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Abstract

Mechanistic models of biological processes can explain observed phenomena and predict

responses to a perturbation. A mathematical model is typically constructed using expert

knowledge and informal reasoning to generate a mechanistic explanation for a given obser-

vation. Although this approach works well for simple systems with abundant data and well-

established principles, quantitative biology is often faced with a dearth of both data and

knowledge about a process, thus making it challenging to identify and validate all possible

mechanistic hypothesis underlying a system behavior. To overcome these limitations, we

introduce a Bayesian multimodel inference (Bayes-MMI) methodology, which quantifies

how mechanistic hypotheses can explain a given experimental datasets, and concurrently,

how each dataset informs a given model hypothesis, thus enabling hypothesis space explo-

ration in the context of available data. We demonstrate this approach to probe standing

questions about heterogeneity, lineage plasticity, and cell-cell interactions in tumor growth

mechanisms of small cell lung cancer (SCLC). We integrate three datasets that each formu-

lated different explanations for tumor growth mechanisms in SCLC, apply Bayes-MMI and

find that the data supports model predictions for tumor evolution promoted by high lineage

plasticity, rather than through expanding rare stem-like populations. In addition, the models

predict that in the presence of cells associated with the SCLC-N or SCLC-A2 subtypes, the

transition from the SCLC-A subtype to the SCLC-Y subtype through an intermediate is

decelerated. Together, these predictions provide a testable hypothesis for observed juxta-

posed results in SCLC growth and a mechanistic interpretation for tumor treatment

resistance.
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Author summary

To make a mathematical model, an investigator needs to know and incorporate biological

relationships present in the system of interest. However, if the exact relationships between

components of a biological system are not known, how can a model be constructed?

Building a single model may include spurious relationships or exclude important ones.

Therefore, model selection methods enable us to build multiple model hypotheses, incor-

porating various combinations of biological features and the relationships between them.

Each biological feature represents a distinct hypothesis, which can be investigated via

model fitting to experimental data. In this work, we aim to improve upon the information

theoretic framework of model selection by incorporating Bayesian elements. We apply

our approach to small cell lung cancer (SCLC), using multiple datasets, to address hypoth-

eses about cell-cell interactions, phenotypic transitions, and tumor makeup across experi-

mental model systems. Incorporating Bayesian inference, we can add into model selection

an assessment of whether these hypotheses are likely or unlikely, or even whether the data

enables assessment of a hypothesis at all. Our analysis finds that SCLC is likely highly plas-

tic, with cells able to transition phenotypic identities easily. These predictions could help

explain why SCLC is such a difficult disease to treat and provide the basis for further

experiments.

Introduction

A mechanistic understanding of biological processes that explains causal input-output rela-

tionships and predicts population behaviors [1] remains a central challenge to all areas of

quantitative biology. Mathematical models have become an established practice to specify pre-

cise relationships within a biological system, [2] and thereby hypothesize, and subsequently

test, the existence of these relationships. For example, multiple mechanistic models of apopto-

sis execution have been formulated to explore the nature of biochemical interactions that lead

to cellular commitment to death, demonstrating that careful model design and suitable data

can lead to important biological insights [3–5]. A more challenging situation emerges when

models are formulated for biological processes that are poorly defined or understood, leading

to multiple competing, and often juxtaposed mechanistic explanations for a given biological

process. For example, in Small Cell Lung Cancer (SCLC), a study of circulating tumor cell-

derived xenografts showed that relapsed inflammatory, non-neuroendocrine subtypes could

act as a stemlike population (“source”) [6], but archetype analysis of a genetically engineered

mouse model tumor showed the non-neuroendocrine subtype SCLC-Y acts as an end-state

(“sink”, rather than source) [7]. Therefore, continued exploration of the hypotheses generated

from these works can help elucidate the differences between these and other potential explana-

tions for tumor growth mechanisms.

