2007), and other cytokines

Figure 1. Recognition of viral infection by pattern recognition receptors leads to interferon production.
Viral recognition leads to interferon induction via three principal pathways that are characterized by the adaptor proteins used to connect the upstream pattern
recognition receptors with the downstream signaling machinery. Signaling via those pathways is orchestrated by the adaptor proteins STING, MAVS and either TRIF or
MyD88. All the three pathways activate the kinase TBK1, which in turn phosphorylates the transcription factors IRF3 and IRF7. Notably, IRF7 is constitutively expressed
in pDCs but needs to be induced by IFN signaling in other cells. In addition, these pathways also activate the NF–jB family of transcription factors, yet the molecular
mechanism behind this activation remains poorly characterized.
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working in a paracrine manner to warn surrounding cells of the

infection. Secondly, the IRF3 transcriptional response leads to the

production of antiviral proteins that help combat the virus within

the affected cell (Grandvaux et al, 2002). These responses enable

cells to limit viral infection within the affected cell and simulta-

neously establish a strong defensive state in neighboring cells.

Molecular mechanisms of IFN production

Activation of IRF3
In this section, we focus on how STING activates IFN production as

this is our research area, but we believe that the mechanism is largely

conserved among the different adaptor molecules. In the model of

IRF3 activation proposed by Chen and colleagues, the activation of

IRF3 is initiated by it docking to a phosphorylated pLxIS motif on an

adaptor molecule (Liu et al, 2015). This docking is mediated by elec-

trostatic interactions between the positively charged surface on IRF3

and the phosphorylated pLxIS motif (Fig 2). The positively charged

surface of IRF3 can be divided into 5 patches consisting of residues

R211/R213, R255/R262/H263, R285/H288/H290, K313/K315, and

K360/R361, and mutation of each of these patches abolishes activa-

tion of IRF3, thereby supporting the current model of IRF3 activation

(Takahasi et al, 2003; Liu et al, 2015). Structural work using peptides

representing the adaptors suggested that IRF3 docks to the adaptor

proteins by forming a direct contact between R285 of IRF3 and the

phosphorylated serine in the pLxIS motif (Zhao et al, 2016). The

importance of residue R285 in IRF3 activation was further supported

by the finding of a R285Q mutation in a patient suffering from viral

encephalitis as well as by our detailed analysis of IRF3 docking to the

adaptor (Andersen et al, 2015; Dalskov et al, 2020). The docking to an

adaptor molecule positions IRF3 for phosphorylation by TBK1 on

S386 (Liu et al, 2015). The importance of phosphorylation at either

S386 or S396 has been debated in the literature. On one hand, the

phosphorylation of S386 has been shown to be critical for IRF3 activity

in several publications (Mori et al, 2004; Takahasi et al, 2010; Dalskov

et al, 2020), but mutation of S396 and surrounding serine residues to

the phosphomimetic aspartic acid was shown to cause a constitutively

active phenotype, which suggests that S396 also plays a role in the

activation of IRF3 (Lin et al, 1998; Servant et al, 2003). However, it is

now clear that mutation of S396 to aspartic acid leads to a conforma-

tional change within IRF3, which facilitates the phosphorylation of

S386. Thus, phosphorylation of S386 is required for the ability of IRF3

to dimerize and become transcriptionally active. Furthermore, muta-

tion of S396 to alanine does not impact the activity of IRF3 (Dalskov

et al, 2020) but a role for phosphorylation of S396 in facilitating S386

phosphorylation and thereby activation cannot be excluded.

