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Abstract

Clustered regulatory interspaced short palindromic repeats (CRISPR) has changed biomedical research and provided
entirely new models to analyze every aspect of biomedical sciences during the last decade. In the study of cancer,
the CRISPR/CRISPR-associated protein (Cas) system opens new avenues into issues that were once unknown in our
knowledge of the noncoding genome, tumor heterogeneity, and precision medicines. CRISPR/Cas-based gene-edit-
ing technology now allows for the precise and permanent targeting of mutations and provides an opportunity to tar-
get small non-coding RNAs such as microRNAs (miRNAs). However, the development of effective and safe cancer
gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing
other abnormalities. This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based
on the CRISPR/Cas technology to target miRNAs in cancer therapy. Furthermore, we highlight the potential chal-
lenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.
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Background

In 1987, the first instance of clustered regulatory inter-
spaced short palindromic repeats (CRISPR) was found
in the bacteria Escherichia coli K12 [1]. For the past
20 years, these palindromic repeats have been discovered
in approximately 40% of bacteria and 90% of archaea [2].
CRISPR has repeat sequences that are spaced by exog-
enous nucleotides from plasmids or viruses that have
invaded, and its loci are frequently surrounded by some
related endonucleases, like CRISPR-associated protein
(Cas). First, precursor CRISPR RNAs (pre-crRNAs) are
produced from CRISPR. The resulting crRNAs bind to
the Cas protein to form a complex that can activate the
transcription of certain DNA regions [3]. Although the
main activity of this ribonucleoprotein (RNP) complex
is to cleave specific DNA locus, specified by the crRNA
sequence, with the nuclease activity of the Cas pro-
tein. There are three stages to the immune response in
all known CRISPR/Cas systems: 1) CRISPR arrays can
undergo adaptation and spacer acquisition, in which a
fragment of the invading genome is added to the exist-
ing gene, 2) mature crRNAs [guide RNA (gRNAs)] are
expressed as a result of the CRISPR array processing, and
3) interference, wherein the gRNAs direct Cas proteins to
the target location of the invaded genome for destruction
or cleavage [4, 5].

There are various classes and types of CRISPR systems,
the widest one is class 2, CRISPR/Cas9. Here, in CRISPR/
Cas9, the Cas protein works in conjunction with a chi-
meric single-guide RNA (sgRNA) made from crRNA and
tractrRNA. TracrRNA is necessary for Cas nuclease activ-
ity, while crRNA detects and binds sequences next to the
protospacer adjacent motif (PAM), 5-NGG-3', on the
target DNA sequences [6]. The target DNA sequence is
complementary to the first 20 nucleotides of the sgRNA,
which are then followed by a sequence known as PAM,
which is generally NGG [7].

The CRISPR/Cas system has potential applications
in medicine, including diagnostics, therapeutics, and
drug screening. Despite the growing popularity of the
CRISPR/Cas technology for gene editing, being used in
studying microRNAs (miRNAs) remains mostly unde-
fined [8].

In addition, studies revealed that applying CRISPR/Cas
is significantly less expensive, has a lower chance of con-
tamination, and is more accruable and specific in its abil-
ity to target miRNAs in cancer therapy, when compared
with the current miRNA studying approaches [9].

Small non-coding RNAs known as miRNAs influence
gene expression by acting as either transcriptional regu-
lators or translational repressors of their downstream
target genes [10]. In mammals, it is expected that almost
half of all protein-coding genes’ activity is regulated by
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miRNAs, which are highly conserved non-coding regula-
tory factors [11]. In human malignancies, miRNA expres-
sion is dysregulated by a number of processes, including
miRNA gene amplification or deletion, improper miRNA
transcriptional regulation, dysregulated epigenetic altera-
tions, and errors in the miRNA biogenesis machinery
[12-16]. Furthermore, miRNAs dysregulations have been
demonstrated to influence the characteristics of can-
cer, such as maintaining proliferative signaling, avoiding
growth suppressors, apoptosis resistance [17-19], induc-
ing invasion and metastasis [20], drug resistance [21],
and inducing angiogenesis [22]. Therefore, there is a lot
of potential for using miRNAs as diagnostic and thera-
peutic targets in cancer therapy. This study explores the
novel insights that have been achieved due to the devel-
opment of CRISPR/Cas systems as a strategy to target
miRNAs in cancer therapy. Besides, we discussed the
potential challenges and advanced strategies that can be
applied to overcome these challenges.

Biogenesis of miRNAs and regulatory mechanisms
and their role in cancer

Single-stranded, non-coding RNAs called miRNAs are
derived from primary miRNA (pri-miRNA), an early
transcript produced by RNA polymerase II (Pol II) [23].
Approximately 50% of the known miRNAs are made
from the introns and a few exons of protein-coding
genes. The other 50%, intergenic, are made from their
promoters and do not depend on host genes for tran-
scription and expression [24, 25]. Pri-miRNAs are syn-
thesized using the same transcription steps, capping,
3' polyadenylation, and splicing that are used to make
mRNA. DNA-dependent RNA Pol II is the enzyme
responsible for transcribing miRNA genes (Fig. 1).
The miRNAs can sometimes be transcribed as a clus-
ter, which is a single long transcript. Clusters can have
similar or the same seed regions, which means they are
a family [26, 27]. Following transcription, the nucleus
produces pri-miRNAs with a characteristic stem-loop
structure. The miRNA/miRNA duplex is then released
after pri-miRNAs undergo two constitutive cuts, which
result in pre-miRNAs. Drosha cuts pri-miRNA into
pre-miRNA in the nucleus, which exportin-5 trans-
fers to the cytoplasm [28]. Dicer uses pre-miRNA as a
template to make mature, functional double-stranded
(ds) miRNA [29]. After maturation, miRNA usually
binds to a 3" UTR and either destroys or suppresses
mRNA translation. It has been demonstrated that a
single miRNA can regulate the expression of numerous
mRNAs, and each mRNA could also be controlled by
different miRNAs. Based on experimental findings, in
most cases, miRNAs bind to specific sequences at the
3" UTR of their target mRNAs to trigger translational
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Fig. 1 A graphical illustration of miRNA biogenesis. The pre-miRNAs have one or more incomplete hairpin structures that have a stem of about 33
base pairs. Ribonucleases Drosha and Dicer process the pri-miRNA precursor in two separate processes. In the nucleus, Drosha first cuts

the pri-miRNA into a pre-miRNA about 70 nucleotides in length, which is then transferred to the cytoplasm by XPO5. The mature, functional, ds
miRNA is then processed by Dicer using the pre-miRNA as a template. After maturation, the miRNA is covalently linked to RISC, a multiprotein
complex that contains the AGO protein and is essential for RNA silencing. Exon 1 and exon 2 are connected together when the RNA splicing
process takes place and leads to the formation of the lariat RNA (circular molecules with a short tail). Following RNA splicing and additional
processing, the intron-containing spliced lariat may function as a pri-miRNA for intronic miRNA synthesis. XPO5 exportin-5, ds double-stranded,
RISC RNA-induced silencing complex, AGO argonaute, ADAR adenosine deaminase RNA specific, TRBP tar RNA-binding protein, EGFR epidermal

growth factor receptor

inhibition and the decapping and deadenylation of the
mRNAs they target [30, 31]. It has been discovered
that miRNA binding sites can also be located in other
mRNA regions, such as the 5" UTR, coding sequence,
and promoter regions [32]. In particular, miRNAs
inhibit gene expression when they bind to the 5 UTR
and coding sequences [33]. However, miRNAs that bind
to promoter regions enhance the transcription pro-
cess [34]. Nevertheless, additional study is necessary

to comprehend the practical importance of this kind of
interaction.