This phenomenon where multiple mechanistic hypotheses are concurrently proposed but

must be assessed with limited data is not restricted to quantitative biology but common to

other fields with similar data availability limitations such as ecology [8] climatology [9], and

evolutionary biology [10], to name a few. To address this challenge, methods such as model

selection and multimodel inference have been proposed using information theoretic scoring

techniques such as Akaike Information Criterion, (AIC) with success in differentiating

between models of different mechanistic hypotheses, but limited benefits for model averaging

given that AIC scores do not inherently describe whether a model or features within are

informed by the data. More recently, the use of AI and machine learning approaches has given
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impetus to causal relationship inference [11] but these relationships remain difficult to eluci-

date, thus underscoring the need for both novel tools for hypothesis exploration, and tools that

can be used with rigor in the face of missing data.

The model selection process involves candidate model evaluation from a superset of plausi-

ble models, relative to a given experimental dataset. The most common approach for model

selection is to consider a “best” model as comprising the most relevant variables that capture

important mechanistic aspects of the explored process, while excluded variables capture pro-

cess features that are less relevant for the question being explored. However, variables through-

out all candidate models can contribute to knowledge about the overall system [12]. In the

cases where data is simply less informative for a given set of hypotheses, uncertainty will

remain about what constitutes a “best” model [13], necessitating approaches such as model

averaging, where parameter values can be weighted by model probability and then combined

into a distribution of likely values [12,14]. Unfortunately, for information theoretic applica-

tions of model averaging, this probability must be weighted and summed across all possible

models, which are often not possible to enumerate exhaustively for all parameter

combinations.

To address the challenge of employing multimodel inference approaches in the context

of biological processes where models cannot be exhaustively enumerated, data may not

inform all model evaluation, and model averaging across all models is desired to learn

about the system of interest, we present a Bayesian multimodel inference workflow (Bayes-

MMI), which combines Bayesian inference with model selection and model averaging.

Bayesian model selection, i.e. calculating the likelihood of a model in comparison to data,

and Bayesian model averaging, determining an “averaged” model or averaged parameter

values for predictions, have previously been applied across multiple disciplines [13,14]. To

our knowledge, our approach is novel in its incorporation of these methodologies specifi-

cally to explore biological mechanistic hypotheses represented by inclusion or exclusion of

species and behaviors. Application of Bayesian principles in turn reveals the extent to

which data informs a given model and its constitutive species, parameters, and overall

behaviors.

For small cell lung cancer (SCLC), our system of interest, we integrate the most suitable

available datasets and published theories of SCLC cellular biology to identify a set of mecha-

nistic hypotheses for SCLC tumor growth. We test the resulting thousands of candidate pop-

ulation dynamics models via nested sampling, comparing candidate model output to tumor

steady-state data, applying the principles of model selection and model averaging for a prin-

cipled and comprehensive assessment of SCLC mechanistic hypotheses. While fitting kinetic

parameter rates in a model to predict rates of biological actions that correspond to model

parameters is common, here we only evaluate general trends across varying categories of

mechanistic models and instead focus on evaluating the probability of mechanistic hypothe-

ses given the data at hand. Estimating these probabilities, we generate an interpretation of

SCLC tumor growth: highly likely non-hierarchical phenotypic transitions indicating SCLC

subtype plasticity, and less likely cell-cell interactions that affect the rate of phenotypic tran-

sitions across subtypes. We show how certain aspects of the SCLC model, such as phenotypic

transitions and cell-cell interactions related to these, are well informed by the available data,

but other aspects, such as tumor initiation and growth rate effects, are not informed. Our

approach is generalizable to other biological systems, and as such we advocate for a shift

away from considering the “best” model and variables within, and propose a move toward

Bayesian-driven multimodel inference for a probabilistic understanding mechanistic biolog-

ical processes.
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Results

Bayesian inference efficiently infers parameter inclusion in a “ground

truth” example model

To demonstrate the advantage of a Bayesian approach to multimodel inference, we employ a

simple model selection and model averaging example as shown in Fig 1. With generated

“ground truth” data based on the work of Galipaud and colleagues [15], we employ Akaike

Information Criterion (AIC) and Bayesian multimodel inference (Bayes-MMI) to compare the

AIC vs. Bayes-MMI evaluation of parameter inclusion in a model representing the “ground

truth” data.

