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Abstract 

Clustered regulatory interspaced short palindromic repeats (CRISPR) has changed biomedical research and provided 
entirely new models to analyze every aspect of biomedical sciences during the last decade. In the study of cancer, 
the CRISPR/CRISPR-associated protein (Cas) system opens new avenues into issues that were once unknown in our 
knowledge of the noncoding genome, tumor heterogeneity, and precision medicines. CRISPR/Cas-based gene-edit‑
ing technology now allows for the precise and permanent targeting of mutations and provides an opportunity to tar‑
get small non-coding RNAs such as microRNAs (miRNAs). However, the development of effective and safe cancer 
gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing 
other abnormalities. This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based 
on the CRISPR/Cas technology to target miRNAs in cancer therapy. Furthermore, we highlight the potential chal‑
lenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.
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Background
In 1987, the first instance of clustered regulatory inter-
spaced short palindromic repeats (CRISPR) was found 
in the bacteria Escherichia coli K12 [1]. For the past 
20 years, these palindromic repeats have been discovered 
in approximately 40% of bacteria and 90% of archaea [2]. 
CRISPR has repeat sequences that are spaced by exog-
enous nucleotides from plasmids or viruses that have 
invaded, and its loci are frequently surrounded by some 
related endonucleases, like CRISPR-associated protein 
(Cas). First, precursor CRISPR RNAs (pre-crRNAs) are 
produced from CRISPR. The resulting crRNAs bind to 
the Cas protein to form a complex that can activate the 
transcription of certain DNA regions [3]. Although the 
main activity of this ribonucleoprotein (RNP) complex 
is to cleave specific DNA locus, specified by the crRNA 
sequence, with the nuclease activity of the Cas pro-
tein. There are three stages to the immune response in 
all known CRISPR/Cas systems: 1) CRISPR arrays can 
undergo adaptation and spacer acquisition, in which a 
fragment of the invading genome is added to the exist-
ing gene, 2) mature crRNAs [guide RNA (gRNAs)] are 
expressed as a result of the CRISPR array processing, and 
3) interference, wherein the gRNAs direct Cas proteins to 
the target location of the invaded genome for destruction 
or cleavage [4, 5].

There are various classes and types of CRISPR systems, 
the widest one is class 2, CRISPR/Cas9. Here, in CRISPR/
Cas9, the Cas protein works in conjunction with a chi-
meric single-guide RNA (sgRNA) made from crRNA and 
tracrRNA. TracrRNA is necessary for Cas nuclease activ-
ity, while crRNA detects and binds sequences next to the 
protospacer adjacent motif (PAM), 5′-NGG-3′, on the 
target DNA sequences [6]. The target DNA sequence is 
complementary to the first 20 nucleotides of the sgRNA, 
which are then followed by a sequence known as PAM, 
which is generally NGG [7].

The CRISPR/Cas system has potential applications 
in medicine, including diagnostics, therapeutics, and 
drug screening. Despite the growing popularity of the 
CRISPR/Cas technology for gene editing, being used in 
studying microRNAs (miRNAs) remains mostly unde-
fined [8].

In addition, studies revealed that applying CRISPR/Cas 
is significantly less expensive, has a lower chance of con-
tamination, and is more accruable and specific in its abil-
ity to target miRNAs in cancer therapy, when compared 
with the current miRNA studying approaches [9].

Small non-coding RNAs known as miRNAs influence 
gene expression by acting as either transcriptional regu-
lators or translational repressors of their downstream 
target genes [10]. In mammals, it is expected that almost 
half of all protein-coding genes’ activity is regulated by 

miRNAs, which are highly conserved non-coding regula-
tory factors [11]. In human malignancies, miRNA expres-
sion is dysregulated by a number of processes, including 
miRNA gene amplification or deletion, improper miRNA 
transcriptional regulation, dysregulated epigenetic altera-
tions, and errors in the miRNA biogenesis machinery 
[12–16]. Furthermore, miRNAs dysregulations have been 
demonstrated to influence the characteristics of can-
cer, such as maintaining proliferative signaling, avoiding 
growth suppressors, apoptosis resistance [17–19], induc-
ing invasion and metastasis [20], drug resistance [21], 
and inducing angiogenesis [22]. Therefore, there is a lot 
of potential for using miRNAs as diagnostic and thera-
peutic targets in cancer therapy. This study explores the 
novel insights that have been achieved due to the devel-
opment of CRISPR/Cas systems as a strategy to target 
miRNAs in cancer therapy. Besides, we discussed the 
potential challenges and advanced strategies that can be 
applied to overcome these challenges.

Biogenesis of miRNAs and regulatory mechanisms 
and their role in cancer
Single-stranded, non-coding RNAs called miRNAs are 
derived from primary miRNA (pri-miRNA), an early 
transcript produced by RNA polymerase II (Pol II) [23]. 
Approximately 50% of the known miRNAs are made 
from the introns and a few exons of protein-coding 
genes. The other 50%, intergenic, are made from their 
promoters and do not depend on host genes for tran-
scription and expression [24, 25]. Pri-miRNAs are syn-
thesized using the same transcription steps, capping, 
3′ polyadenylation, and splicing that are used to make 
mRNA. DNA-dependent RNA Pol II is the enzyme 
responsible for transcribing miRNA genes (Fig.  1). 
The miRNAs can sometimes be transcribed as a clus-
ter, which is a single long transcript. Clusters can have 
similar or the same seed regions, which means they are 
a family [26, 27]. Following transcription, the nucleus 
produces pri-miRNAs with a characteristic stem-loop 
structure. The miRNA/miRNA duplex is then released 
after pri-miRNAs undergo two constitutive cuts, which 
result in pre-miRNAs. Drosha cuts pri-miRNA into 
pre-miRNA in the nucleus, which exportin-5 trans-
fers to the cytoplasm [28]. Dicer uses pre-miRNA as a 
template to make mature, functional double-stranded 
(ds) miRNA [29]. After maturation, miRNA usually 
binds to a 3′ UTR and either destroys or suppresses 
mRNA translation. It has been demonstrated that a 
single miRNA can regulate the expression of numerous 
mRNAs, and each mRNA could also be controlled by 
different miRNAs. Based on experimental findings, in 
most cases, miRNAs bind to specific sequences at the 
3′ UTR of their target mRNAs to trigger translational 
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inhibition and the decapping and deadenylation of the 
mRNAs they target [30, 31]. It has been discovered 
that miRNA binding sites can also be located in other 
mRNA regions, such as the 5′ UTR, coding sequence, 
and promoter regions [32]. In particular, miRNAs 
inhibit gene expression when they bind to the 5′ UTR 
and coding sequences [33]. However, miRNAs that bind 
to promoter regions enhance the transcription pro-
cess [34]. Nevertheless, additional study is necessary 

to comprehend the practical importance of this kind of 
interaction.

