Skip to main content
. 2023 Jul 17;23:124. doi: 10.1186/s12911-023-02235-y

Table 4.

Performance data on studies for early detection of EC using a ML

Author Cancer Type Modality algorithm image patient AUROC accuracy sensitivity specificity
Lou et al.

EAC &

ESCC

CT U-Net 80 - - - - -
Ghatwary et al.

EAC &

ESCC

WLI

Faster R-CNN

SSD

100 39 - - 96% 92%
Tang et al.

EAC &

ESCC

WLI MTCS 805 255 - 93.43% 92.82% 96.20%
Ghatwary et al. EAC - Faster R-CNN 1000 - - - - -
Yu et al.

EAC &

ESCC

endoscopy images MTL 1003 - - 96.96% 95.64% 97.70%
Wu et al.

EAC &

ESCC

WLI

Faster-RCNN

DSN

1051 - - 96.28% 90,34% 97,18%
Liu et al.

EAC &

ESCC

WLI CNN 1272 748 - 85.83% 94.23% 94.67%
Groof et al. EAC WLI hybrid ResNet-Unet 1704 669 - 89% 90% 88%
Tang et al. ESCC - DCNN 4002 1078 95,4% 91.30% 97.9% 88.6%
Meng et al. ESCC WLI YOLO v5 4447 837 98,2% 92.9% 91.90% 94.7%
Gong et al.

EAC &

ESCC

WLI No-code deep-learning tool “Neuro-T” version 2.3.2 5162 - 95% 95.6% - -
Shiroma et al. ESCC

WLI &

NBI

SSD 8428 - - 98% 100% 100%
Du et al.

EAC &

ESCC

-

RWS

ECA-DDCNN

20,965 4,077 98.77% 90.63% - -
Putten et al. EAC endoscopy images

U-Net

Transfer Learning

494,356 - - 87.50% 92.50% 82.50%
Gan et al.

EAC &

ESCC

OCT image D-UCN - - - 98% - -
Wang et al.

EAC &

ESCC

endoscopy & ultrasound Cascade RCNN - 80 - 83% - -
Sui et al.

EAC &

ESCC

CT V-Net - 414 - 65% 88.80% 90.90%
Takeuchi et al.

EAC &

ESCC

CT CNN- VGG16 - 457 - 84.20% 71.70% 90.00%
Ghatwary et al.

EAC &

ESCC

video 3DCNN - - - 91.10% - -
Alharbe et al.

EAC &

ESCC

image Deep transfer learning - - - 99.7% 99.49% 99.78%
Zhao et al.

EAC &

ESCC

digestive endoscopy

Google Net V3

TensorFlow 1.6

- 300 91% 91.00% 90.00% 92.0%
Collins et al.

EAC &

ESCC

- SVM, MLP, 3DCNN - 10 93% - - -
Zhao et al.

EAC &

ESCC

- CNN - 500 - - 98% 99,6%
Chen et al.

EAC &

ESCC

- Faster RCNN 1520 421 - 92.15% - -
Tsai et al.

EAC &

ESCC

WLI &

NBI

SSD

VGG-16

155

153

- - 86% 92% -
Tsai et al.

EAC &

ESCC

WLI SSD 1780 - - 96.1% 81.6% -
Sali et al. EAC whole-slide tissue histopathology images (WSIs) ResNet34 387 130 - - - -
Wang et al.

EAC &

ESCC

WLI &

NBI

SSD

498

438

- - 90.90% 96.20% 70.40%
Zhang et al.

EAC &

ESCC

-

Faster R-CNN

VGG16

6445 200 - 90.3% 92.5% 88.70%
Guo et al. ESCC NBI SegNet 6473 - - - 98.04% 95.03%
Fang et al.

EAC &

ESCC

WLI  &

NBI

U-Net

75

91

- - 84.72% - -