Model selection aims to capture a balance between optimizing a model to match a given

dataset exactly, while also having the fewest terms required to do so [12,16]. In biological

investigations, model selection typically employs information criteria metrics such as the

Akaike Information Criterion (AIC) [12,16], or less often, Bayesian methods such as calculat-

ing the marginal likelihood [17]. AIC scores are based on the single highest likelihood value

found during parameter optimization, while the marginal likelihood incorporates all likeli-

hood values from parameter estimation and represents essentially their average over the prior

space (we refer interested readers to S1 Text Note A for further detail including a didactic

example detailing the theoretical background behind AIC, marginal likelihood, and associated

probabilities). Model averaging enables evaluation of individual hypotheses via model pieces

(as described in Fig 1A) by using the outcomes of model selection. Sums of AIC weights (SW)

(for theory and calculation see S1 Text Notes A.3, A.5, A.6) are treated as probabilities that a

model variable is part of the “true” model, while Bayesian model averaging (BMA) calculates
probabilities using Bayes’ Theorem (see S1 Text Notes A.2, A.5, A.6). In biological applica-

tions, a variable with high SW would indicate that a biological feature plays an important role

in the system. Having a high posterior probability would also indicate that a biological feature

plays an important role, but posterior probabilities allow for additional details such as whether

the data used for parameter optimization informed that model variable (see S1 Text Note A.6).

While AIC has been successful in differentiating between models in a set of candidates

[12,14,16], problems have been noted in moving from ranking models to evaluating model

variables via AIC-based SW [18,15], such as in the example we adapt here. Using code pro-

vided in [15], we generated “ground truth” data from four variables x1-4, all with differing cor-

relations with the response variable y, including perfect correlation between x1 and y and no

correlation between x4 and y (Pearson correlation coefficients 1.0 and 0.0, respectively) (S1

Text Note A.7). Shown in Fig 1B is the set of 16 linear regression models that may represent

this “ground truth” data; based on the data, x1 should be included in the optimal model, and x4

should be excluded. To test how Bayes-MMI compares to AIC-based SW methods in evaluat-

ing inclusion/exclusion of model variables, we perform a nested sampling analysis via PyMul-

tinest, [19–21] (see Methods). Using the marginal likelihood, we calculate candidate posterior

probabilities to perform our own ranking of models (Fig 1C; S1 Text, Table B). We calculate

AIC corrected for small sample sizes (AICc) SW and variable posterior probabilities (Table 1,

Fig 1D;S1 Text, Table C) using equivalent prior probabilities of variable inclusion. Overall, we

find that both our own marginal likelihood values as well as the AICc results follow similar

trends as those found by Galipaud and colleagues (S1 Text, Tables A and C; Note A.7).

AICc-based SW overestimates the probability of x4 inclusion in the “true” model, as dem-

onstrated in Fig 1C and 1D and Table 1. SW for x4 in [15] is 0.37, larger than would be

expected given that x4 has 0 correlation with y. SW for x4 in our AICc analysis is 0.25, while the

posterior probability that the inclusion of x4 is supported by the data is 0.09 (Fig 1D; S1 Text,

Table C). There does not appear to be an accepted threshold over which the SW for a variable
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Fig 1. Bayesian inference better assesses parameter inclusion in the "true" model. (A) Aspects of linear regression model assessed by model selection

and model averaging. (B) Candidate linear regression model set for multimodel inference analysis and comparison to AICc in our analysis of the

example problem from Galipaud et al., 2014 [15]. (C) Results from our analysis of candidate models in (B) using data generation code from Galipaud

et al., 2014 [15]. Candidate models are arranged along the x-axis by posterior probability. Each posterior probability from our analysis is compared to

the AICc weight from our analysis. (D) Heatmap for each model averaging analysis based on data generation and candidate models in [15]. Top two

rows are summed AICc weights (SW), where SW is a value starting at 0 and weights are summed until the final SW value; thus, the top color bar

corresponding to these two rows moves from 0 (white) to 1 (dark red). First row, the idealized summed AICc weights based on generated “ground

truth” data (with Pearson correlations between x2 and y and x3 and y different than 0.0 or 1.0, we cannot be sure what the “true” SW should be); second

row, summed AICc weights from our analysis. Note the large difference between ideal SW for x4 (zero) and its calculated SW (0.25; see Table 1).