Furthermore, miRNA plays a crucial role in promot-
ing or inhibiting cancer progression through oncogenic 
or tumor suppressor miRNAs (Fig.  2). Indeed, normal 
tissues and tumor tissues have different expressions of 
some types of miRNAs. Thus, from a therapeutic per-
spective, targeting miRNA has been considered an effec-
tive approach in cancer therapy, especially by designing 

Fig. 1  A graphical illustration of miRNA biogenesis. The pre-miRNAs have one or more incomplete hairpin structures that have a stem of about 33 
base pairs. Ribonucleases Drosha and Dicer process the pri-miRNA precursor in two separate processes. In the nucleus, Drosha first cuts 
the pri-miRNA into a pre-miRNA about 70 nucleotides in length, which is then transferred to the cytoplasm by XPO5. The mature, functional, ds 
miRNA is then processed by Dicer using the pre-miRNA as a template. After maturation, the miRNA is covalently linked to RISC, a multiprotein 
complex that contains the AGO protein and is essential for RNA silencing. Exon 1 and exon 2 are connected together when the RNA splicing 
process takes place and leads to the formation of the lariat RNA (circular molecules with a short tail). Following RNA splicing and additional 
processing, the intron-containing spliced lariat may function as a pri-miRNA for intronic miRNA synthesis. XPO5 exportin-5, ds double-stranded, 
RISC RNA-induced silencing complex, AGO argonaute, ADAR adenosine deaminase RNA specific, TRBP tar RNA-binding protein, EGFR epidermal 
growth factor receptor
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specific miRNA inhibitors to target oncogenic miRNAs 
that are overexpressed in tumour cells [35]. Pathogenic 
miRNA alterations can be regulated with miRNA mimics 
or antagomiRs (anti-miRs), leading to adjusting the gene 
regulatory network and normalizing the signaling path-
ways in cancer cells [36].

When miRNA binds to a 3′ UTR, it either destroys 
the mRNA or inhibits its translation. The degree of 

miRNA complementarity to the 3′ UTR determines the 
level of mRNA degradation or translational repression 
[37].

MiRNAs are a type of non-coding RNA that influ-
ence gene expression after transcription has already 
taken place by interacting with the 3′ UTR of mRNA. 
Friedman et al. [38] analyzed more than 45,000 miRNA 
target locations in the human 3′ UTR region, and they 

Fig. 2  A graphical illustration of how oncogenic and tumor suppressor miRNAs are regulated during tumorigenic events. a When oncogenic 
miRNAs are expressed at higher levels in malignant cells, tumor suppressor gene expression is lowered either as a result of mRNA degradation 
or hypermethylation. b Oncogenic miRNA expression may be increased by decreasing the expression level of tumor suppressor miRNAs. 
Both oncogenic and tumor suppressor miRNAs contribute to tumorigenesis by promoting a variety of malignant phenotypes, including cell 
development, anti-apoptotic activity, invading, angiogenic, and spreading. RISC RNA-induced silencing complex, ORF open reading frame



Page 5 of 30Hussen et al. Military Medical Research           (2023) 10:32 	

found that miRNA regulates roughly 60% of human 
protein-coding genes.

Dysregulation of miRNA expression has been asso-
ciated with various pathological conditions, including 
cancer [39–41]. In cancer, miRNAs can act as either 
tumor suppressors or oncogenes, depending on the tar-
get genes they regulate. The role of miRNAs in cancer 
progression is complex and involves multiple mecha-
nisms. Some miRNAs have crucial roles in cancer pro-
gression, including the control of oncogenes and tumor 
suppressor genes. For instance, miR-21 is an oncogenic 
miRNA that targets tumor suppressor genes such as 
PTEN and PDCD4 [42], while miR-34a is a tumor sup-
pressor miRNA that targets oncogenes such as MYC 
and BCL2 [43]. Further, miRNAs can promote can-
cer cell proliferation and survival by targeting genes 
involved in cell cycle regulation, cell death, and DNA 
damage response. For example, the miR-17-92 cluster, 
which is up-regulated in many cancers, promotes can-
cer cell proliferation by targeting the tumor suppressor 
gene PTEN [44]. Moreover, several miRNAs have been 
shown to regulate epithelial-to-mesenchymal transi-
tion (EMT) by targeting genes involved in cell–cell 
adhesion and cytoskeleton organization. For example, 
miR-200 family miRNAs inhibit EMT by targeting the 
transcription factors zinc finger E-box-binding home-
obox 1 (ZEB1) and ZEB2 [45]. Likewise, miRNAs have 
been found to regulate angiogenesis by targeting genes 
involved in angiogenic signaling pathways. For exam-
ple, miR-126 inhibits angiogenesis by targeting vascular 
endothelial growth factor A (VEGF-A) and phosphati-
dylinositol 3-kinase regulatory subunit 2 (PIK3R2) 
[46]. Additionally, miRNAs can also regulate immune 
responses by targeting genes involved in immune sign-
aling pathways. For example, miR-155 promotes inflam-
mation by targeting the negative regulator of nuclear 
factor-κB (NF-κB), a suppressor of cytokine signaling 1 
(SOCS1) [47, 48]. MiRNAs influence alternative splic-
ing and chromatin remodeling [49]. Dysregulated epi-
genetic changes of miRNA may induce tumors [50].

It has been discovered that miRNAs play an important 
role in cancers beyond the intracellular level, for example, 
in extracellular fluids, either as free circulating molecules 
or enclosed in exosomes. These extracellular molecules 
play a crucial role in cell signaling, and they are capable 
of traveling extensive distances to exert their effects on 
recipient cells, particularly immune cells in the tumor 
microenvironment [51].

Overall, miRNAs play critical roles in cancer progres-
sion by regulating various cellular processes. Under-
standing the precise mechanisms underlying miRNA 
dysregulation in cancer is essential for developing effec-
tive miRNA-based therapies for cancer.

Therefore, therapeutically, miRNA has been perceived 
as a useful method in cancer therapy, particularly in the 
construction of specific miRNA inhibitors to target onco-
genic miRNAs that are overexpressed in tumor cells [52]. 
Thus, correction of miRNA abnormalities in cancer cells 
using gene editing tools such as CRISPR/Cas, can restore 
normal function to the cells’ gene regulatory networks 
and signaling cascades [53].

Challenges of current miRNA‑based cancer therapy
An innovative path for cancer research and treatment would 
be possible through the identification of novel therapeutic 
drugs that can specifically inhibit oncogenic miRNAs [54].

Since an imbalance in miRNA expression levels is asso-
ciated with the development of cancer, miRNA-based 
cancer therapies are developed with two distinct guiding 
principles: the suppression of miRNAs that are overex-
pressed and the restoration of tumor suppressor miRNA 
function (Fig.  3) [55]. To restore the expression level of 
tumor-suppressive miRNAs and improve the function of 
endogenous miRNAs, miRNA mimics and other small 
compounds are typically used to repair miRNA func-
tion. On the other hand, overexpressed miRNAs can be 
inhibited using small-molecule inhibitors, antagomiRs, 
and miRNA sponges that have been specifically created 
to target particular oncogenic miRNAs that are over-
expressed in cancer cells [56]. However, each of these 
techniques, as summarized in Table  1 [57–71], has its 
limitation, and requires further study to become more 
effective and less toxic.

Due to the limited cellular uptake properties used in 
the current delivery carriers, the primary drawback of 
miRNA-based therapy is delivery efficiency [72]. Addi-
tionally, to accomplish its medicinal objective, it requires 
the proper delivery of the particles into and via the body’s 
complex circulatory system as well as through the cell 
membranes of the various tissues.

The second challenge with miRNA-based therapy is 
the specificity and off-target effects of miRNA. As previ-
ously mentioned, one of the future challenges of miRNA 
is “multi-targeting” which gives the advance to treat dis-
eases by affecting multiple pathogenesis-correlated tar-
gets. However, since the binding between miRNA and 
target mRNA requires only a partial complementarity, 
the risk of off-target effects is very high [73].