Once IRF3 is phosphorylated, it forms the transcriptionally active

dimer, and this dimerization is driven by the interaction between

the phosphorylated residue S386 and R211. This view is supported

by structural evidence (Qin et al, 2003; Takahasi et al, 2003) and

was confirmed by mutational studies. Furthermore, the fact that

mutation of R211 still resulted in IRF3 phosphorylation but no dimer

formation also supports this model (Dalskov et al, 2020). (Dalskov

et al, 2020). S396 is found in a position, where if phosphorylated, it

can potentially interact with R385, as shown in Fig 2. However,

S396 is dispensable for the activity of IRF3. Analysis using dimeric

IRF3 with phosphomimic substitutions at position S386 and S396

and the structure of murine dimeric IRF3 with a natural phospho-

serine at position S386 (murine S379) provided further support for

this model (Zhao et al, 2016; Jing et al, 2020). Finally, the manner

upon which phosphorylation of S386 drives dimerization of IRF3

also offers a putative mechanism for avoiding aberrant activation of

IRF3 by unspecific phosphorylation. Once it is phosphorylated, IRF3

will leave STING but the phosphoserine 386 is vulnerable to depho-

sphorylating enzymes as long as IRF3 is in the monomeric state.

Table 1. Provides an overview of the different subtypes of IFN found in humans, key references and main characteristic is listed.

Type Subtypes Receptor Comments References

Type I IFNs

IFN-a IFN-a1, -a2, -a4, -a5,
-a6, -a7, -a8, -a10, -a13,
-a14, -a16, -a17, -a21

IFN-aR1/
IFN-aR2

IFN-a is primarily produced by pDCs Cella et al (1999), Barchet et al (2002), Dai
et al (2004), Hardy et al (2004), Jaks et al (2007)

IFN-b IFN-aR1/
IFN-aR2

IFN-b is produced by most infected cells Platanias (2005), Khaitov et al (2009), Ioannidis
et al (2013)

IFN-e IFN-aR1/
IFN-aR2

IFN-e is associated with the female reproductive
tract

Fung et al (2013), Marks et al (2019)

IFN-j IFN-aR1/
IFN-aR2

IFN-j is selectively expressed in keratinocytes LaFleur et al (2001)

IFN-x IFN-aR1/
IFN-aR2

One of the least studied IFNs but the presence of
neutralizing auto-antibodies against it in severe
COVID-19 patients suggests its role in antiviral
immunity may be underappreciated

Hauptmann and Swetly (1985), Bastard et al
(2020)

Type II IFNs

IFN-c IFN-cR1/
IFN-cR2

Not discussed here

Type III IFNs

IFN-k IFN-k1, -k2, -k3, -k4 IFN-kR1/
IL-10R2

IFN-k is produced by infected cells at barrier tissues
such as epithelial cells in the respiratory tract

Meager et al (2005), Sommereyns et al (2008),
Jewell et al (2010), Mordstein et al (2010), Crotta
et al (2013), Wack et al (2015), Ye et al (2019)

� 2023 Aarhus University The EMBO Journal 42: e112907 | 2023 3 of 11

Louise Dalskov et al The EMBO Journal



A characteristic of adaptor proteins, like STING, is the formation of

higher order oligomers (Zhang et al, 2019). This means that the

local concentration of phosphorylated IRF3 monomers is higher

around those structures and thus IRF3 can rapidly find an equally

phosphorylated partner to dimerize with. In the dimeric form, the

phosphoserine is buried and is not accessible to phosphatases.

The activated dimeric form of IRF3 described above is transcrip-

tionally competent and can induce the transcription of a number of

genes (Grandvaux et al, 2002; Schoggins et al, 2011). A key role for

IRF3 is to induce different IFN genes, but IRF3 also induces a series

of antiviral genes within the infected cells, thus there is a significant

overlap between the gene set induced by IFN and the gene set

induced by IRF3. Notably, IFNs cannot induce their own transcrip-

tion. The ability of IRF3 to induce a variety of antiviral genes (which

are also under the control of IFN) hint at an ancestral role of the IRF

family of transcription factors. We believe that prior to the emer-

gence of IFN, the role of IRF was likely to directly induce antiviral

genes upon detection of the virus by the PRRs. However, the strong

phenotype seen in different model systems with impaired or

completely inactivated IFN signaling suggests that the direct induc-

tion of antiviral genes by IRF3 plays a lesser role in vertebrates. The

overlap between IFN-induced genes and IRF3-induced genes is also

important to keep in mind when using modern bioinformatics tools

to analyze transcriptomic data, as the programs struggle to differen-

tiate between the signatures left by IRF3 and IFN.