Furthermore, miRNA plays a crucial role in promot-
ing or inhibiting cancer progression through oncogenic
or tumor suppressor miRNAs (Fig. 2). Indeed, normal
tissues and tumor tissues have different expressions of
some types of miRNAs. Thus, from a therapeutic per-
spective, targeting miRNA has been considered an effec-
tive approach in cancer therapy, especially by designing
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Fig. 2 A graphical illustration of how oncogenic and tumor suppressor miRNAs are regulated during tumorigenic events. a When oncogenic
miRNAs are expressed at higher levels in malignant cells, tumor suppressor gene expression is lowered either as a result of mRNA degradation
or hypermethylation. b Oncogenic miRNA expression may be increased by decreasing the expression level of tumor suppressor miRNAs.

Both oncogenic and tumor suppressor miRNAs contribute to tumorigenesis by promoting a variety of malignant phenotypes, including cell
development, anti-apoptotic activity, invading, angiogenic, and spreading. RISC RNA-induced silencing complex, ORF open reading frame

specific miRNA inhibitors to target oncogenic miRNAs
that are overexpressed in tumour cells [35]. Pathogenic
miRNA alterations can be regulated with miRNA mimics
or antagomiRs (anti-miRs), leading to adjusting the gene
regulatory network and normalizing the signaling path-
ways in cancer cells [36].

When miRNA binds to a 3" UTR, it either destroys
the mRNA or inhibits its translation. The degree of

miRNA complementarity to the 3' UTR determines the
level of mRNA degradation or translational repression
[37].

MiRNAs are a type of non-coding RNA that influ-
ence gene expression after transcription has already
taken place by interacting with the 3' UTR of mRNA.
Friedman et al. [38] analyzed more than 45,000 miRNA
target locations in the human 3' UTR region, and they



Hussen et al. Military Medical Research (2023) 10:32

found that miRNA regulates roughly 60% of human
protein-coding genes.

Dysregulation of miRNA expression has been asso-
ciated with various pathological conditions, including
cancer [39-41]. In cancer, miRNAs can act as either
tumor suppressors or oncogenes, depending on the tar-
get genes they regulate. The role of miRNAs in cancer
progression is complex and involves multiple mecha-
nisms. Some miRNAs have crucial roles in cancer pro-
gression, including the control of oncogenes and tumor
suppressor genes. For instance, miR-21 is an oncogenic
miRNA that targets tumor suppressor genes such as
PTEN and PDCD4 [42], while miR-34a is a tumor sup-
pressor miRNA that targets oncogenes such as MYC
and BCL2 [43]. Further, miRNAs can promote can-
cer cell proliferation and survival by targeting genes
involved in cell cycle regulation, cell death, and DNA
damage response. For example, the miR-17-92 cluster,
which is up-regulated in many cancers, promotes can-
cer cell proliferation by targeting the tumor suppressor
gene PTEN [44]. Moreover, several miRNAs have been
shown to regulate epithelial-to-mesenchymal transi-
tion (EMT) by targeting genes involved in cell-cell
adhesion and cytoskeleton organization. For example,
miR-200 family miRNAs inhibit EMT by targeting the
transcription factors zinc finger E-box-binding home-
obox 1 (ZEB1) and ZEB2 [45]. Likewise, miRNAs have
been found to regulate angiogenesis by targeting genes
involved in angiogenic signaling pathways. For exam-
ple, miR-126 inhibits angiogenesis by targeting vascular
endothelial growth factor A (VEGEF-A) and phosphati-
dylinositol 3-kinase regulatory subunit 2 (PIK3R2)
[46]. Additionally, miRNAs can also regulate immune
responses by targeting genes involved in immune sign-
aling pathways. For example, miR-155 promotes inflam-
mation by targeting the negative regulator of nuclear
factor-kB (NF-kB), a suppressor of cytokine signaling 1
(SOCS1) [47, 48]. MiRNAs influence alternative splic-
ing and chromatin remodeling [49]. Dysregulated epi-
genetic changes of miRNA may induce tumors [50].

It has been discovered that miRNAs play an important
role in cancers beyond the intracellular level, for example,
in extracellular fluids, either as free circulating molecules
or enclosed in exosomes. These extracellular molecules
play a crucial role in cell signaling, and they are capable
of traveling extensive distances to exert their effects on
recipient cells, particularly immune cells in the tumor
microenvironment [51].

Overall, miRNAs play critical roles in cancer progres-
sion by regulating various cellular processes. Under-
standing the precise mechanisms underlying miRNA
dysregulation in cancer is essential for developing effec-
tive miRNA-based therapies for cancer.
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Therefore, therapeutically, miRNA has been perceived
as a useful method in cancer therapy, particularly in the
construction of specific miRNA inhibitors to target onco-
genic miRNAs that are overexpressed in tumor cells [52].
Thus, correction of miRNA abnormalities in cancer cells
using gene editing tools such as CRISPR/Cas, can restore
normal function to the cells’ gene regulatory networks
and signaling cascades [53].

Challenges of current miRNA-based cancer therapy
An innovative path for cancer research and treatment would
be possible through the identification of novel therapeutic
drugs that can specifically inhibit oncogenic miRNAs [54].

Since an imbalance in miRNA expression levels is asso-
ciated with the development of cancer, miRNA-based
cancer therapies are developed with two distinct guiding
principles: the suppression of miRNAs that are overex-
pressed and the restoration of tumor suppressor miRNA
function (Fig. 3) [55]. To restore the expression level of
tumor-suppressive miRNAs and improve the function of
endogenous miRNAs, miRNA mimics and other small
compounds are typically used to repair miRNA func-
tion. On the other hand, overexpressed miRNAs can be
inhibited using small-molecule inhibitors, antagomiRs,
and miRNA sponges that have been specifically created
to target particular oncogenic miRNAs that are over-
expressed in cancer cells [56]. However, each of these
techniques, as summarized in Table 1 [57-71], has its
limitation, and requires further study to become more
effective and less toxic.

Due to the limited cellular uptake properties used in
the current delivery carriers, the primary drawback of
miRNA-based therapy is delivery efficiency [72]. Addi-
tionally, to accomplish its medicinal objective, it requires
the proper delivery of the particles into and via the body’s
complex circulatory system as well as through the cell
membranes of the various tissues.

The second challenge with miRNA-based therapy is
the specificity and off-target effects of miRNA. As previ-
ously mentioned, one of the future challenges of miRNA
is “multi-targeting” which gives the advance to treat dis-
eases by affecting multiple pathogenesis-correlated tar-
gets. However, since the binding between miRNA and
target mRNA requires only a partial complementarity,
the risk of off-target effects is very high [73].