The third challenge of current miRNA base therapy is 
the miRNA-induced toxicity, as a result of the off-tar-
get occurrence. If miRNAs transcriptionally control the 
expression of non-target genes, such as drug-metaboliz-
ing enzymes, alterations may occur and lead to toxicity. 
Deregulating the expression of cytochrome P450s (CYPs) 
and bile acid synthase cholesterol 7 alpha-hydroxy-
lase (CYP7A1) by particular miRNA may change drug 
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metabolism and increase drug accumulation, as in the 
case of CYPs and bile acid synthase CYP7A1 [74]. The 
approach of miRNA agomir has shown some significant 
drawbacks [64]. A human clinical trial demonstrates that 
the use of MRX34, which is a liposomal mimic of miR-
34a, to treat liver cancer in humans has caused clinical 
toxicity in some individuals. Furthermore, the trial ended 
as a result of severe immune-mediated adverse impact, 
which resulted in the loss of four volunteers [75].

The rapid clearance of a naked nucleotide in the blood-
stream represents a main obstacle for miRNA-based 
drugs in vivo and it is considered the fourth main chal-
lenge [76]. To evade the degradation by RNase or com-
ponents of the immune system present in body fluids, the 
binding and embedding of miRNA molecules with car-
rier molecules or particles are essential.

On the other hand, CRISPR/Cas system revolution-
ized miRNA-based cancer therapy by making it pos-
sible to quickly alter oncogenic miRNA genes in living 
cells and animal studies. For instance, CRISPR-based 
techniques lead to a decrease of several miRNA expres-
sions with high effective rate than traditional meth-
ods [77]. Similarly, CRISPR/Cas9 successfully knocked 
down the expression of oncogenic miRNA in differ-
ent types of cancer including ovarian cancer cells [78] 
and brain tumor cells [79]. These findings suggest that 
CRISPR/Cas can decrease cancer cell survival and mul-
tiplication based on miRNA gene knockdown.

Furthermore, CRISPR/Cas gene-targeted cancer ther-
apy is entering preclinical trials [80]. The difficult issue 
of discovering miRNA targets has been approached 
in a variety of ways, and it can be modified to target 

Fig. 3  Therapeutic use of miRNAs in cancer treatment. miRNA replacement therapies or oncogenic miRNA inhibition are the two primary current 
methods utilized to prevent the overexpression and functions of miRNAs. miRNA replacement therapy such as ligand conjugated miRNAs, 
liposomes, miRNA mimics, and viral vectors are used to suppress the oncogenic miRNAs. Furthermore, miRNA inhibition therapy includes small 
molecule inhibitors, miRNA sponge, antisense, and CRISPR/Cas9 which inhibit the oncogenic miRNA’s function. miRNAs microRNAs, CRISPR/Cas9 
clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9
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a variety of genes in  vivo, underlining its significant 
promise for future therapeutic use.

Innovative advances in CRISPR/Cas miRNA‑editing 
technology
As previously reported [81], targeting miRNA for either 
stimulation or suppression of gene expression had a sig-
nificant impact on studying cancer biology and as a tool 
for cancer prognosis and treatment. However, the tech-
niques currently in use still show several limitations 
and require further studies to improve their safety and 
effectiveness.

As a result, it has been shown that CRISPR/Cas tech-
nology provides a promising new therapeutic approach 
for miRNA targeting, especially when used as an inhibi-
tor. For example, knocking out miRNA-155 by CRISPR/
Cas9 in macrophage cell lines shows a great reduction in 
the development of rheumatoid arthritis-related symp-
toms [82]. Moreover, CRISPR/Cas9 shows less stimula-
tion of proinflammatory cytokines when compared to 
siRNA knockout methods, resulting in higher safety for 
in vivo application [82, 83].

Several studies have investigated CRISPR/Cas-medi-
ated knockdown of miRNA genes and miRNA transcripts 
in vivo and in vitro (Table 2 [77, 82, 84–95]). For exam-
ple, Chang et  al. [77] performed CRISPR/Cas9 knock-
down on three miRNA genes expressed in two different 
colorectal cancer cell lines, HCT116 and HT-29. They 
showed that CRISPR-based techniques lead to a decrease 
in miRNA-141, miRNA-17, and miRNA-200c expression 
with an effectiveness rate of 96% higher than traditional 
control vectors. Similarly, Huo et  al. [78] used lentiviral 
CRISPR/Cas9 constructs to successfully knock down the 
expression of pre-miR-21 in ovarian cancer cells. This led 
to the up-regulation of the miR-21 target genes PDCD4 
and SPRY2, which inhibited the growth, migration, and 
invasion of ovarian cancer cells. In addition, El Fatimy 
et al. [79] demonstrated that down-regulation of miR-10b 
led to reduced miR-10b levels in glioma and brain tumor 
cells. These findings provide evidence for the potential of 
the CRISPR/Cas technology to inhibit the survival and 
multiplication of cancer cells, as well as down-regulate 
their expression.

CRISPR/Cas‑based miRNA gene editing
DNA can be added, removed, or changed at endog-
enous loci in a genome using the sophisticated genetic 
engineering technique known as genome editing with 
sequence-specific nucleases [96]. To produce double-
strand breaks (DSBs) on target DNA at a predetermined 
locus, sequence specific nucleases (SSNs) act as molecu-
lar scissors. Endogenous DNA repair processes are trig-
gered in cells by the creation of DSBs. Non-homologous 

end joining (NHEJ), the predominant DNA repair pro-
cess in higher eukaryotes, is very error-prone and can 
result in insertions, deletions, or mismatch alterations 
at targeted loci. In contrast to NHEJ, homology-directed 
repair (HDR) needs a DNA donor template and is less 
efficient [97]. Genome editing has recently become 
popular due to the development of zinc finger nuclease 
(ZFN) [98], transcription activator-like effector nucle-
ases (TALEN) [99], CRISPR-Cpf [100], and CRISPR-Cas9 
technologies [101].

The first technology to provide a Cas effector for pre-
cise genome editing was the DNA-targeting Cas9 system 
from CRISPR-class 2. Cas9 [102] and Cas12 [103] are 
two examples of class 2 putative enzymes that have been 
found as programmable miRNA gene-targeting modules 
for biotechnological applications due to their widespread 
use in genome engineering across a variety of species. 
Both Cas9 and Cas12 use analogous mechanisms to 
detect and break the complementary DNA sequence that 
corresponds to the RNA guide [104].

Nuclease activity in these RNP effectors is triggered 
by the identification of a specific sequence of DNA. The 
RNP or Cas protein scans long DNA sequences and rec-
ognizes the PAM region, then, in turn, initiates an ATP-
independent DNA unwinding process and finally results 
in the pairing of the DNA target strand (TS) and the 
RNA guide [105]. During the RNA–DNA hybridization 
process, the “non-target” DNA strand becomes unpaired 
from the targeted strand, and the Mg2+-dependent endo-
nuclease exploits two active sites (HNH and RuvC in 
Cas9) or a single active site (RuvC in Cas12) to cleave 
DNA strand independently (Fig. 4) [101].

Cas9‑based mechanism for miRNA gene targeting
Large multidomain CRISPR/Cas9 enzymes of type II 
vary in size from 700 amino acid residues (subtype II-D) 
to over 1700 amino acid residues (subtype II-C) [106]. 
Cas9 is part of a functioning RNP that also includes 
either a crRNA-tracrRNA scaffold hybrid or an engi-
neered crRNA-tracrRNA fusion sgRNA [107]. Cas9’s 
bilobed structure, made up of a CRISPR RNA-targeted 
strand (crRNA-TS) pair recognition lobe (Rec lobe) 
and a nuclease lobe (Nuc lobe), is responsible for target 
binding and cutting [108, 109]. Rec1, Rec2, and Rec3 are 
all subdomains of the Rec lobe, while the Nuc lobe has 
RuvC, HNH, and wedge-PAM-interacting areas as its 
subdomains.