Bottom two rows are posterior probabilities from nested sampling and Bayes-MMI, where before nested sampling, prior probabilities are at 0.5 (white

in the bottom color bar) and color in the heatmap represents the probability of the variable’s inclusion in the “true” model (darkest blue for 0%

probability, darkest red for 100% probability in the bottom color bar). Deeper colors indicate a larger deviation from the prior. Third row, the idealized

probability based on “ground truth” data (similarly to SW, Pearson correlations between 0 and 1 for x2 and x3 mean we cannot be sure what “true”

posterior probability should be); fourth row, posterior probability from our Bayes-MMI analysis. Note the closer correspondence between ideal

posterior probability for x4 (zero) and its marginal-likelihood-derived probability (0.09; see Table 1) than between ideal SW and calculated SW.

https://doi.org/10.1371/journal.pcbi.1011215.g001
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indicates it should be included in a model, thus practitioners choose a threshold on a per-case

basis [15]. However, using Bayesian principles, we see the posterior probability of x4 inclusion

at 0.09 has decreased to a large extent from its prior probability of 0.5 (Table 1). We view 0.09

as a more reasonably low probability than 0.37 or 0.25, given that x4 is not at all correlated to y.

(Please see S1 Text, Notes A.7, B and C for additional analyses performed on this example.)

The results from this simple example suggest that Bayesian analysis-based methods on the

marginal likelihood exhibit improved performance for model selection, specifically as it per-

tains to inclusion or exclusion of variables or model terms. We apply these principles to SCLC

tumor growth, our system of interest, and employ multimodel inference (MMI; model selec-

tion and model averaging together) in the context of Bayesian statistics. There have been bio-

logical investigations using MMI approaches [22,23] but, to our knowledge, this work is the

first application of Bayes-MMI to cell population dynamics models. Using MMI to assess the

posterior probability of different model variables is comparable to Bayesian variable selection,

which in biomedicine has been used to determine genetic loci associated with health and dis-

ease outcomes in linear models [23]. We find using a Bayesian approach to MMI results in

probabilities that biologically relevant model features are (or are not) supported by the data.

Such an approach is likely relevant to any cancer or developmental biology application and

can be used to investigate model variables even in the context of limited or uncertain data.

Existing datasets yield multiple hypotheses in SCLC tumor growth

mechanisms

Small cell lung cancer (SCLC) has been denominated a recalcitrant tumor, signifying that

relapse after treatment is commonplace and survival prognosis is typically poor. SCLC com-

prises ~15% of all lung cancer cases worldwide and results in ~200,000 deaths annually with a

5-year survival rate of less than 10% [24]. Intratumoral heterogeneity is hypothesized to be the

main contributor to the natural history of this disease and its morbidity and mortality [24–26].

SCLC tumors comprise a mix of functionally distinct subtypes of interacting cells, [27–29],

most notably neuroendocrine (NE) and Non-NE. As shown in Fig 2A, SCLC populations

comprise a collection of cellular subtypes within a tumor, identified by differential expression

of transcriptional regulators [25].

The overall goal in this work is to computationally explore tumor growth mechanism

hypotheses in SCLC. Tumor features that emerge as highly supported by data about the growth

mechanism could be used to predict differences in growth across tumors of different genetic

backgrounds, responses to in silico treatment, or even predict patient-specific tumor behavior

after various treatments. Unfortunately, these goals are currently hypothetical, because to

build one SCLC model that could be used for these purposes, one would need a unified under-

standing of the SCLC tumor as a system, and knowledge of SCLC currently exists as

Table 1. SW and posterior probability calculations for each model variable.

Variable SW: Galipaud et al. 2014 [15] SW: this manuscript Prior probability Bayes-MMI posterior probability

x1 1 1 0.5 1

x2 0.94 0.81 0.5 0.67

x3 0.37 0.49 0.5 0.28

x4 0.37 0.25 0.5 0.09

Prior probability for a variable is set at 0.5, meaning a variable’s prior probability for can be calculated per candidate model by dividing 0.5 by the number of models in

which the variable appears. Prior probability values only impact posterior probability scores and not SW calculations.

https://doi.org/10.1371/journal.pcbi.1011215.t001
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Fig 2. Conclusions and hypotheses from literature build mechanistic hypothesis exploration space for tumor growth and development. (A)