The third challenge of current miRNA base therapy is
the miRNA-induced toxicity, as a result of the off-tar-
get occurrence. If miRNAs transcriptionally control the
expression of non-target genes, such as drug-metaboliz-
ing enzymes, alterations may occur and lead to toxicity.
Deregulating the expression of cytochrome P450s (CYPs)
and bile acid synthase cholesterol 7 alpha-hydroxy-
lase (CYP7A1) by particular miRNA may change drug
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metabolism and increase drug accumulation, as in the
case of CYPs and bile acid synthase CYP7A1 [74]. The
approach of miRNA agomir has shown some significant
drawbacks [64]. A human clinical trial demonstrates that
the use of MRX34, which is a liposomal mimic of miR-
34a, to treat liver cancer in humans has caused clinical
toxicity in some individuals. Furthermore, the trial ended
as a result of severe immune-mediated adverse impact,
which resulted in the loss of four volunteers [75].

The rapid clearance of a naked nucleotide in the blood-
stream represents a main obstacle for miRNA-based
drugs in vivo and it is considered the fourth main chal-
lenge [76]. To evade the degradation by RNase or com-
ponents of the immune system present in body fluids, the
binding and embedding of miRNA molecules with car-
rier molecules or particles are essential.

On the other hand, CRISPR/Cas system revolution-
ized miRNA-based cancer therapy by making it pos-
sible to quickly alter oncogenic miRNA genes in living
cells and animal studies. For instance, CRISPR-based
techniques lead to a decrease of several miRNA expres-
sions with high effective rate than traditional meth-
ods [77]. Similarly, CRISPR/Cas9 successfully knocked
down the expression of oncogenic miRNA in differ-
ent types of cancer including ovarian cancer cells [78]
and brain tumor cells [79]. These findings suggest that
CRISPR/Cas can decrease cancer cell survival and mul-
tiplication based on miRNA gene knockdown.

Furthermore, CRISPR/Cas gene-targeted cancer ther-
apy is entering preclinical trials [80]. The difficult issue
of discovering miRNA targets has been approached
in a variety of ways, and it can be modified to target
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a variety of genes in vivo, underlining its significant
promise for future therapeutic use.

Innovative advances in CRISPR/Cas miRNA-editing
technology

As previously reported [81], targeting miRNA for either
stimulation or suppression of gene expression had a sig-
nificant impact on studying cancer biology and as a tool
for cancer prognosis and treatment. However, the tech-
niques currently in use still show several limitations
and require further studies to improve their safety and
effectiveness.

As a result, it has been shown that CRISPR/Cas tech-
nology provides a promising new therapeutic approach
for miRNA targeting, especially when used as an inhibi-
tor. For example, knocking out miRNA-155 by CRISPR/
Cas9 in macrophage cell lines shows a great reduction in
the development of rheumatoid arthritis-related symp-
toms [82]. Moreover, CRISPR/Cas9 shows less stimula-
tion of proinflammatory cytokines when compared to
siRNA knockout methods, resulting in higher safety for
in vivo application [82, 83].

Several studies have investigated CRISPR/Cas-medi-
ated knockdown of miRNA genes and miRNA transcripts
in vivo and in vitro (Table 2 [77, 82, 84—95]). For exam-
ple, Chang et al. [77] performed CRISPR/Cas9 knock-
down on three miRNA genes expressed in two different
colorectal cancer cell lines, HCT116 and HT-29. They
showed that CRISPR-based techniques lead to a decrease
in miRNA-141, miRNA-17, and miRNA-200c expression
with an effectiveness rate of 96% higher than traditional
control vectors. Similarly, Huo et al. [78] used lentiviral
CRISPR/Cas9 constructs to successfully knock down the
expression of pre-miR-21 in ovarian cancer cells. This led
to the up-regulation of the miR-21 target genes PDCD4
and SPRY2, which inhibited the growth, migration, and
invasion of ovarian cancer cells. In addition, El Fatimy
et al. [79] demonstrated that down-regulation of miR-10b
led to reduced miR-10b levels in glioma and brain tumor
cells. These findings provide evidence for the potential of
the CRISPR/Cas technology to inhibit the survival and
multiplication of cancer cells, as well as down-regulate
their expression.

CRISPR/Cas-based miRNA gene editing

DNA can be added, removed, or changed at endog-
enous loci in a genome using the sophisticated genetic
engineering technique known as genome editing with
sequence-specific nucleases [96]. To produce double-
strand breaks (DSBs) on target DNA at a predetermined
locus, sequence specific nucleases (SSNs) act as molecu-
lar scissors. Endogenous DNA repair processes are trig-
gered in cells by the creation of DSBs. Non-homologous
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end joining (NHEJ), the predominant DNA repair pro-
cess in higher eukaryotes, is very error-prone and can
result in insertions, deletions, or mismatch alterations
at targeted loci. In contrast to NHE], homology-directed
repair (HDR) needs a DNA donor template and is less
efficient [97]. Genome editing has recently become
popular due to the development of zinc finger nuclease
(ZFN) [98], transcription activator-like effector nucle-
ases (TALEN) [99], CRISPR-Cpf [100], and CRISPR-Cas9
technologies [101].

The first technology to provide a Cas effector for pre-
cise genome editing was the DNA-targeting Cas9 system
from CRISPR-class 2. Cas9 [102] and Casl12 [103] are
two examples of class 2 putative enzymes that have been
found as programmable miRNA gene-targeting modules
for biotechnological applications due to their widespread
use in genome engineering across a variety of species.
Both Cas9 and Casl2 use analogous mechanisms to
detect and break the complementary DNA sequence that
corresponds to the RNA guide [104].

Nuclease activity in these RNP effectors is triggered
by the identification of a specific sequence of DNA. The
RNP or Cas protein scans long DNA sequences and rec-
ognizes the PAM region, then, in turn, initiates an ATP-
independent DNA unwinding process and finally results
in the pairing of the DNA target strand (TS) and the
RNA guide [105]. During the RNA-DNA hybridization
process, the “non-target” DNA strand becomes unpaired
from the targeted strand, and the Mg**-dependent endo-
nuclease exploits two active sites (HNH and RuvC in
Cas9) or a single active site (RuvC in Casl2) to cleave
DNA strand independently (Fig. 4) [101].

Cas9-based mechanism for miRNA gene targeting

Large multidomain CRISPR/Cas9 enzymes of type II
vary in size from 700 amino acid residues (subtype II-D)
to over 1700 amino acid residues (subtype II-C) [106].
Cas9 is part of a functioning RNP that also includes
either a crRNA-tracrRNA scaffold hybrid or an engi-
neered crRNA-tracrRNA fusion sgRNA [107]. Cas9’s
bilobed structure, made up of a CRISPR RNA-targeted
strand (crRNA-TS) pair recognition lobe (Rec lobe)
and a nuclease lobe (Nuc lobe), is responsible for target
binding and cutting [108, 109]. Recl, Rec2, and Rec3 are
all subdomains of the Rec lobe, while the Nuc lobe has
RuvC, HNH, and wedge-PAM-interacting areas as its
subdomains.