For PAM identification, apo-Cas9 must first change 
from its open state when no gRNA is present to its closed 
state after guide recruitment [110, 111]. Together with 
the Rec lobe, the RuvC and HNH nuclease domains 
change their respective conformations upon target DNA 
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binding to activate the nuclease, resulting in a blunt-
ended DNA cut [112].

To find potential sequence targets, Cas9 either uses 
guided 1D diffusion or random 3D collisions to detect 
PAM sequences along DNA sequences [113]. DNA 
treated with N4-cystamine forms disulfide bonds with 
Streptococcus pyogenes that have been modified with 
cysteine. Modification of Cas9 (T1337C) allowed the 
temporary interrogation state to be captured and con-
tributed to the understanding of how Cas9 “reads” 
DNA [114]. Interestingly, by binding to PAM, Cas9 

aggressively bends and twists DNA, which causes 
the nucleotides to flip out of the duplex and toward 
the gRNA, allowing for interrogation miRNA gene 
sequence.

The gRNA contains a short region of RNA that is 
complementary to the target DNA sequence, which 
allows the gRNA to hybridize with the DNA and form 
a stable duplex [115]. This RNA–DNA hybridization is 
specific, meaning that the gRNA will only bind to a tar-
get DNA sequence that has a complementary sequence 
to the gRNA (Fig. 5).

Fig. 4  The CRISPR/Cas system and gene editing mechanism. a CRISPR/Cas locus in the bacterial genome with associated transcription 
and translation products. b CRISPR/Cas engineered for site-specific gene editing. c Editing of dsDNA using CRISPR/Cas12a and CRISPR/Cas9 
respectively. CRISPR/Cas clustered regularly interspaced short palindromic repeats/CRISPR-associated protein, dsDNA double strands DNA, crRNA 
CRISPR RNA, TracrRNA trans-activating CRISPR RNA, sgRNA single-guide RNA, PAM protospacer adjacent motif
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As the DNA bends, the targeted strand pairs with the 
20-nt of gRNA to form an R-loop structure [116]. DNA 
binding at a sequence that matches the 20-nt sgRNA 
enhances structural changes in proteins that make 
accommodation for RNA–DNA helix and the displaced 
non-target DNA strand. Cas9 stabilizes the R-loop by 
interacting with both ends of the open DNA helix, creat-
ing a structural distortion of 30° in the helical bend angle 
[115]. After the initial melting of the DNA, the gRNA-
TS gradually pairs to make a 10-base pair heteroduplex. 
Crystallization and X-ray analysis of a 10-nt match com-
plex at a resolution of 2.8 Å demonstrate that the TS and 

non-target strand (NTS) maintain their hybrid state at 
the PAM-distal end of the DNA platform [112].

Variation in miRNA genes will alter the biogenesis 
of the miRNA and makes a significant impact on the 
miRNA transcription, maturation, and target specificity 
[117]. Thus, gene-editing approaches like the CRISPR/
Cas system, which can alter genomic sequences, offer an 
opportunity for the management and therapy of a wide 
range of diseases and disorders. For example, Zhou et al. 
[118] showed that using CRISPR/Cas9 to target muta-
tions in miRNA genes of rice is very effective and is one 
of the most dependable approaches to finding mutations. 

Fig. 5  An illustration shows how Cas9 stabilizes the R-loop. In order to construct an R-loop structure, the targeted strand of DNA must link 
with the 20-nt of gRNA as the DNA curves. The sgRNA not matched to a target DNA sequence (0-nt RNA: DNA) that has a complementary sequence 
to the gRNA. DNA binding at a sequence matching the 20-nt sgRNA helps proteins accept the RNA–DNA helix and displaced non-target DNA 
strand. Complete R-loop formation constitutes the signal for the subsequent structure of the targeted gene. gRNA guide RNA, nt nucleotide, sgRNA 
single-guide RNA, Cas9 CRISPR-associated protein 9, PAM protospacer adjacent motif, Nuc nuclease, Rec recognition
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Additionally, to silence miRNA genes, Zhao et  al. [119] 
demonstrated that Cas9 could be guided to the target 
strand by creating DSBs using different gRNAs. They suc-
cessfully silenced miRNA genes, including those encod-
ing carcinogenic miRNAs like miR-21 and miR-30a, by 
applying the CRISPR/Cas9 system.

Direct transcripts of the miRNA gene, or pri-miRNA, 
are subsequently converted into short mature miRNA by 
Drosha and Dicer enzymes [120]. CRISPR/Cas9 can cleave 
miRNA Drosha and Dicer processing sites, at the DNA level, 
which results in indels of varying sizes in the miRNA gene 
sequences in vivo and in vitro [121, 122]. Cells transfected 
with the indicated CRISPR/Cas9 constructs reduced mature 
miR-17, miR-200c, and miR-141 expression by almost 96% 
relative to control vector-transfected cells [77]. Addition-
ally, clones with only two deletions (GT) or one insertion of 
nucleotides (A-T) can obstruct the exogenous expression of 
the miR-17 gene in addition to single clones with substantial 
portions of deletion (such as 6–18 bp) that prevent mature 
miR-17 gene synthesis.

These findings provide significant evidence for the the-
ory that CRISPR/Cas9-induced alterations in the stem-
loop structure of pri-miRNA can inhibit the synthesis of 
mature miRNA.

Cas12‑based mechanism for miRNA gene targeting
Cas12 proteins, in contrast to Cas9, are large multid-
omain enzymes with a wide range of diversity that has 
led to their classification into more than ten distinct sub-
classes such as V-A to V-K, and other subclasses V-U 
[106, 123]. They vary in the processes via which they 
form RNPs, the RNPs themselves, and the nucleic acids 
to which they bind. RNPs can be functional when guided 
by either a single crRNA [124] or a hybrid of a crRNA 
and a trans-activating CRISPR RNA (tracrRNA) [125] 
or a crRNA and short-complementarity untranslated 
RNA (scoutRNA) [126]. Generally, Rec and Nuc lobes, 
similar to those found in Cas9, are present in even the 
smallest Cas12 effectors, like Cas14 (referred as Cas12f; 
subtype V-F) [127, 128], Cas12j (subtype V-J) [129] and 
Cas12g (subtype V-G) [130]. Beyond the similar bilobed 
structure, structural analyzes of different Cas12 proteins 
revealed remarkable homogeneity. Specifically, a crRNA 
oligonucleotide-binding domain and the RuvC domain 
give rise to the Rec lobe domains (Rec1 and Rec2) and 
the DNA-loading “nuclease” (Nuc) or zinc-ribbon 
domains, which together provide a highly adaptable plat-
form. Other short domains are sometimes fused or added 
into this basic structure to facilitate PAM identification 
and NTS binding or to direct recruiting efforts via a zinc-
finger motif.

Cas12a is an example of a Cas12 protein that uses a 
method similar to that used by other Cas12 proteins for 

binding and cutting DNA. Cas12a forms an adaptable 
“open” conformation in the absence of a gRNA, and a 
“closed” conformation that is prepared for PAM recog-
nition upon crRNA binding [131, 132]. The RuvC active 
site for nuclease suppression is structurally occluded 
by the Rec domains in the closed conformation [131]. 
Rec domains rearrange to make space for the heterodu-
plex form when a dsDNA target is unwound in a PAM-
dependent manner and then hybridizes with a crRNA 
[133]. This conformational change occurs simultaneously 
with the activation and opening of the RuvC active site, 
which successively cleaves the single-stranded NTS and 
then the TS to produce a 5′-overhang staggered DNA 
DSB [134, 135]. Recent structural analysis of Cas12i and 
Cas12j’s active sites found that the single strand DNA 
(ssDNA) substrate coupled with two magnesium cofac-
tors provides mechanistic detail for the two-metal ion 
catalysis process of Cas12 proteins [136]. Nonspecific 
ssDNA “shredding” in trans remains active in the RuvC 
domain after cis DNA cutting [137]. The structural 
details of DNA interrogation are still unclear, although it 
is speculated that DNA bending is involved in the duplex 
opening after the PAM [138]. Data showing that DNA 
distortion can reveal ssDNA segments, which are then 
identified by Cas12, provide validity to this mechanism 
[139].