IRF7 is activated in a similar manner as IRF3
IRF7 plays a key role in the production of IFN-a and is constitutively

expressed in pDCs while its expression is inducible by IFN in other

cells (Au et al, 1998; Mari�e et al, 1998; Sato et al, 1998; Ning

et al, 2011). Our data suggests that the molecular mechanism of IRF7

activation is very similar to what we just discussed for IRF3, but the

regulation of IRF7 seems stricter, and it is possible that IRF7 needs to

be phosphorylated at multiple sites to gain full activity (Dalskov

et al, 2020). We have attempted to induce IFN-a expression in a series

of cell lines and primary cells that express IRF7 after IFN priming, but

with little success. Thus, it appears that phosphorylation of IRF7 is

insufficient to activate IFN-a production in many cell types and this

suggests the existence of additional layers of regulation in IFN-a pro-

duction, which may possibly involve epigenetic modifications at the

IFN-a loci. In other words, substantial new research of the molecular

mechanisms that drive IFN-a production is needed.

Figure 2. The activation mechanism of IRF3.
IRF3 docks to the phosphorylated form of the adaptor proteins illustrated here by STING. Once docked at the adaptor proteins, TBK1 phosphorylates IRF3 at key serine
residues where residue 386 is particularly critical for IRF3 activation. Upon phosphorylation, IRF3 dimerizes and forms the transcriptionally active dimer, which then
translocates to the nucleus where it drives transcription of IFNs and certain antiviral genes. The available data suggest that IRF7 is activated through a similar
mechanism.
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IRF3 and IRF7 differ in their ability to induce specific IFN subtypes

The structure and function of IFN promoters have been character-

ized in detail by others, which will be summarized in the following.

The IFN-b promoter contains IRF binding sites, which can bind both

IRF3 and -7. Furthermore, it also contains binding sites for factors of

the NF–jB family. For full activation of the IFN–b promoter, binding

of both IRF3 and NF–jB is required (Thanos & Maniatis, 1995; Sato

et al, 2000; Panne et al, 2004, 2007). The IFN-k1 promoter appears

to show much of the same characteristics as the IFN-b promoter

(Onoguchi et al, 2007; Osterlund et al, 2007; Thomson et al, 2009).

The IFN-a promoter can bind several different members of the IRF

family, most prominently IRF7, but IRF3 can also bind to at least

some IFN-a promoters (Schafer et al, 1998; Andrilenas et al, 2018;

Wittling et al, 2020). Likewise, IRF5 has also been suggested to play

a role in induction of some IFN-a genes (Andrilenas et al, 2018). In

contrast to the IFN-b promoter, IFN-a promoters do not appear to

rely upon the NF–jB pathway (Wittling et al, 2020).

Naturally, the differences in promoter composition among IFNs

also result in different regulatory patterns. IFN-k1 and IFN-b have a

similar mode of regulation with both being primarily controlled by

IRF3 in conjunction with the NF–jB pathway. While both IRF3 and

IRF7 can bind the IFN-b promoter, the rapid induction of those IFNs

in virus infected cells primarily relies upon IRF3, as IRF7 is not con-

stitutively expressed in most cells. Importantly, the relative amount

of IFN-k1 and IFN-b being produced by a given cell might vary

dependent upon cell type. In terms of gene regulation, human

IFN-k3 appears to share some characteristics with IFN-a (Onoguchi

et al, 2007; Osterlund et al, 2007; Kotenko, 2011; Wack et al, 2015),

but current data on the regulation of IFN-k3 are limited and more

work is needed in this area.