For PAM identification, apo-Cas9 must first change
from its open state when no gRNA is present to its closed
state after guide recruitment [110, 111]. Together with
the Rec lobe, the RuvC and HNH nuclease domains
change their respective conformations upon target DNA
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a Genomic representation of
CRISPR/Cas in bacteria
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Fig. 4 The CRISPR/Cas system and gene editing mechanism. a CRISPR/Cas locus in the bacterial genome with associated transcription
and translation products. b CRISPR/Cas engineered for site-specific gene editing. ¢ Editing of dsDNA using CRISPR/Cas12a and CRISPR/Cas9
respectively. CRISPR/Cas clustered regularly interspaced short palindromic repeats/CRISPR-associated protein, dsDNA double strands DNA, crRNA

CRISPR RNA, TracrRNA trans-activating CRISPR RNA, sgRNA single-guide RNA, PAM protospacer adjacent motif

binding to activate the nuclease, resulting in a blunt-
ended DNA cut [112].

To find potential sequence targets, Cas9 either uses
guided 1D diffusion or random 3D collisions to detect
PAM sequences along DNA sequences [113]. DNA
treated with N4-cystamine forms disulfide bonds with
Streptococcus pyogenes that have been modified with
cysteine. Modification of Cas9 (T1337C) allowed the
temporary interrogation state to be captured and con-
tributed to the understanding of how Cas9 “reads”
DNA [114]. Interestingly, by binding to PAM, Cas9

aggressively bends and twists DNA, which causes
the nucleotides to flip out of the duplex and toward
the gRNA, allowing for interrogation miRNA gene
sequence.

The gRNA contains a short region of RNA that is
complementary to the target DNA sequence, which
allows the gRNA to hybridize with the DNA and form
a stable duplex [115]. This RNA-DNA hybridization is
specific, meaning that the gRNA will only bind to a tar-
get DNA sequence that has a complementary sequence
to the gRNA (Fig. 5).
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As the DNA bends, the targeted strand pairs with the
20-nt of gRNA to form an R-loop structure [116]. DNA
binding at a sequence that matches the 20-nt sgRNA
enhances structural changes in proteins that make
accommodation for RNA-DNA helix and the displaced
non-target DNA strand. Cas9 stabilizes the R-loop by
interacting with both ends of the open DNA helix, creat-
ing a structural distortion of 30° in the helical bend angle
[115]. After the initial melting of the DNA, the gRNA-
TS gradually pairs to make a 10-base pair heteroduplex.
Crystallization and X-ray analysis of a 10-nt match com-
plex at a resolution of 2.8 A demonstrate that the TS and

0-nt RNA: DNA match l_ Rec lobe
Cas9
gRNA
& 5'
5 3 DNA
Nuc lobe PAM
sequence
20-nt RNA: DNA match
- = Reloop - -
1 1
1
, ' SgRNA
<=
3} 1 5
5" 1 1
1
! =
Protein
contact

Complete R-loop structure
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non-target strand (NTS) maintain their hybrid state at
the PAM-distal end of the DNA platform [112].

Variation in miRNA genes will alter the biogenesis
of the miRNA and makes a significant impact on the
miRNA transcription, maturation, and target specificity
[117]. Thus, gene-editing approaches like the CRISPR/
Cas system, which can alter genomic sequences, offer an
opportunity for the management and therapy of a wide
range of diseases and disorders. For example, Zhou et al.
[118] showed that using CRISPR/Cas9 to target muta-
tions in miRNA genes of rice is very effective and is one
of the most dependable approaches to finding mutations.

ClLclclLclal-JRlcl{clBlclc]1-IcTeig

- I
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LAfelelrfcfalAfefrIeafeleT fr{claa[cf<

5

20-nt guide sequence
of the sgRNA

5'Target strand

3'Non-target strand
PAM
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Transcript RNA

Fig. 5 Anillustration shows how Cas9 stabilizes the R-loop. In order to construct an R-loop structure, the targeted strand of DNA must link

with the 20-nt of gRNA as the DNA curves. The sgRNA not matched to a target DNA sequence (0-nt RNA: DNA) that has a complementary sequence
to the gRNA. DNA binding at a sequence matching the 20-nt sgRNA helps proteins accept the RNA-DNA helix and displaced non-target DNA
strand. Complete R-loop formation constitutes the signal for the subsequent structure of the targeted gene. gRNA guide RNA, nt nucleotide, sgRNA
single-guide RNA, Cas9 CRISPR-associated protein 9, PAM protospacer adjacent motif, Nuc nuclease, Rec recognition
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Additionally, to silence miRNA genes, Zhao et al. [119]
demonstrated that Cas9 could be guided to the target
strand by creating DSBs using different gRNAs. They suc-
cessfully silenced miRNA genes, including those encod-
ing carcinogenic miRNAs like miR-21 and miR-30a, by
applying the CRISPR/Cas9 system.

Direct transcripts of the miRNA gene, or pri-miRNA,
are subsequently converted into short mature miRNA by
Drosha and Dicer enzymes [120]. CRISPR/Cas9 can cleave
miRNA Drosha and Dicer processing sites, at the DNA level,
which results in indels of varying sizes in the miRNA gene
sequences in vivo and in vitro [121, 122]. Cells transfected
with the indicated CRISPR/Cas9 constructs reduced mature
miR-17, miR-200c, and miR-141 expression by almost 96%
relative to control vector-transfected cells [77]. Addition-
ally, clones with only two deletions (GT) or one insertion of
nucleotides (A-T) can obstruct the exogenous expression of
the miR-17 gene in addition to single clones with substantial
portions of deletion (such as 6-18 bp) that prevent mature
miR-17 gene synthesis.

These findings provide significant evidence for the the-
ory that CRISPR/Cas9-induced alterations in the stem-
loop structure of pri-miRNA can inhibit the synthesis of
mature miRNA.

Cas12-based mechanism for miRNA gene targeting
Casl2 proteins, in contrast to Cas9, are large multid-
omain enzymes with a wide range of diversity that has
led to their classification into more than ten distinct sub-
classes such as V-A to V-K, and other subclasses V-U
[106, 123]. They vary in the processes via which they
form RNPs, the RNPs themselves, and the nucleic acids
to which they bind. RNPs can be functional when guided
by either a single crRNA [124] or a hybrid of a crRNA
and a trans-activating CRISPR RNA (tracrRNA) [125]
or a crRNA and short-complementarity untranslated
RNA (scoutRNA) [126]. Generally, Rec and Nuc lobes,
similar to those found in Cas9, are present in even the
smallest Cas12 effectors, like Casl4 (referred as Casl2f;
subtype V-F) [127, 128], Cas12j (subtype V-J) [129] and
Casl2g (subtype V-G) [130]. Beyond the similar bilobed
structure, structural analyzes of different Cas12 proteins
revealed remarkable homogeneity. Specifically, a crRNA
oligonucleotide-binding domain and the RuvC domain
give rise to the Rec lobe domains (Recl and Rec2) and
the DNA-loading “nuclease” (Nuc) or zinc-ribbon
domains, which together provide a highly adaptable plat-
form. Other short domains are sometimes fused or added
into this basic structure to facilitate PAM identification
and NTS binding or to direct recruiting efforts via a zinc-
finger motif.