In particular, the PAM-interacting domain has been 
observed frequently close to unraveled DNA and may 
play a key role in this process. However, it is unclear 
whether these domains and other nearby components 
effectively participate in DNA unwinding or only con-
nect with the unwound DNA for stability. To advance the 
design of Cas12-based genome editing tools, a compre-
hensive understanding of the DNA interrogation mecha-
nism is needed.

Regions of miRNAs genes targeted with CRISPR/Cas
Genomic engineering tools like the CRISPR/Cas system 
have been used to target different parts of the post-tran-
scriptional miRNA sequences at the DNA level for thera-
peutic and diagnostic purposes. These parts include the 
Drosha cleavage site, the 5ʹ-end terminal, the upstream 
region of the miRNA, the secondary stem-loop struc-
ture, and/or the mature miRNA (Fig. 6). More critically, 
according to the Jiang et  al. [140] study, which used 
CRISPR/Cas9 to knockout miR-93 in HeLa cells, deletion 
of a single nucleotide in a pre-miRNA DNA region can 
result in the highly specific total knockout of the targeted 
miRNA.

Interestingly, the CRISPR/Cas technology can be used 
to specifically target the terminal loop or 5ʹ region of 
the pre-miRNAs and inhibit their biogenesis. By using 
CRISPR/Cas9 to target a specific location in miR-93 in 
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HeLa cell line, Jiang et  al. [140] showed that targeting 
terminal loop or 5ʹ region of the pre-miRNA at the DNA 
level is one of the efficient ways to impair the RNA bio-
genesis in monoisotopic miRNA. Furthermore, they con-
firmed the functional knockdown by quantitative PCR 
analysis.

Similarly, the CRISPR/Cas technology can be used to 
specifically target miRNA loops and seed region of the 
pre-miRNAs and inhibit their biogenesis (Fig.  6). The 
stem-loop structure of pre-miRNAs exposes a duplex of 
the mature miRNA on the stem, where it can be cleaved 
off by the deoxyribonuclease Dicer-like 1 (DCL1) [141]. 
In plants [142], the pri-miRNA is turned into the miRNA 
duplex in the nucleus. In animals [143], this step takes 
place in the cytoplasm. In  vitro, experiments by Chang 
et al. [77] showed that CRISPR/Cas9 random targeting of 
pri-miRNA to the secondary stem-loop structure effec-
tively reduced miRNA families’ expression. Furthermore, 

they showed that the production of mature miRNA can 
be inhibited by introducing mutations into the stem-loop 
DNA structure of pri-miRNA using the CRISPR/Cas9 
system.

Moreover, the CRISPR/Cas technology allows for the 
exact targeting of miRNA seed DNA sequences, which 
can then be utilized to inhibit the functions of miRNAs. 
The first 2–8 DNA nucleotides of a miRNA, count-
ing from the 5ʹ end to the 3ʹ end, are known as the seed 
sequence, and this area has been conserved in a hepta-
metric pattern [144]. Seed-mediated target recognition is 
the primary method by which miRNAs suppress trans-
lation or cause mRNA de-adenylation or disintegration 
[145]. Thus, the scientist tried to find out the impact of 
targeting the seed region of miRNA by CRISPR/Cas sys-
tem to see the impact of the change on the miRNA func-
tion. For example, one of the studies performed by the 
Jiang et al. [140] revealed that CRISPR/Cas9 can be used 

Fig. 6  An illustration showed different targeting DNA regions of the post-transcriptional editing of miRNAs with the CRISPR/Cas system. Targeting 
terminal loops: CRISPR/Cas9 has the potential to inhibit the production of monoisotopic miRNAs by targeting either the terminal loop or the 5ʹ 
region of the pre-miRNA. Targeting secondary stem loop: Random targeting of pri-miRNA at secondary stem-loop structure by CRISPR/Cas9. 
Targeting mature miRNA: CRISPR/Cas9 sequences that target mature miRNA are used to successfully inhibit miRNA expression. Dicer cleavage 
sites: The expression levels of mature miRNAs can be successfully down-regulated by gRNA when it has been directed to target miRNA in the Dicer 
site. Drosha cleavage sites: gRNA successfully targets mature miRNAs at the Drosha region to bring down the expression levels of certain miRNAs. 
CRISPR/Cas clustered regularly interspaced short palindromic repeats/CRISPR-associated protein, gRNA guide RNA, sgRNA single-guide RNA, crRNA 
CRISPR RNA



Page 16 of 30Hussen et al. Military Medical Research           (2023) 10:32 

as a proper tool for knocking out the miRNA-93 at the 
DNA level. They used HeLa cells and designed a specific 
gRNA to target the PAM sequence of miRNA-93 in the 5ʹ 
region which is one of the critical onco-miRNA in cancer 
prognosis [140]. They demonstrated that minor indels in 
the 5ʹ region of this miRNA cause sequence impairment 
and biogenesis inhibition, resulting in an effective and 
selective gene knockout.

Additionally, the CRISPR/Cas technology can be used 
to specifically target mature miRNAs in DNA and sup-
press their expression. For example, the successful silenc-
ing of miRNA expression by targeting mature miRNAs 
was obtained by Chung et  al. [146] while aiming to 
shut down the expression of genes involved in drought 
response in rice. The team showed that targeting of 
mature miRNA sequences, as well as of miRNA biogen-
esis sites through CRISPR/Cas9 technology is a powerful 
tool for studying loss of function mutation in miRNAs in 
rice.

Further, it was demonstrated conclusively that muta-
tions introduced by CRISPR/Cas at miRNA Drosha- and 
Dicer-processing sites lead to the down-regulation of 
mature miRNA by blocking biogenesis. CRISPR/Cas9 
system can target Drosha and Dicer cleavage sites of the 
pri-miRNAs and inhibit their biogenesis [77]. The com-
plex process of miRNA maturation requires the action 
of numerous Drosha and Dicer enzymes, which cleave 
particular locations in the pri-miRNA sequence to pro-
duce the complete and functional miRNA structure. The 
flanking and internal structures of the pri-miRNA, which 
determine the effectiveness of these cutting enzymes, 
have an impact on the specific cutting site [147]. Chang 
et al. [77] created a gRNA to target mature miR-17, miR-
200c, and miR-141 in Dicer and Drosha cleavage sites at 
the DNA level because of their critical function in the 
biogenesis of miRNA. By transfecting cells with specific 
CRISPR/Cas9 constructs, they were able to reduce the 
production of these mature miRNAs by as much as 96% 
compared to cells transfected with control vectors. The 
results of the above study added credibility to the argu-
ment that the CRISPR/Cas9 system is highly specific 
for editing miRNA sequences, as it can avoid off-target 
effects even when modifying miRNAs within the same 
family or with highly conserved regions.