Synthesis of what is currently known about SCLC subtypes, which have been divided into two overall phenotypes, neuroendocrine (NE) and Non-NE,

and then further classified into subtypes based on transcription factor expression. [1] NE SCLC cells, which do not express HES1, transition into Non-

NE cells, which do. [2] HES1+ cells release unidentified factors (gray circle) that support viability and growth of HES1- cells, and the two HES1+ and

HES1- populations grow better together rather than separately. [3] Consensus across the field led to labeling SCLC phenotypic subtypes by the

dominant transcription factor expressed in that subtype. [4] Subtype with transcriptional signature intermediate between NE and Non-NE, named

SCLC-A2. [5] Phenotypic transitions occur in a hierarchical manner from SCLC-A to SCLC-N to SCLC-Y cells. (B)-(E) Candidate model examples

representing SCLC biological hypotheses (Table 1). Here we indicate schematically how a population dynamics model can represent each biological

hypothesis, as well as denote how the set of candidate models is built combinatorially, in order of (B)-(E). (B) Model topologies constructed with 2

+ subtypes, with number of combinations per number of subtypes. There are 11 options total, and each of these move forward to choose one effect

option from (C [1], [2], or [3]. (C) Subtype effect schema, where there are different effectors between candidates and different affected cellular actions.

If there are effects (C [2] or [3]), model behaviors affected are chosen (choose (C [4] & [6], [4] & [7], or [5] & [6]). Whether effects present (C [2], [3]) or

not (C [1]), the candidate moves forward to choose initiating subtype(s): each subtype in the model must follow (D [1], [2], or [3]) and corresponding

transition schemes (E [1], [2]). (D, E) Initiation schemes (D) and potential transition schemes (E), where all subtypes in topology must be accessible

either as initiating subtypes or via transitions (D), unidirectional transitions are those that follow a hierarchy (E, top left), and bidirectional transitions

must be symmetrical when present (E, top right and bottom). A: ASCL1, Achaete-scute homolog 1; N: NEUROD1, neurogenic differentiation factor 1;

H: HES1, Hes Family BHLH Transcription Factor 1; P: POU2F3, POU class 2 homeobox 3; Y: YAP1, yes-associated protein.

https://doi.org/10.1371/journal.pcbi.1011215.g002
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nonoverlapping conclusions and hypotheses. We summarize the current knowledge about

SCLC tumor growth mechanisms, highlight potential knowledge gaps, and refer interested

readers to [25] for a comprehensive review of recent SCLC literature beyond that noted here.

Multiple SCLC subtypes have been identified depending on the experimental model stud-

ied, shown in Fig 2A, as SCLC-A, N, A2, and Y [25]. Other experiments have led to additional

proposed phenotypic subtypes, including canonical subtype SCLC-P, but these were not

included in our analysis because they were not shown to be present in our datasets used [6,29–

32]. Our previous work aimed to identify whether all subtypes may be present in a tumor or if

only a subset are present, with the result that tumors can be composed of one, multiple, or all

subtypes tested [33]. A comprehensive account of initiating SCLC subtype(s) (cell(s) of tumor

origin) has not been made, but multiple have been hypothesized in [33–35].

Studies in vitro and in vivo have suggested that Non-NE subtype(s) support growth of NE

subtypes [28] (Fig 2A [2]), including vasculogenic mimicking SCLC cells having such sup-

portive effects [29]. The presence of NE subtypes has a dampening effect on Non-NE growth

[36]. Recent work has shown that the HES1-positive (Non-NE) cells supporting NE subtype

growth [28] may have upregulated YAP1 [37] (Fig 2A [2]), and are likely SCLC-Y; otherwise,

the referenced studies were completed before the adoption of the canonical subtypes

SCLC-A, N, A2, P, and Y, and so it is unclear which of these exactly contribute such effects

in each case.

NE cells may undergo a transition a toward HES1+ (likely YAP1+) identity, (Fig 2A [1])

which modulates these Non-NE cells’ sensitivity to anticancer drug treatment [28]. Other

work found that SCLC-A subtype cells can transition to the SCLC-N subtype and from

SCLC-N to SCLC-Y [34] (Fig 2A [5]). Without the ability to undergo a transition toward a

more Non-NE phenotype, tumors were smaller and less aggressive; however, this study did

not assess Non-NE or SCLC-Y sensitivity to anticancer drugs [34]. These two landmark stud-

ies assessing phenotypic transitions do not assess the same phenotypic transition pathway and

thus we cannot compare intermediates, although we hypothesize that the transitions begin

with SCLC-A and it seems reasonable to assume the hierarchical pathway ends in SCLC-Y.