Casl2a is an example of a Casl2 protein that uses a
method similar to that used by other Cas12 proteins for
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binding and cutting DNA. Casl2a forms an adaptable
“open” conformation in the absence of a gRNA, and a
“closed” conformation that is prepared for PAM recog-
nition upon crRNA binding [131, 132]. The RuvC active
site for nuclease suppression is structurally occluded
by the Rec domains in the closed conformation [131].
Rec domains rearrange to make space for the heterodu-
plex form when a dsDNA target is unwound in a PAM-
dependent manner and then hybridizes with a crRNA
[133]. This conformational change occurs simultaneously
with the activation and opening of the RuvC active site,
which successively cleaves the single-stranded NTS and
then the TS to produce a 5'-overhang staggered DNA
DSB [134, 135]. Recent structural analysis of Cas12i and
Casl2j’s active sites found that the single strand DNA
(ssDNA) substrate coupled with two magnesium cofac-
tors provides mechanistic detail for the two-metal ion
catalysis process of Casl2 proteins [136]. Nonspecific
ssDNA “shredding” in trans remains active in the RuvC
domain after cis DNA cutting [137]. The structural
details of DNA interrogation are still unclear, although it
is speculated that DNA bending is involved in the duplex
opening after the PAM [138]. Data showing that DNA
distortion can reveal ssDNA segments, which are then
identified by Casl2, provide validity to this mechanism
[139].

In particular, the PAM-interacting domain has been
observed frequently close to unraveled DNA and may
play a key role in this process. However, it is unclear
whether these domains and other nearby components
effectively participate in DNA unwinding or only con-
nect with the unwound DNA for stability. To advance the
design of Casl2-based genome editing tools, a compre-
hensive understanding of the DNA interrogation mecha-
nism is needed.

Regions of miRNAs genes targeted with CRISPR/Cas
Genomic engineering tools like the CRISPR/Cas system
have been used to target different parts of the post-tran-
scriptional miRNA sequences at the DNA level for thera-
peutic and diagnostic purposes. These parts include the
Drosha cleavage site, the 5'-end terminal, the upstream
region of the miRNA, the secondary stem-loop struc-
ture, and/or the mature miRNA (Fig. 6). More critically,
according to the Jiang et al. [140] study, which used
CRISPR/Cas9 to knockout miR-93 in HeLa cells, deletion
of a single nucleotide in a pre-miRNA DNA region can
result in the highly specific total knockout of the targeted
miRNA.

Interestingly, the CRISPR/Cas technology can be used
to specifically target the terminal loop or 5 region of
the pre-miRNAs and inhibit their biogenesis. By using
CRISPR/Cas9 to target a specific location in miR-93 in
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Fig. 6 Anillustration showed different targeting DNA regions of the post-transcriptional editing of miRNAs with the CRISPR/Cas system. Targeting
terminal loops: CRISPR/Cas9 has the potential to inhibit the production of monoisotopic miRNAs by targeting either the terminal loop or the 5
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HeLa cell line, Jiang et al. [140] showed that targeting
terminal loop or 5' region of the pre-miRNA at the DNA
level is one of the efficient ways to impair the RNA bio-
genesis in monoisotopic miRNA. Furthermore, they con-
firmed the functional knockdown by quantitative PCR
analysis.

Similarly, the CRISPR/Cas technology can be used to
specifically target miRNA loops and seed region of the
pre-miRNAs and inhibit their biogenesis (Fig. 6). The
stem-loop structure of pre-miRNAs exposes a duplex of
the mature miRNA on the stem, where it can be cleaved
off by the deoxyribonuclease Dicer-like 1 (DCL1) [141].
In plants [142], the pri-miRNA is turned into the miRNA
duplex in the nucleus. In animals [143], this step takes
place in the cytoplasm. In vitro, experiments by Chang
et al. [77] showed that CRISPR/Cas9 random targeting of
pri-miRNA to the secondary stem-loop structure effec-
tively reduced miRNA families’ expression. Furthermore,

they showed that the production of mature miRNA can
be inhibited by introducing mutations into the stem-loop
DNA structure of pri-miRNA using the CRISPR/Cas9
system.

Moreover, the CRISPR/Cas technology allows for the
exact targeting of miRNA seed DNA sequences, which
can then be utilized to inhibit the functions of miRNAs.
The first 2—8 DNA nucleotides of a miRNA, count-
ing from the 5' end to the 3' end, are known as the seed
sequence, and this area has been conserved in a hepta-
metric pattern [144]. Seed-mediated target recognition is
the primary method by which miRNAs suppress trans-
lation or cause mRNA de-adenylation or disintegration
[145]. Thus, the scientist tried to find out the impact of
targeting the seed region of miRNA by CRISPR/Cas sys-
tem to see the impact of the change on the miRNA func-
tion. For example, one of the studies performed by the
Jiang et al. [140] revealed that CRISPR/Cas9 can be used
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as a proper tool for knocking out the miRNA-93 at the
DNA level. They used HeLa cells and designed a specific
gRNA to target the PAM sequence of miRNA-93 in the 5'
region which is one of the critical onco-miRNA in cancer
prognosis [140]. They demonstrated that minor indels in
the 5' region of this miRNA cause sequence impairment
and biogenesis inhibition, resulting in an effective and
selective gene knockout.

Additionally, the CRISPR/Cas technology can be used
to specifically target mature miRNAs in DNA and sup-
press their expression. For example, the successful silenc-
ing of miRNA expression by targeting mature miRNAs
was obtained by Chung et al. [146] while aiming to
shut down the expression of genes involved in drought
response in rice. The team showed that targeting of
mature miRNA sequences, as well as of miRNA biogen-
esis sites through CRISPR/Cas9 technology is a powerful
tool for studying loss of function mutation in miRNAs in
rice.

Further, it was demonstrated conclusively that muta-
tions introduced by CRISPR/Cas at miRNA Drosha- and
Dicer-processing sites lead to the down-regulation of
mature miRNA by blocking biogenesis. CRISPR/Cas9
system can target Drosha and Dicer cleavage sites of the
pri-miRNAs and inhibit their biogenesis [77]. The com-
plex process of miRNA maturation requires the action
of numerous Drosha and Dicer enzymes, which cleave
particular locations in the pri-miRNA sequence to pro-
duce the complete and functional miRNA structure. The
flanking and internal structures of the pri-miRNA, which
determine the effectiveness of these cutting enzymes,
have an impact on the specific cutting site [147]. Chang
et al. [77] created a gRNA to target mature miR-17, miR-
200c, and miR-141 in Dicer and Drosha cleavage sites at
the DNA level because of their critical function in the
biogenesis of miRNA. By transfecting cells with specific
CRISPR/Cas9 constructs, they were able to reduce the
production of these mature miRNAs by as much as 96%
compared to cells transfected with control vectors. The
results of the above study added credibility to the argu-
ment that the CRISPR/Cas9 system is highly specific
for editing miRNA sequences, as it can avoid oft-target
effects even when modifying miRNAs within the same
family or with highly conserved regions.

Advantages of CRISPR/Cas miRNA targeting

CRISPR/Cas is a more effective, precise, and stable
technique for activating or silencing miRNAs in can-
cer cells than recent methods. For example, the effects
of an inserted mutation can be permanently integrated
into the genome and passed on to the next generation of
cells, which is a major advantage of using genetic engi-
neering, especially the CRISPR/Cas system. According
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to Friedland et al. [148] study on Caenorhabditis elegans,
mutations created by CRISPR/Cas9 can pass to the off-
spring. Likewise, according to Chang et al. [77], who
cloned CRISPR/Cas9 designs with sgRNAs that tar-
get the biogenesis processing sites of certain miRNAs,
CRISPR/Cas9 can substantially and specifically suppress
the production of these miRNAs by up to 96%. They also
demonstrated that similar results could also be obtained
in vivo by transfecting mice with the CRISPR/Cas9 con-
struct and targeting miRNA-17.