Role of other IRF family members in IFN production
Besides IRF3 and -7, other IRFs have also been investigated for their

involvement in IFN induction. Although IRF1 was identified as a posi-

tive regulator of the IFN-b gene, it was later shown that IRF1 is not

needed for IFN induction since IRF1 deficient mice produced normal

levels of IFN in response to Newcastle disease virus (Fujita

et al, 1988; Reis et al, 1994; Feng et al, 2021). IRF5 is widely

expressed by immune cells such as macrophages and pDCs where it

has been shown that IRF5 increases IFN-b production. Furthermore,

IRF5 has been shown to bind to a subset of IFN-a promoters (Schoe-

nemeyer et al, 2005; Lazear et al, 2013; Yasuda et al, 2013; Andrilenas

et al, 2018; Khoyratty & Udalova, 2018). IRF8 has also been impli-

cated in enhancing IFN production, especially in the later phases of

IFN induction in pDCs and monocytes, by increasing recruitment of

the basal transcription machinery (Tailor et al, 2007; Li et al, 2011;

Jefferies, 2019). Yet, detailed knowledge about the role of other IRFs

in IFN production at the molecular level is currently lacking.

Temporal and spatial regulation of IFN production

Effect of IRF3 and IRF7 deficiency on susceptibility to viral
infections
The biological importance of IRF3 versus IRF7 in IFN production

has been studied primarily in mice but with the recent progress in

human genetics, more and more data emerge from humans as well.

IRF3 knockout (KO) mice exhibited lower IFN-b expression in

response to both DNA and RNA viruses (Steinberg et al, 2009; Hate-

suer et al, 2017; Yanai et al, 2018) whereas IRF7 KO mice exhibited

an almost complete loss of IFN-a expression as well as a severe drop

in IFN-k2/3 expression (Hatesuer et al, 2017). Here, it is important

to note that mice do not have an equivalent to the human IFN-k1
gene. Thus, the in vivo data agrees with the molecular model for

IFN expression discussed above. Both the IRF3 and IRF7 KO mice

exhibited decreased survival upon infection with influenza A virus

(IAV). However, the effect of IRF7 KO was marginally larger than

for IRF3 KO (Hatesuer et al, 2017). A lack of IRF3 should lead to an

initially lower IFN production by epithelial cells, which agrees with

the observed decrease in IFN-b production at day 1 in these mice. It

is unclear whether IRF7 is needed due to its ability to produce

IFN-k2/3, which is particularly important in respiratory infections,

or due to its role in driving a systemic IFN-a response. Thus, the

role of IRF7 in the induction of IFN-k in respiratory infections merits

further investigations. Another group investigated the role of IRF3

and IRF7 in infection with murine cytomegalovirus (CMV) and

found that IRF7 was particularly important whereas KO of IRF3 had

little effect (Steinberg et al, 2009). This is what we would expect

from a systemic viral infection with broad tropism, like CMV, where

the systemic IFN-a response is expected to be important.

Turning toward humans, a patient, which was heterozygote for

the IRF3 missense variant (p.Arg285Gln/WT), displayed high sus-

ceptibility toward DNA viruses, such as herpes simplex virus 1

(HSV-1), but not to RNA viruses (Andersen et al, 2015). In vitro

characterization of this IRF3 variant demonstrated a selective failure

in STING-mediated activation, explaining the high susceptibility

toward herpes infection. Several IRF7 variants have been identified

in patients with severe IAV infection. Common for all of these is a

reduced IFN production and defective IFN priming (Ciancanelli

et al, 2015; Thomsen et al, 2019; Zhang et al, 2020). More specifi-

cally, it was observed that the IRF7 variants affected IFN-a and

IFN-k production, but to a lesser extent IFN-b production (Cianca-

nelli et al, 2015; Campbell et al, 2022). These observations correlate

with the findings in the IRF3/7 KO mice, where IRF7 plays a role

not only in IFN-a production but also in IFN-k production.