Advantages of CRISPR/Cas miRNA targeting
CRISPR/Cas is a more effective, precise, and stable 
technique for activating or silencing miRNAs in can-
cer cells than recent methods. For example, the effects 
of an inserted mutation can be permanently integrated 
into the genome and passed on to the next generation of 
cells, which is a major advantage of using genetic engi-
neering, especially the CRISPR/Cas system. According 

to Friedland et al. [148] study on Caenorhabditis elegans, 
mutations created by CRISPR/Cas9 can pass to the off-
spring. Likewise, according to Chang et  al. [77], who 
cloned CRISPR/Cas9 designs with sgRNAs that tar-
get the biogenesis processing sites of certain miRNAs, 
CRISPR/Cas9 can substantially and specifically suppress 
the production of these miRNAs by up to 96%. They also 
demonstrated that similar results could also be obtained 
in vivo by transfecting mice with the CRISPR/Cas9 con-
struct and targeting miRNA-17.

Furthermore, when compared to other methods, 
CRISPR/Cas offers higher accuracy and specificity 
(Table  3). For instance, the findings of Wu et  al. [149] 
demonstrated that technologies based on CRISPR had 
great accuracy and specificity in comparison to other 
techniques. This precision is a result of the CRISPR/Cas 
system’s focus on sgRNA, which is targeted to a specific 
site throughout the entire genome. Moreover, Chung 
et  al. [146] utilized CRISPR with recombinant codon-
optimized Cas9 (rCas9) on 13 different types of miRNA 
in rice, obtaining a 59.4% rate of mutations, including 
mono-allelic (8.54%), bi-allelic (11.1%), and hetero-allelic 
combination (39.7%) mutations. Similarly, Narayanan 
et  al. [85] proved that the CRISPR/Cas9 approach for 
miRNA gene knockdown can reach a high success rate 
in mammalian cells with minimal off-target activity. Fur-
ther, they found that in mammalian cells, the CRISPR/
Cas9 method for miRNA gene knockdown can achieve 
a success rate of 75–99% with low off-target activity. In 
addition, the effectiveness of miRNA silencing through 
CRISPR/Cas9 genome editing is also enhanced by the 
ability of this technique to target not only a single miRNA 
sequence but also several pre-miRNA structures in a sin-
gle application [150].

In addition to precision and selectivity, the CRISPR/
Cas system allows for the targeting of various loci within 
the miRNA gene. Clinical trials are continuing to explore 
new medicines to fight diseases in humans using a wide 
variety of Cas9 nuclease variants [151]. However, Cas9’s 
effectiveness and adaptability in genome editing are 
capped by its toxicity and potential for mutagenicity [152, 
153]. In response to these challenges, researchers have 
enhanced their pursuit of CRISPR/Cas systems, which 
have the potential to be refined into next-generation 
genome editing tools. Cas12a, Cas12b, Cas12f, Cas12g, 
and Cas14 are some of the newest type V members in 
class 2 to receive scientific attention [130, 154–156]. For 
genome editing, Cas12a is interesting because it appears 
to be more precise than Cas9 [157] and has opportunities 
for future development [158, 159]. Cas12a’s pre-crRNA is 
processed into mature crRNAs due to its unique RNase 
activity by the proper Cas12a [90, 160], and its short 
crRNA (40 nt) helps overcome the size challenge in 
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delivery via viral vectors [161]. As a result, through the 
delivery of numerous crRNAs on a single plasmid, this 
Cas12a activity has been effectively used in multiplex 
gene regulation to successfully edit many endogenous 
targets at once [162, 163].

In light of this, the CRISPR/Cas system has been widely 
used as a genetic engineering tool in a variety of animals, 
as well as in  vivo and in  vitro studies of human disor-
ders, by taking advantage of the endogenous DNA repair 
machinery of cells.

Challenges of targeting miRNAs by CRISPR/Cas 
and its strategies to overcome
Cas9 PAM deficiency in miRNA sequence
CRISPR gRNA is composed of two main parts, crRNA 
and tracrRNA. The crRNA sequence targets and binds 
to the NGG, PAM, and the target DNA, whereas tracr-
RNA has a role in ensuring Cas9 nuclease activity [164]. 
Requiring a PAM sequence next to the target site is con-
sidered one of the main limitations of using the CRISPR/
Cas9 system for targeting miRNA genes at the DNA level 
[165]. As miRNAs are very short sequences of nucleo-
tides, often it is quite challenging for these small frag-
ments to find the PAM region of the targeted miRNA. 
Moreover, according to the Bi et al. [166] study, most of 
the miRNA sequences do not contain the classic mam-
malian 5ʹ-NGG-3ʹ PAM region, which is essential for 
Cas9 protein activity. And this issue becomes even more 
obvious when anyone tries to target mature miRNA 
which is very short, usually around 20–24 nucleotides 
long.

To overcome this issue, advanced bioinformatics plat-
forms can be used to assess the presence or lack of an 
appropriate PAM region in the target miRNA sequence. 
Zhou et al. [118] found that out of the 592 rice miRNAs 
assessed through the miRBase portal (http://​www.​mirba​
se.​org/), 556 miRNAs (93.92%) presented a suitable PAM 
site for Cas9, showing the importance of these bioinfor-
matics tools in successful planning experiments.

Further, additional approaches to get around this 
limitation include using different Cas proteins, includ-
ing Cas12a, which potentially overcome this challenge. 
Cas12a is a single RNA-guided endonuclease, which 
means it processes its own gRNAs and only needs crRNA 
for targeting [167]. For instance, miR-21 can reprogram 
microglial cells and establish a favorable environment 
for cancer development in glioma cells [168]. It affects 
native brain cell types such as endothelial cells, neurons, 
as well as invading monocytes and macrophages which 
make up-regulation of cytokine productions [169]. As 
a result of its ability to recognize the PAM sequences in 
miR-21, CRISPR/Cas12a can reduce miR-21 expression 

by altering the coding sequences and regulating cell pro-
liferation in vivo and in vitro [170] (Fig. 7).

Besides that, the PAM sequence required for Cas12 is 
"TTTV" (where V is A, C, or G), but the PAM sequence 
needed for Cas9 is "NGG" (where N is A, C, T, or G) 
[105]. Nevertheless, scientists have found a unique 
property of Cas12 that can be used for something other 
than editing the genome such as cutting ssDNA. These 
recently uncovered features of Cas12 make CRISPR 
an attractive new area for targeting miRNAs in cancer 
therapy.

Furthermore, multiple Cas proteins, as shown in 
Table  4 [107, 141, 154, 171–179], bind to various PAM 
sites. Therefore, the success rate of CRISPR-based 
miRNA editing could be improved by using a variety of 
Cas proteins as well.

Short sequence of miRNA
One drawback of CRISPR gene editing is the challenge of 
detecting sgRNAs besides PAM, particularly when look-
ing at miRNAs, which have a short nucleotide sequence 
of 20 to 24 bases. The same issue is also present when 
using other inhibitors, such as antisense RNAs, to target 
miRNA. Moreover, not all sgRNA is efficient and work-
ing properly. Thus, sometimes a PAM sequence is avail-
able in a miRNA gene, the sgRNA might not be efficient 
enough to knock down the miRNA.

To design a reliable and effective sgRNA, it is impor-
tant to use properly in silico techniques to show all the 
predictions [180]. Another way to overcome this issue is 
to use more than one Cas protein to target different parts 
of the interested gene. For instance, Godden et  al. [87] 
showed that when two sgRNAs are used together, the tar-
geted miRNA gene loses all of its functions in embryos. 
Additionally, the discovery of new and more Cas nucle-
ases with broader PAM recognition sequences gives 
more opportunities to design gRNAs in different parts of 
miRNA sequences [181].

Off‑target effects in CRISPR/Cas‑mediated miRNA editing
Off-targeting, which results from a gRNA mismatch 
binding to the wrong target, is one of the key challenges 
of using the CRISPR/Cas system [182]. All gene silencing 
approaches, including the CRISPR/Cas system, is charac-
terized by off-target effects, which have high frequency 
[183]. Basically, off-targeting happens when the gRNA 
binds to the wrong target due to similarities between dif-
ferent sequences of the same genome, especially in mam-
mals, and it might lead to further mutation and disorders 
[5].