Furthermore, when compared to other methods,
CRISPR/Cas offers higher accuracy and specificity
(Table 3). For instance, the findings of Wu et al. [149]
demonstrated that technologies based on CRISPR had
great accuracy and specificity in comparison to other
techniques. This precision is a result of the CRISPR/Cas
system’s focus on sgRNA, which is targeted to a specific
site throughout the entire genome. Moreover, Chung
et al. [146] utilized CRISPR with recombinant codon-
optimized Cas9 (rCas9) on 13 different types of miRNA
in rice, obtaining a 59.4% rate of mutations, including
mono-allelic (8.54%), bi-allelic (11.1%), and hetero-allelic
combination (39.7%) mutations. Similarly, Narayanan
et al. [85] proved that the CRISPR/Cas9 approach for
miRNA gene knockdown can reach a high success rate
in mammalian cells with minimal off-target activity. Fur-
ther, they found that in mammalian cells, the CRISPR/
Cas9 method for miRNA gene knockdown can achieve
a success rate of 75-99% with low off-target activity. In
addition, the effectiveness of miRNA silencing through
CRISPR/Cas9 genome editing is also enhanced by the
ability of this technique to target not only a single miRNA
sequence but also several pre-miRNA structures in a sin-
gle application [150].

In addition to precision and selectivity, the CRISPR/
Cas system allows for the targeting of various loci within
the miRNA gene. Clinical trials are continuing to explore
new medicines to fight diseases in humans using a wide
variety of Cas9 nuclease variants [151]. However, Cas9’s
effectiveness and adaptability in genome editing are
capped by its toxicity and potential for mutagenicity [152,
153]. In response to these challenges, researchers have
enhanced their pursuit of CRISPR/Cas systems, which
have the potential to be refined into next-generation
genome editing tools. Casl2a, Cas12b, Casl2f, Casl2g,
and Casl4 are some of the newest type V members in
class 2 to receive scientific attention [130, 154—156]. For
genome editing, Casl2a is interesting because it appears
to be more precise than Cas9 [157] and has opportunities
for future development [158, 159]. Cas12a’s pre-crRNA is
processed into mature crRNAs due to its unique RNase
activity by the proper Casl2a [90, 160], and its short
crRNA (40 nt) helps overcome the size challenge in
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delivery via viral vectors [161]. As a result, through the
delivery of numerous crRNAs on a single plasmid, this
Casl2a activity has been effectively used in multiplex
gene regulation to successfully edit many endogenous
targets at once [162, 163].

In light of this, the CRISPR/Cas system has been widely
used as a genetic engineering tool in a variety of animals,
as well as in vivo and in vitro studies of human disor-
ders, by taking advantage of the endogenous DNA repair
machinery of cells.

Challenges of targeting miRNAs by CRISPR/Cas

and its strategies to overcome

Cas9 PAM deficiency in miRNA sequence

CRISPR gRNA is composed of two main parts, crRNA
and tracrRNA. The crRNA sequence targets and binds
to the NGG, PAM, and the target DNA, whereas tracr-
RNA has a role in ensuring Cas9 nuclease activity [164].
Requiring a PAM sequence next to the target site is con-
sidered one of the main limitations of using the CRISPR/
Cas9 system for targeting miRNA genes at the DNA level
[165]. As miRNAs are very short sequences of nucleo-
tides, often it is quite challenging for these small frag-
ments to find the PAM region of the targeted miRNA.
Moreover, according to the Bi et al. [166] study, most of
the miRNA sequences do not contain the classic mam-
malian 5-NGG-3' PAM region, which is essential for
Cas9 protein activity. And this issue becomes even more
obvious when anyone tries to target mature miRNA
which is very short, usually around 20-24 nucleotides
long.

To overcome this issue, advanced bioinformatics plat-
forms can be used to assess the presence or lack of an
appropriate PAM region in the target miRNA sequence.
Zhou et al. [118] found that out of the 592 rice miRNAs
assessed through the miRBase portal (http://www.mirba
se.org/), 556 miRNAs (93.92%) presented a suitable PAM
site for Cas9, showing the importance of these bioinfor-
matics tools in successful planning experiments.

Further, additional approaches to get around this
limitation include using different Cas proteins, includ-
ing Casl2a, which potentially overcome this challenge.
Casl2a is a single RNA-guided endonuclease, which
means it processes its own gRNAs and only needs crRNA
for targeting [167]. For instance, miR-21 can reprogram
microglial cells and establish a favorable environment
for cancer development in glioma cells [168]. It affects
native brain cell types such as endothelial cells, neurons,
as well as invading monocytes and macrophages which
make up-regulation of cytokine productions [169]. As
a result of its ability to recognize the PAM sequences in
miR-21, CRISPR/Casl2a can reduce miR-21 expression
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by altering the coding sequences and regulating cell pro-
liferation in vivo and in vitro [170] (Fig. 7).

Besides that, the PAM sequence required for Casl2 is
"TTTV" (where V is A, C, or G), but the PAM sequence
needed for Cas9 is "NGG" (where N is A, C, T, or G)
[105]. Nevertheless, scientists have found a unique
property of Casl2 that can be used for something other
than editing the genome such as cutting ssDNA. These
recently uncovered features of Casl2 make CRISPR
an attractive new area for targeting miRNAs in cancer
therapy.

Furthermore, multiple Cas proteins, as shown in
Table 4 [107, 141, 154, 171-179], bind to various PAM
sites. Therefore, the success rate of CRISPR-based
miRNA editing could be improved by using a variety of
Cas proteins as well.

Short sequence of miRNA

One drawback of CRISPR gene editing is the challenge of
detecting sgRNAs besides PAM, particularly when look-
ing at miRNAs, which have a short nucleotide sequence
of 20 to 24 bases. The same issue is also present when
using other inhibitors, such as antisense RNAs, to target
miRNA. Moreover, not all sgRNA is efficient and work-
ing properly. Thus, sometimes a PAM sequence is avail-
able in a miRNA gene, the sgRNA might not be efficient
enough to knock down the miRNA.

To design a reliable and effective sgRNA, it is impor-
tant to use properly in silico techniques to show all the
predictions [180]. Another way to overcome this issue is
to use more than one Cas protein to target different parts
of the interested gene. For instance, Godden et al. [87]
showed that when two sgRNAs are used together, the tar-
geted miRNA gene loses all of its functions in embryos.
Additionally, the discovery of new and more Cas nucle-
ases with broader PAM recognition sequences gives
more opportunities to design gRNAs in different parts of
miRNA sequences [181].

Off-target effects in CRISPR/Cas-mediated miRNA editing
Off-targeting, which results from a gRNA mismatch
binding to the wrong target, is one of the key challenges
of using the CRISPR/Cas system [182]. All gene silencing
approaches, including the CRISPR/Cas system, is charac-
terized by off-target effects, which have high frequency
[183]. Basically, off-targeting happens when the gRNA
binds to the wrong target due to similarities between dif-
ferent sequences of the same genome, especially in mam-
mals, and it might lead to further mutation and disorders
[5].