The role of pDCs in IFN production
The abovedescribed division of labor between IRF3 and IRF7 results

in temporal differences in IFN production. During early stages of a

viral infection, the infected cells will activate IRF3 and drive an

IFN-b and IFN-k based response, which will be largely local in

nature. However, as the infection progresses, a subset of dendritic

cells, namely the pDCs, becomes major producers of IFN-a (Cella

et al, 1999; Barchet et al, 2002). In agreement with this, depletion of

pDCs in a mouse model and/or in humans reduces IFN-a production

(Rowland et al, 2014; Karnell et al, 2021). Furthermore, in vitro

pDCs will produce large amounts of IFN-a after stimulation with a

variety of viruses (Dai et al, 2004; Yin et al, 2012). There is no strict

definition of a systemic response, but in our opinion, this occurs

when pDCs produce sufficient IFN-a to raise the serum concentra-

tion above the critical concentration needed for a systemic response.

Thus, it is the response to IFN that is systemic, not the production

of it. It is possible that IFN-b also contributes to the systemic

response whereas IFN-k acts in a more targeted fashion due to the

limited distribution of its receptor. The IFN-producing pDCs are
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most likely localized in the lymphatic tissue around the site of infec-

tion. It is possible that induction of IRF7 by IFN in non-pDCs can

lead to production of IFN-a, which may then contribute to the sys-

temic response. However, at present the role of non-pDCs as IFN-a
producers is not clear. Importantly, we need a better understanding

of the molecular mechanisms driving IFN-a production and enabling

pDCs to produce large amount of IFN-a in order to understand how

IFN-a production is regulated.

Physiological effects of IFN and their therapeutic use

IFN signaling at a cellular level
The primary role of IFN is to warn uninfected cells of an

approaching virus and thereby allow them to establish a defensive

state before being infected. Figure 3 summarizes the discussion

above and seeks to illustrate the primary functions of an IFN

response. However, IFN also has secondary roles in promoting

inflammatory reactions occurring upon detection of viral infection

and increasing antigen presentation in an MHC I context. For type I

IFNs, signaling occurs after IFN binds a heterodimeric receptor com-

plex consisting of the IFN-a receptor (IFN-aR) 1 and IFN-aR2
(Schreiber, 2017). The type III IFNs signal through a separate recep-

tor complex formed by the IFN-k receptor 1 (IFN-kR1) and the

interleukin-10 receptor 2 (IL-10R2), the latter also used by the cyto-

kines IL-10 and IL-22 (Kotenko et al, 2003; Sheppard et al, 2003).

Upon binding of the ligand to the IFN receptor complexes, the recep-

tor associated kinases, tyrosine kinase 2 (TYK2), and Janus kinase 1

(JAK1), are auto-phosphorylated and then phosphorylate specific

tyrosines in the cytoplasmic part of the receptor. This then leads to

the recruitment and phosphorylation of signal transducer and acti-

vator of transcription 1 (STAT1) and STAT2 proteins. Despite using

two different receptor complexes, this process is rather similar for

both type I and III receptor complexes (Qureshi et al, 1995; Zhou

et al, 2007). Following their activation, STAT1 and STAT2 join with

IRF9 to form the IFN-stimulated gene (ISG) factor 3 (ISGF3), which

drives the expression of ISGs. Activation of the type I IFN receptor,

but not the type III receptor, is thought to also lead to production of

a phosphorylated STAT1 homodimer, which is transcriptionally

competent. This might lead to physiologically significant gene

expression in immune cells (Zhou et al, 2007; Forero et al, 2019)

but more work is needed in this area.

The genes induced by IFN signaling are referred to as interferon-

stimulated genes (ISGs) and can be divided into three functional

groups: antiviral effectors, positive regulators, and negative regula-

tors (Schneider et al, 2014). The antiviral effectors control and com-

bat an infection by directly targeting the replicating virus. The

positive regulators aid in the induction of the immune response by

enhancing recognition or innate immune signaling and many PRRs

and signaling proteins are thus ISGs. At last, the negative regulators,

such as USP18, help with terminating signaling to keep the immune

system tightly controlled (Veer et al, 2001; Schneider et al, 2014).