CRISPR has attracted a lot of attention as a potential 
new gene editing tool over the past two decades. How-
ever, it has proven of limited use due to its tendency to 

http://www.mirbase.org/
http://www.mirbase.org/
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be off-target. Because of this, a growing number of stud-
ies have spent the last few years working to enhance the 
system’s editing abilities while also reducing the number 
of undesired consequences. Include in particular the fol-
lowing strategies to overcome off-targeting:

Firstly, increasing sgRNA specificity. The specificity 
of sgRNA and target DNA recognition is determined 
by the number of base pairs in the region of the sgRNA, 
typically 10–12  bp [149]. The off-target effects are also 
modified by the remaining sequence to various levels. 
The efficacy of sgRNA-based gene editing was found to 
increase in direct correlation with the GC level of the 
seed region. The off-target effect is reduced or disappears 
when there are three or more base mismatches between 
the sgRNA seed region sequence and the DNA sequence 
at the off-target position [184]. Accordingly, 40–60% 
of the GC content can be used during sgRNA sequence 
design. The specificity of sgRNA can be increased by 
using sequences that are highly dissimilar to those of the 
off-target genes [184].

In addition, the specificity of a sgRNA is highly linked 
to its length. Using shorter sgRNA sequences (those with 
less than 20-nt) has been shown to decrease the off-target 

effects without reducing the efficiency of gene editing 
[185]. Shortening sgRNA sequences, however, may not 
improve specificity, and may even decrease gene editing 
efficiency. Therefore, more studies are needed to confirm 
the effectiveness of the method of decreasing the off-
target effect by decreasing sgRNA length. Furthermore, 
adding two guanines (called ggX20 sgRNAs) to the 5ʹ end 
of a sgRNA in place of the matching GX19 sgRNAs dur-
ing the design process is another simple alteration that 
may be made to boost the specificity of the sgRNA and 
decrease its off-target effect [183, 186]. Off-targeting can 
also be reduced by using sequence gRNA design and off-
target evaluation sites that are available online (Table  5 
[187–201]).

Secondly, Cas-sgRNA dosage control. One of the 
other strategies that can be used to minimize the con-
sequences of off-target effects is controlling the amount 
of sgRNA or Cas protein produced. For example, when 
Pattanayak et  al. [202] cut missed loci in the HEK293T 
cells’ genomes, they discovered that short sequences, low 
sgRNA activity compared to sequence length, high activ-
ity has better specificity, and high amounts of sgRNA-
Cas9 compounds can cut close internal sites or PAM 

Fig. 7  An illustration shows applying Ca12a instead of Cas9 protein, which has the ability to recognize PAM sequences in miRNA editing. By 
altering the miR-21 coding sequences in glioma cells, CRISPR/Cas12a decreases miR-21 expression through microenvironment cells, which controls 
both in vitro and in vivo cell proliferation. CRISPR clustered regularly interspaced short palindromic repeats, PAM protospacer adjacent motif, sgRNA 
single-guide RNA
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sequences. Cas9, which has DSB activity, is continuously 
expressed in cells, which could enhance the risk of off-
target sequences. This risk can be minimized by blocking 
antibodies or inhibitors of the Cas9 protein, which lim-
its the off-target effect. Regulating the concentration of 
sgRNA and Cas9 nucleases can lower the off-target risk, 
but this will also reduce the corresponding genome edit-
ing ability. Thus, it is necessary to balance the efficiency 
of gene editing against the possibility of producing an off-
target effect. Recent studies proved that decreasing the 
Cas9:gRNA complex ratio to 1:2 or 1:3 improves knock-
out efficacy and successfully decreases off-target effects 
[108, 203].

The third strategy is the chemical modification of 
sgRNA. Besides the current strategies, chemical modifi-
cation of sgRNA is also an effective way to minimize off-
target effects. Chemical modifications to crRNA include 
2-fluoro ribose, and 2-O-methyl-3ʹ-thiophosphate (MS), 

which can strengthen the selectivity of Cas9 endonucle-
ase and the stability of sgRNA [204, 205]. A further fac-
tor crucial to successful gene manipulation is the strategy 
for optimizing off-target effect identification. Off-target 
effects of CRISPR/Cas9 can be detected using tools like 
integration-deficient lentiviral vectors (IDLVs) containing 
integrase defects, and this method can identify an off-tar-
get frequency of at least 1% [206].

Targeting multi‑sites of gene by one miRNA or targeting 
one site/pathway by multiple miRNAs
As discussed in the previous section, miRNAs undergo 
a complex molecular pathway within the cell, which 
is not fully elucidated. According to “seed sequence 
matching” bioinformatics research, a single miRNA can 
control hundreds of target genes, while many miRNAs 
can trigger a single gene. For example, the miR-17-92 
cluster suppresses cyclin-dependent kinase inhibitor 

Table 4  List of Cas proteins with their PAM sequence targets

AA amino acids, DSBs double strand break, PAM protospacer adjacent motif, SpCas9 Streptococcus pyogenes Cas9, SaCas9 Staphylococcus aureus Cas9, StCas9 
Streptococcus thermophilus, ScCas9 Streptococcus canis Cas9, LbCas12a Lachnospiraceae bacterium Cas12a, CjCas9 Campylobacter jejuni Cas9, CRISPR/Cas clustered 
regularly interspaced short palindromic repeats/CRISPR-associated protein, T thymine, A adenine, G guanine, V adenine, cytosine, or guanine, N any nucleotide, R 
purine

CRISPR/Cas 
system

Types of Cas Organism isolated 
from

Major application 
area

PAM sequence PAM location 
relative to target 
base

Cas size 
(in amino 
acids)

References

Type II CRISPR/Cas 
system

SpCas9 Streptococcus 
pyogenes

Gene editing NGG Downstream 
of the target site

1368 AA [171]

xCas9 Modified 
from SpCas9

Gene editing NG, GAA and GAT​ Downstream 
of the target site

1368 AA [107]

SaCas9 Staphylococcus 
aureus

Gene editing NGRRT or NGRRN Downstream 
of the target site

1058 AA [172]

SaCas9-KKH Staphylococcus 
aureus Cas9

Gene editing NNNRRT​ Downstream 
of the target site

1058 AA [173]

StCas9 Streptococcus 
thermophilus

Gene editing NNAGAAW​ DSBs 1121 AA [174]

ScCas9 Streptococcus canis Gene editing NNG Downstream 
of the target site

1375 AA [175]

CjCas9 Campylobacter 
jejuni

Efficient genome 
editing

NNNVRYM Downstream 
of the target site

984 AA [176]

Type V CRISPR/Cas 
system

LbCas12a Lachnospiraceae 
bacterium

Gene editing 
and diagnosis

TTTV Upstream 
of the target site

1228 AA [177]

enAsCas12a Streptococcus 
pyogenes

Gene editing 
and diagnosis

TTTV Upstream 
of the target site

– [178]

Cas12f Selenomonas 
sputigena

Diagnosis TTTV Double strand 
cleavage

422–603 AA [154]

Type V CRISPR/Cas 
system

Cas14b Extremophile 
archaea

Gene editing 
and diagnosis

T-rich PAM 
sequences, e.g., 
TTTA for dsDNA 
cleavage, no PAM 
sequence require‑
ment for ssDNA

Upstream 
of the target site

400–700 AA [141]

Type I CRISPR/Cas 
system

Cas3 Escherichia coli Diagnosis No PAM sequence 
requirement

Upstream 
of the target site

1224 [179]
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1A (CDKN1A), E2F transcription factor 1 (E2F1), and 
PTEN, which can cause up-regulated cell growth; miR-
200 targets ZEBs to induce E-cadherin, which inhibits 
EMT [77]. Therefore, there is a potential for different 
consequences when researchers attempt to target a sin-
gle miRNA to reduce the amount of certain proteins by 
focusing on the miRNA that complements its mRNA.