CRISPR has attracted a lot of attention as a potential
new gene editing tool over the past two decades. How-
ever, it has proven of limited use due to its tendency to
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Cas12a (single RNA-guided
endonuclease)
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The PAM sequence required for
Cas12is "TTTV" (Vis A, C, or G)
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Fig. 7 Anillustration shows applying Ca12a instead of Cas9 protein, which has the ability to recognize PAM sequences in miRNA editing. By
altering the miR-21 coding sequences in glioma cells, CRISPR/Cas12a decreases miR-21 expression through microenvironment cells, which controls
both in vitro and in vivo cell proliferation. CRISPR clustered regularly interspaced short palindromic repeats, PAM protospacer adjacent motif, sgRNA

single-guide RNA

be off-target. Because of this, a growing number of stud-
ies have spent the last few years working to enhance the
system’s editing abilities while also reducing the number
of undesired consequences. Include in particular the fol-
lowing strategies to overcome off-targeting:

Firstly, increasing sgRNA specificity. The specificity
of sgRNA and target DNA recognition is determined
by the number of base pairs in the region of the sgRNA,
typically 10-12 bp [149]. The off-target effects are also
modified by the remaining sequence to various levels.
The efficacy of sgRNA-based gene editing was found to
increase in direct correlation with the GC level of the
seed region. The off-target effect is reduced or disappears
when there are three or more base mismatches between
the sgRNA seed region sequence and the DNA sequence
at the off-target position [184]. Accordingly, 40-60%
of the GC content can be used during sgRNA sequence
design. The specificity of sgRNA can be increased by
using sequences that are highly dissimilar to those of the
off-target genes [184].

In addition, the specificity of a sgRNA is highly linked
to its length. Using shorter sgRNA sequences (those with
less than 20-nt) has been shown to decrease the off-target

effects without reducing the efficiency of gene editing
[185]. Shortening sgRNA sequences, however, may not
improve specificity, and may even decrease gene editing
efficiency. Therefore, more studies are needed to confirm
the effectiveness of the method of decreasing the off-
target effect by decreasing sgRNA length. Furthermore,
adding two guanines (called ggX20 sgRNAs) to the 5' end
of a sgRNA in place of the matching GX19 sgRNAs dur-
ing the design process is another simple alteration that
may be made to boost the specificity of the sgRNA and
decrease its off-target effect [183, 186]. Off-targeting can
also be reduced by using sequence gRNA design and off-
target evaluation sites that are available online (Table 5
[187-201]).

Secondly, Cas-sgRNA dosage control. One of the
other strategies that can be used to minimize the con-
sequences of off-target effects is controlling the amount
of sgRNA or Cas protein produced. For example, when
Pattanayak et al. [202] cut missed loci in the HEK293T
cells’ genomes, they discovered that short sequences, low
sgRNA activity compared to sequence length, high activ-
ity has better specificity, and high amounts of sgRNA-
Cas9 compounds can cut close internal sites or PAM
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Table 4 List of Cas proteins with their PAM sequence targets
CRISPR/Cas Types of Cas Organismisolated Major application PAM sequence PAM location Cas size References
system from area relative to target  (in amino
base acids)
Type Il CRISPR/Cas  SpCas9 Streptococcus Gene editing NGG Downstream 1368 AA [171]
system pyogenes of the target site
xCas9 Modified Gene editing NG, GAAand GAT ~ Downstream 1368 AA [107]
from SpCas9 of the target site
SaCas9 Staphylococcus Gene editing NGRRT or NGRRN Downstream 1058 AA [172]
aureus of the target site
SaCas9-KKH  Staphylococcus Gene editing NNNRRT Downstream 1058 AA [173]
aureus Cas9 of the target site
StCas9 Streptococcus Gene editing NNAGAAW DSBs 1121 AA [174]
thermophilus
ScCas9 Streptococcus canis  Gene editing NNG Downstream 1375 AA [175]
of the target site
CjCas9 Campylobacter Efficient genome NNNVRYM Downstream 984 AA [176]
jejuni editing of the target site
TypeV CRISPR/Cas  LbCas12a Lachnospiraceae Gene editing TTTV Upstream 1228 AA [1771
system bacterium and diagnosis of the target site
enAsCas12a  Streptococcus Gene editing TTTV Upstream - [178]
pyogenes and diagnosis of the target site
Cas12f Selenomonas Diagnosis TTTV Double strand 422-603 AA  [154]
sputigena cleavage
TypeV CRISPR/Cas  Casl4b Extremophile Gene editing T-rich PAM Upstream 400-700 AA  [141]
system archaea and diagnosis sequences, e.g., of the target site
TTTA for dsDNA
cleavage, no PAM
sequence require-
ment for ssSDONA
Type | CRISPR/Cas  Cas3 Escherichia coli Diagnosis No PAM sequence  Upstream 1224 [179]

system

requirement of the target site

AA amino acids, DSBs double strand break, PAM protospacer adjacent motif, SpCas9 Streptococcus pyogenes Cas9, SaCas9 Staphylococcus aureus Cas9, StCas9
Streptococcus thermophilus, ScCas9 Streptococcus canis Cas9, LbCas12a Lachnospiraceae bacterium Cas12a, CjCas9 Campylobacter jejuni Cas9, CRISPR/Cas clustered
regularly interspaced short palindromic repeats/CRISPR-associated protein, T thymine, A adenine, G guanine, V adenine, cytosine, or guanine, N any nucleotide, R

purine

sequences. Cas9, which has DSB activity, is continuously
expressed in cells, which could enhance the risk of off-
target sequences. This risk can be minimized by blocking
antibodies or inhibitors of the Cas9 protein, which lim-
its the off-target effect. Regulating the concentration of
sgRNA and Cas9 nucleases can lower the off-target risk,
but this will also reduce the corresponding genome edit-
ing ability. Thus, it is necessary to balance the efficiency
of gene editing against the possibility of producing an off-
target effect. Recent studies proved that decreasing the
Cas9:gRNA complex ratio to 1:2 or 1:3 improves knock-
out efficacy and successfully decreases off-target effects
[108, 203].

The third strategy is the chemical modification of
sgRNA. Besides the current strategies, chemical modifi-
cation of sgRNA is also an effective way to minimize off-
target effects. Chemical modifications to crRNA include
2-fluoro ribose, and 2-O-methyl-3'-thiophosphate (MS),

which can strengthen the selectivity of Cas9 endonucle-
ase and the stability of sgRNA [204, 205]. A further fac-
tor crucial to successful gene manipulation is the strategy
for optimizing off-target effect identification. Off-target
effects of CRISPR/Cas9 can be detected using tools like
integration-deficient lentiviral vectors (IDLVs) containing
integrase defects, and this method can identify an off-tar-
get frequency of at least 1% [206].

Targeting multi-sites of gene by one miRNA or targeting
one site/pathway by multiple miRNAs

As discussed in the previous section, miRNAs undergo
a complex molecular pathway within the cell, which
is not fully elucidated. According to “seed sequence
matching” bioinformatics research, a single miRNA can
control hundreds of target genes, while many miRNAs
can trigger a single gene. For example, the miR-17-92
cluster suppresses cyclin-dependent kinase inhibitor
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1A (CDKN1A), E2F transcription factor 1 (E2F1), and
PTEN, which can cause up-regulated cell growth; miR-
200 targets ZEBs to induce E-cadherin, which inhibits
EMT [77]. Therefore, there is a potential for different
consequences when researchers attempt to target a sin-
gle miRNA to reduce the amount of certain proteins by
focusing on the miRNA that complements its mRNA.