The key difference, however, between type I and type III IFNs

lies in the distribution of their receptor complexes. Whereas the type

I receptor is found on all nucleated cells, the IFN-kR1 chain is

expressed in a highly tissue specific manner, which restricts the

response toward type III IFNs (Sommereyns et al, 2008). IFN-kR1 is

expressed in all epithelial cells in both mice and humans, but

whereas human hepatocytes do express IFN-kR1, mice hepatocytes

do not (Hermant et al, 2014). The responsiveness of immune cells

to type III IFNs is actively being debated, but it is clear that only a

subset of immune cells responds to type III IFNs. However, the iden-

tity of those cells and the effect that type III IFNs has upon them is

still being worked out. We refer the reader to the review by Wack

et al (2015) focusing upon type III IFNs for an in-depth discussion of

this topic (Wack et al, 2015).

Systemic IFN responses versus local IFN responses
As used here, the phrasing “IFN responses” covers the entirety of

effects caused by the IFN system with the range of these responses

being determined by a combination of how much IFN is produced and

how specifically/broadly the receptor for the given subtype of IFN is

expressed. Since the receptor for type I IFN is found on all nucleated

cells, this means that if enough type I IFN is produced to raise the

plasma level above a certain concentration, a systemic response will

follow. In contrast to this, the type III IFN receptor is only expressed

in specific cell types and thus even in the event of massive type III

IFN production, the response will be restricted by its tissue tropism.

As described above, the primary cause of systemic IFN responses is

thought to be large-scale production of IFN-a by pDCs.

Observing patients receiving systemic IFN treatment (this will

typically be pegylated IFN-a) provides a good idea of the global

effect of IFN on the human body. Generally, patients report “flu

like” symptoms, including fatigue, headache and nausea, after treat-

ment with type I IFN. One phase II clinical trial compared pegylated

IFN-a to pegylated IFN-k for the treatment of hepatitis C virus

(HCV) infection. The two IFNs had similar antiviral properties but

the abovedescribed side effects were substantially lower for IFN-k
(Muir et al, 2014). This illustrates our current view of why two dif-

ferent IFN systems that regulate the same set of genes have proved

to be an advantage throughout evolution. In essence, type III IFNs

provide efficient control of viral replication in high-risk tissues but

avoid some of the negative effect of an IFN response due to the

targeted nature of the system as compared to type I IFNs.

IFN responses in the respiratory tract
As alluded to above, type III IFNs act in a much more targeted man-

ner than type I IFNs, and here, we will discuss the IFN response at

barrier tissues in more details. Our focus will be on IFN responses

in the respiratory tract since this is our particular area of expertise.

Since barrier tissues suffer from a particular high risk of viral infec-

tion, they have evolved specific defense mechanisms. This includes

the type III IFNs, which are largely specialized in defending the

mucosal surfaces in our body (Wack et al, 2015), but also the IFN-e,
a member of the type I IFN family, which is produced only in the

female reproductive tract and act there to protect from viral infec-

tion (Fung et al, 2013; Marks et al, 2019). Primary human bronchio-

lar epithelial cells as well as human airway type II epithelial cells

were shown to primarily produce IFN-ks (IFN-k1 and IFN-k2/3) and
IFN-b and to a lesser extent IFN-as following infection with respira-

tory syncytial virus (RSV) or IAV (Khaitov et al, 2009; Wang

et al, 2009; Ioannidis et al, 2013). Similar observations have been

made in murine alveolar epithelial cells where IFN-k was mostly

produced followed by IFN-b and at last IFN-a, which was only pro-

duced in small amounts (Ioannidis et al, 2013). Combining the data,

we arrive at a model where production of IFN-k provides efficient
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protection of the lung epithelium supplemented by limited produc-

tion of IFN-b, which provides local protection of underlying tissues.