While our investigations support that SCLC-Y acts as an end state for phenotypic transitions,

[7] another study identified that Non-NE subtypes may have stemlike potential [6], which con-

trasts with Non-NE or SCLC-Y acting as the end of the hierarchical pathway.

Multiple mechanistic hypotheses emerge from existing data

Considering the aspects of SCLC tumor growth observed in the previous section, it is clear

that no one model exists that could easily recapitulate all datasets. To address this challenge,

we explored mechanistic hypotheses in the realm of tumor initiation and composition, pheno-

typic transitions and their hierarchy, and subtype-to-subtype effects (Table 2). Each point in

Table 2 represents a biological hypothesis or theory of SCLC. To select which of these multiple

hypotheses to include in a mechanistic model of SCLC without additional findings would

introduce bias into the modeling process.

Instead, we can address these questions computationally, by including or excluding these

behaviors across multiple mechanistic models and evaluating whether model behaviors reca-

pitulate SCLC data; that is, we turn to model selection [12,14]. Using model selection, we gen-

erate a set of candidate models, each of which may include one biological hypothesis (one

bullet point in Table 2), multiple hypotheses, or all hypotheses represented by in Table 2. In

this way, the set of candidate models will represent SCLC hypotheses individually or in combi-

nation, and thus each hypothesis will be evaluable mathematically in the model selection

workflow.

PLOS COMPUTATIONAL BIOLOGY Determining tumor growth mechanisms via model hypothesis exploration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011215 July 5, 2023 8 / 39

https://doi.org/10.1371/journal.pcbi.1011215


For our tumor growth mechanism exploration, we interpret tumor topology, initiation,

potential subtype behaviors, etc., as features in candidate models (Table 2). We define model
variables as representations of species in the model (e.g., “subtype A”), and model terms as

qualitative actions in the model (e.g., “subtype A cell division”), whose rates are denoted by

kinetic parameters (e.g., “subtype A division rate”) (S2 Text Note B).

Studies of SCLC as well as other tumors indicate that multiple phenotypes may emerge in

a tumor due to perturbations, even though fewer phenotypes are seen in their absence

[34,40–46]. In SCLC, at least three, and as many as five, cell subtypes have been observed

when perturbing the tumor via treatment, time, or environment change [6,28,33,34,36,38].

To perform our analysis with minimal bias,fully account for all possible tumor subtype com-

positions, and explore an exhaustive set of possible biological explanations, we explored

models comprising between two and four subtypes per model (Fig 2B). In addition, we

included all possible cell subtype interactions. Growth supportive effects and transition-

inducing effects (Fig 2C) (and growth dampening effects, not shown) are included in some

candidate models where, e.g., presence of an effector (supportive cell subtype) increases the

rate of growth of a subtype it affects (supports). Subtype A2 has expression features of both

NE and Non-NE cells [33], including expression of ASCL1 (seen in NE cells) and HES1

(seen in Non-NE cells) and we therefore assigned A2 NE features in some candidate models

and Non-NE in others (Fig 2C).

Table 2. Existing data pertaining to SCLC intratumoral heterogeneity and communication.

Tumor composition

• Neuroendocrine-classified (NE) subtypes are A (ASCL1+) and N (NEUROD1+), with non-neuroendocrine-

classified (Non-NE) subtype Y (YAP1+) and P (POU2F3+). [25]

• Previous work predicted subtype A2, and SCLC-A, SCLC-A2 and SCLC-N have been seen to express ASCL1

[25,28,33,34]. SCLC-A2 expresses HES1. [33]

• HES1-positive TKO tumor cells (Non-NE) have YAP1 upregulated. [37]

• It is unclear whether A2 is more NE or Non-NE in character.