Conversely, the protein-synthesis pathway of a gene can
be regulated by more than one miRNA [207]. For exam-
ple, using a high-throughput luciferase reporter screen,
Wu et al. [208] found that 28 miRNAs can directly reduce
p21Cipl/Wafl or CDKN1A by targeting its 3' untrans-
lated region. Furthermore, many of these miRNAs were
found to be elevated in malignancies, suggesting that
they could act as oncogenesis modulators.

To obtain a complete therapeutic effect, targeting just
one miRNA region in the genome is not enough. As
shown in Fig. 8, one miRNA or more than one miRNA
can target the same gene, which means that targeting
just one miRNA is not enough to interrupt a disease as
long as more than one miRNA controls the same gene.
Therefore, to overcome this challenge, it is best to cre-
ate or develop multiple gRNA that can be utilized to tar-
get different genomic loci or mature miRNA genomic
sequences (Fig. 8). Kabadi et al. [209] previously devel-
oped a single lentiviral strategy to express and deliver
a Cas9 nuclease and three to four sgRNAs transcribed
from separate and distinct RNA polymerase III promot-
ers. Interestingly, multiple gene editing and prolonged
transcriptional activation were facilitated by the high lev-
els of expression of individual sgRNAs in HEK293T and
primary human dermal fibroblasts cells. This indicates
the potential utility of this approach in miRNA-based
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biomedicine [209]. Moreover, there are different vec-
tors with different capacities, such as adenovirus vectors,
which can successfully express eight different multiplex
gRNAs [210]. This strategy holds promise for minimiz-
ing the number of CRISPR/Cas components used and the
risk of undesirable side effects of the co-delivery of sev-
eral sgRNAs encoding constructs.

Delivery challenges of CRISPR/Cas system both in vivo

and in vitro

Delivery of CRISPR/Cas presents numerous chal-
lenges, such as the selection of a good, safe, and pre-
cise vector. Inappropriate vectors are associated with
a higher risk of toxicity and off-targeting [5]. Like-
wise, CRISPR/Cas delivery is far more challenging to
get precisely in vivo than in vitro [211]. Toxicity, size
capacity, and mismatching are the three main types of
in vivo delivery difficulties presented by the CRISPR/
Cas system [5, 9, 212, 213].

CRISPR/Cas vectors can be broadly classified into two
types: viral and non-viral [214]. Interestingly, an increas-
ing number of studies are selecting lentivirus as their vec-
tor of choice. However, using a viral vector in vivo has a
number of drawbacks, including insertional restriction,
immune response, and size capacity (Table 6 [78, 87, 88,
119, 215-222]). Moreover, the risks of off-targeting and
further mutation rise with prolonged expansion follow-
ing insertion [223].

Strategy to overcome delivery challenges

Vector capacity is a significant limitation during CRISPR/
Cas delivery, especially when viral vectors such as adeno-
associated virus (AAV) are used. However, several

Vector Vector

targets miRNAs
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Fig. 8 Anillustration shows the main strategy to overcome multiple sites targeting or one site targeting through the CRISPR/Cas system. The
CRISPR/Cas system targets one miRNA, which in turn suppresses miRNA to bind numerous genes and limit the synthesis of tumor protein. The
CRISPR/Cas system is designed to target numerous miRNAs, which in turn restrict the same oncogenic gene, thereby limiting the growth of tumors.
The CRISPR/Cas system is intended to target a large number of miRNAs, which then block the activity of the same oncogenic gene. As a result,

the progression of tumor cell is suppressed or slowed down. CRISPR clustered regularly interspaced short palindromic repeats, sgRNA single-guide

RNA, Cas CRISPR-associated protein
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strategies can be used to overcome or minimize this
problem, like picking up a smaller Cas protein or using
two vectors instead of one. Several Cas proteins have
been categorized or selected according to their molecular
weight; for example, a smaller version of Cas9 was dis-
covered in Staphylococcus aureus, showing that size opti-
mizations have been performed. This Cas9 variant is 1 kb
smaller than the original Cas9 from Streptococcus pyo-
genes; therefore, it may be integrated into a single AAV
vector [224]. Furthermore, Casl4 has a two-fold smaller
molecular size than Cas9 [225]. Secondly, more than one
viral vector can be used to deliver the CRISPR/Cas sys-
tem [9, 226]. For example, using two vectors rather than
one reduces the off-targeting risk, which rises in parallel
with the vector’s size [5, 224].

On the other hand, non-viral vectors are delivery sys-
tems that can be used to transport therapeutic molecules,
such as CRISPR/Cas systems, into target cells without
the use of viral vectors in both in vivo and in vitro [223].
The advantages of using non-viral vectors for CRISPR/
Cas delivery into cancer cells include their safety, low
immunogenicity, ease of preparation, versatility, minimal
off-targeting, and less exposure to nuclease [223, 227,
228]. However, non-viral vectors have some crucial draw-
backs such as degradation in vivo experiments, varied
biocompatibility and toxicity, low delivery efficiency, and
restricted delivery efficiency [228].

Several types of non-viral vectors can be used for
CRISPR/Cas delivery, including liposomes, polymeric
nanoparticles, and viral-like particles. Liposomes are
spherical vesicles composed of a lipid bilayer that can
be used to encapsulate nucleic acids, including CRISPR/
Cas components [229]. Polymeric nanoparticles are
composed of synthetic polymers that can also be used
to encapsulate CRISPR/Cas components [230]. Finally,
viral-like particles are self-assembling protein cages that
can be used to deliver CRISPR/Cas components [231].

Conclusions and perspectives

The current study underlines the background of the
CRISPR/Cas system in miRNA-based cancer therapy.
The CRISPR/Cas system provides new insights into
cancer therapeutics that were previously unexplored in
our understanding of the non-coding genome. With the
development of CRISPR/Cas-based gene editing technol-
ogy, it is now possible to target mutations in a precise and
permanent way. Short non-coding RNAs like miRNA can
also be targeted in a precise way at the DNA level. Thera-
peutic genome editing based on CRISPR/Cas-miRNA
targeting is moving from preliminary research to pre-
clinical development. The challenging task of identify-
ing miRNA targets has been approached in a number of
ways, including the application of CRISPR screening and
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miRNA gene alteration. When there is a miRNA mutant,
CRISPR knockout libraries can be used to find target
genes whose mutation fixes the miRNA mutant pheno-
type. Interestingly, the biological role of specific sites can
be explored through specific sgRNA libraries that target
miRNA binding sites. Custom libraries can be delivered
into wild-type cells to select cells with binding site muta-
tions that mimic the oncogenic miRNA. The CRISPR/
Cas technology is currently undergoing clinical trials
for the treatment of cancer, and its application in cancer
immunotherapy and the inactivation of cancer-causing
viral infections holds promise for addressing altered can-
cer cells and extending the scope of cancer therapeutic
targets based on miRNA therapy. Currently, the poten-
tial use of CRISPR/Cas as a miRNA targeting platform
in cancer therapy has only been partially explored, and it
needs further studies.
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