Clearly, type I IFNs are critically important, as they prevent the

virus from penetrating deeper into our body and offer the strength

of a systemic IFN response should the virus penetrate the epithe-

lium. Yet, their effect comes with a substantial cost caused by

inflammation and therefore it is beneficial for the host only to

deploy systemic type I IFN responses when absolutely needed.

In some of the important respiratory infections, such as IAV and

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the

inflammatory response poses more of a threat than direct cytotoxic-

ity caused by the virus. The absence of the IFN-kR1 receptor chain

on most professional immune cells means that type III IFNs have

much weaker pro-inflammatory activity than type I IFNs. In con-

trast, the IFN-kR1 chain is expressed by all epithelial cells and

therefore type III IFNs can exert the same antiviral effect as type I

Figure 3. Interferon signaling leads to the establishment of an antiviral state in uninfected cells.
Recognition of a viral infection in infected cells leads to production of IFN-b and IFN-k, whereas recognition of viruses by pDCs leads to production of large amount of
IFN-a. The IFNs signal through their respective receptor complexes to induce the expression of ISGs in uninfected cells and thereby establish an antiviral state.
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IFNs during respiratory infections while causing less inflammation.

Furthermore, treatment with type I IFN led to successful inhibition

of IAV replication in mice, although with increased production of

pro-inflammatory cytokines and increased mortality of the infected

mice. In contrast, treatment with type III IFN also led to successful

inhibition of IAV replication but was accompanied by a reduced

inflammatory response as well as increased survival of infected

mice (Davidson et al, 2016; Galani et al, 2017). Type I IFN has

been used extensively as an antiviral therapy against HCV but is

being replaced with modern direct acting antiviral drugs, which

have substantially fewer side effects and higher success rates.

Based upon the abovedescribed mice data, type III IFN was

suggested as a potential therapeutic against both IAV and SARS-

CoV-2 (Davidson et al, 2016; O’Brien et al, 2020; Prokunina-Olsson

et al, 2020) with less inflammatory damage than type I IFN. Recent

clinical trials using pegylated IFN-k in SARS-CoV-2 infected

patients, show a benefit if patients are treated with IFN-k during

the early phase of the infection (Reis et al, 2023). In turn, this then

poses a clinical challenge to identify and treat patients early

enough.

At higher doses, IFNs also exert an anti-proliferative effect and

prolonged IFN responses can harm highly proliferative tissues, like

the bone marrow or epithelial tissues (Parker et al, 2016). In lung

epithelial cells, both type I and type III IFNs induce an anti-

proliferative effect via a mechanism involving induction of p53

(Broggi et al, 2020; Major et al, 2020). Thus, at early stages of a

respiratory infection, the IFN response is critical to limit viral repli-

cation but at later stages, a prolonged IFN response can prevent

proper repair of the lung epithelial due to its anti-proliferative effect

and thereby expose patients to secondary bacterial infections (Planet

et al, 2016; Rich et al, 2019).

We would like to finish this section by alluding to some of the

important unanswered questions in this area. Which cells are the

primary source of IFN during viral infections? IFN production can

originate both from infected cells that we presume recognize the

virus through one of the cytosolic sensing pathways (STING or

MAVS) or from non-infected immune cells that acquire virally

derived PAMPs by phagocytosis or related mechanisms and recog-

nize those PAMPS via TLR receptors (Bruni et al, 2015). Many stud-

ies address the ability of individual cell types to produce various

subtypes of IFN in vitro, but at present we have little information on

the in vivo importance of different cell types during an ongoing viral

infection. Specifically, we need to address the role of infected versus

non-infected cells as IFN producers, the balance between production

of IFN-k versus IFN-b during early stages of infection and potential

differences between the mouse model and humans while keeping in

mind that mice lack IFN-k1 and -4.
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