Conversely, the protein-synthesis pathway of a gene can 
be regulated by more than one miRNA [207]. For exam-
ple, using a high-throughput luciferase reporter screen, 
Wu et al. [208] found that 28 miRNAs can directly reduce 
p21Cip1/Waf1 or CDKN1A by targeting its 3ʹ untrans-
lated region. Furthermore, many of these miRNAs were 
found to be elevated in malignancies, suggesting that 
they could act as oncogenesis modulators.

To obtain a complete therapeutic effect, targeting just 
one miRNA region in the genome is not enough. As 
shown in Fig.  8, one miRNA or more than one miRNA 
can target the same gene, which means that targeting 
just one miRNA is not enough to interrupt a disease as 
long as more than one miRNA controls the same gene. 
Therefore, to overcome this challenge, it is best to cre-
ate or develop multiple gRNA that can be utilized to tar-
get different genomic loci or mature miRNA genomic 
sequences (Fig.  8). Kabadi et  al. [209] previously devel-
oped a single lentiviral strategy to express and deliver 
a Cas9 nuclease and three to four sgRNAs transcribed 
from separate and distinct RNA polymerase III promot-
ers. Interestingly, multiple gene editing and prolonged 
transcriptional activation were facilitated by the high lev-
els of expression of individual sgRNAs in HEK293T and 
primary human dermal fibroblasts cells. This indicates 
the potential utility of this approach in miRNA-based 

biomedicine [209]. Moreover, there are different vec-
tors with different capacities, such as adenovirus vectors, 
which can successfully express eight different multiplex 
gRNAs [210]. This strategy holds promise for minimiz-
ing the number of CRISPR/Cas components used and the 
risk of undesirable side effects of the co-delivery of sev-
eral sgRNAs encoding constructs.

Delivery challenges of CRISPR/Cas system both in vivo 
and in vitro
Delivery of CRISPR/Cas presents numerous chal-
lenges, such as the selection of a good, safe, and pre-
cise vector. Inappropriate vectors are associated with 
a higher risk of toxicity and off-targeting [5]. Like-
wise, CRISPR/Cas delivery is far more challenging to 
get precisely in  vivo than in  vitro [211]. Toxicity, size 
capacity, and mismatching are the three main types of 
in  vivo delivery difficulties presented by the CRISPR/
Cas system [5, 9, 212, 213].

CRISPR/Cas vectors can be broadly classified into two 
types: viral and non-viral [214]. Interestingly, an increas-
ing number of studies are selecting lentivirus as their vec-
tor of choice. However, using a viral vector in vivo has a 
number of drawbacks, including insertional restriction, 
immune response, and size capacity (Table 6 [78, 87, 88, 
119, 215–222]). Moreover, the risks of off-targeting and 
further mutation rise with prolonged expansion follow-
ing insertion [223].

Strategy to overcome delivery challenges
Vector capacity is a significant limitation during CRISPR/
Cas delivery, especially when viral vectors such as adeno-
associated virus (AAV) are used. However, several 

Fig. 8  An illustration shows the main strategy to overcome multiple sites targeting or one site targeting through the CRISPR/Cas system. The 
CRISPR/Cas system targets one miRNA, which in turn suppresses miRNA to bind numerous genes and limit the synthesis of tumor protein. The 
CRISPR/Cas system is designed to target numerous miRNAs, which in turn restrict the same oncogenic gene, thereby limiting the growth of tumors. 
The CRISPR/Cas system is intended to target a large number of miRNAs, which then block the activity of the same oncogenic gene. As a result, 
the progression of tumor cell is suppressed or slowed down. CRISPR clustered regularly interspaced short palindromic repeats, sgRNA single-guide 
RNA, Cas CRISPR-associated protein
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strategies can be used to overcome or minimize this 
problem, like picking up a smaller Cas protein or using 
two vectors instead of one. Several Cas proteins have 
been categorized or selected according to their molecular 
weight; for example, a smaller version of Cas9 was dis-
covered in Staphylococcus aureus, showing that size opti-
mizations have been performed. This Cas9 variant is 1 kb 
smaller than the original Cas9 from Streptococcus pyo-
genes; therefore, it may be integrated into a single AAV 
vector [224]. Furthermore, Cas14 has a two-fold smaller 
molecular size than Cas9 [225]. Secondly, more than one 
viral vector can be used to deliver the CRISPR/Cas sys-
tem [9, 226]. For example, using two vectors rather than 
one reduces the off-targeting risk, which rises in parallel 
with the vector’s size [5, 224].

On the other hand, non-viral vectors are delivery sys-
tems that can be used to transport therapeutic molecules, 
such as CRISPR/Cas systems, into target cells without 
the use of viral vectors in both in vivo and in vitro [223]. 
The advantages of using non-viral vectors for CRISPR/
Cas delivery into cancer cells include their safety, low 
immunogenicity, ease of preparation, versatility, minimal 
off-targeting, and less exposure to nuclease [223, 227, 
228]. However, non-viral vectors have some crucial draw-
backs such as degradation in  vivo experiments, varied 
biocompatibility and toxicity, low delivery efficiency, and 
restricted delivery efficiency [228].

Several types of non-viral vectors can be used for 
CRISPR/Cas delivery, including liposomes, polymeric 
nanoparticles, and viral-like particles. Liposomes are 
spherical vesicles composed of a lipid bilayer that can 
be used to encapsulate nucleic acids, including CRISPR/
Cas components [229]. Polymeric nanoparticles are 
composed of synthetic polymers that can also be used 
to encapsulate CRISPR/Cas components [230]. Finally, 
viral-like particles are self-assembling protein cages that 
can be used to deliver CRISPR/Cas components [231].

Conclusions and perspectives
The current study underlines the background of the 
CRISPR/Cas system in miRNA-based cancer therapy. 
The CRISPR/Cas system provides new insights into 
cancer therapeutics that were previously unexplored in 
our understanding of the non-coding genome. With the 
development of CRISPR/Cas-based gene editing technol-
ogy, it is now possible to target mutations in a precise and 
permanent way. Short non-coding RNAs like miRNA can 
also be targeted in a precise way at the DNA level. Thera-
peutic genome editing based on CRISPR/Cas-miRNA 
targeting is moving from preliminary research to pre-
clinical development. The challenging task of identify-
ing miRNA targets has been approached in a number of 
ways, including the application of CRISPR screening and 

miRNA gene alteration. When there is a miRNA mutant, 
CRISPR knockout libraries can be used to find target 
genes whose mutation fixes the miRNA mutant pheno-
type. Interestingly, the biological role of specific sites can 
be explored through specific sgRNA libraries that target 
miRNA binding sites. Custom libraries can be delivered 
into wild-type cells to select cells with binding site muta-
tions that mimic the oncogenic miRNA. The CRISPR/
Cas technology is currently undergoing clinical trials 
for the treatment of cancer, and its application in cancer 
immunotherapy and the inactivation of cancer-causing 
viral infections holds promise for addressing altered can-
cer cells and extending the scope of cancer therapeutic 
targets based on miRNA therapy. Currently, the poten-
tial use of CRISPR/Cas as a miRNA targeting platform 
in cancer therapy has only been partially explored, and it 
needs further studies.
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