• Tumors can be made up of one or more of these subtypes. [25,33]

• Some subtype combinations have been experimentally verified and others have been predicted using

CIBERSORT. [25,33,34]

• We do not see SCLC-P in our previous subtype deconvolution. [33]

Evidence of phenotypic transitions

• TKO tumor cells sorted for HES1-negativity (NE identity) become HES1 positive (Non-NE identity) when plated

with Notch ligand DLL4. [28]

• Ex vivo culturing of in situ RPM tumors results in histologic and transcriptional phenotypic changes from NE to

Non-NE gene expression over time. [34]

• Transitions between A and A2, A2 and N have not been studied.

• No evidence of SCLC-Y transition to NE identity. [28]

Subtype-to-subtype effects

• Cell viability and division are increased when HES1-negative cells are plated with HES1-positive cells, compared

to HES1-negative cells only. [6,28,34,36,38]

• NE cells suppress Non-NE cell division. [39]

• Application of conditioned media from TKO-derived HES1+ (Non-NE) cell culture or of isolated exosomes

TKO-derived from HES1+ cells results in a morphological change in TKO-derived NE cell line KP3.*

* Personal communication (Alissa Weaver, Vanderbilt University). ASCL1, Achaete-scute homolog 1; NEUROD1,

neurogenic differentiation factor 1; POU2F3, POU class 2 homeobox 3; YAP1, yes-associated protein; HES1, Hes

Family BHLH Transcription Factor 1. TKO, p53fl/fl;Rbfl/fl;p130fl/fl tumors [28]; RPM, Rb1fl/fl;Trp53fl/fl;Lox-Stop-Lox

[LSL]-MycT58A tumors [36]

https://doi.org/10.1371/journal.pcbi.1011215.t002
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To compare a hierarchical system, where a cancer stem cell (CSC) can (re)populate a

tumor, and non-hierarchical systems in which phenotypic transitions can occur among multi-

ple or all SCLC subtypes, we include candidate models with several different potential pheno-

typic transition schemes. Thus, the set of candidate models considered include models without

phenotypic transitions, models with transitions that reflect hierarchical transitions observed

experimentally [28,34], and models with reversible transitions, i.e., high plasticity (Fig 2D and

2E). Unidirectional transitions stemming from one cell subtype indicate a potential CSC,

while bidirectional transitions from multiple subtypes indicate phenotypic plasticity. We addi-

tionally include tumor initiation from one cell of origin vs. multiple. Tumor initial conditions

are not fitted, but set at 100 cells total, divided by whichever cells have been designated as initi-

ating in the candidate model (S2G Fig). Thus, a certain set of model variables and terms result

in not just one candidate model, but 2n-1 (where n is the number of subtypes in the model

topology) candidates to account for all possible initial conditions (Fig 2D and S2G Fig).

To ensure we built a comprehensive set of candidate models that enable exhaustive explora-

tion of biologically relevant hypothesis space, we combined the potential SCLC behaviors (Fig

2 and Table 2) with prior knowledge about mechanistic behavior of tumor populations [47–

52]. For example, if there is indeed plasticity in the system, it is likely to be shared among sub-

types, leading to symmetrical bidirectional phenotypic transitions across the model (Fig 2E).

We therefore expect that all plausible SCLC tumor growth mechanisms are represented in our

candidate model hypothesis space to the best of our knowledge.

While we consider this an exhaustive exploration of the biologically relevant hypothesis

space, it does not exhaustively explore the entire potential model hypothesis space. We have 44

tunable parameters to choose from in building a candidate model (see S1 Table for rationale

behind parameter prior decisions, and S3 Fig for graphical representation of prior parameters),

and 15 initial conditions (S2G Fig). Were we to exhaustively search model space, this would

result in approximately 15*244, around 260 trillion, models to test. Accounting for all the bio-

logical possibilities noted above led to a set of 5,891 unique candidate models, 0.000000002%,

or approximately two billionths of a percent, of the entire model hypothesis space; each of the

resulting 5,891 models represents a possible SCLC tumor growth mechanistic hypothesis.

Bayesian exploration of candidate population dynamics models using

experimental data

We use multiple datasets to identify consensus behavior of SCLC and provide a unifying

model of tumor growth mechanisms broadly supported by available data (Fig 3A). These data-

sets include two genetically-engineered mouse models (GEMMs), the triple-knockout (TKO)

model (p53fl/fl;Rbfl/fl;p130fl/fl tumors [28]; equivalent to the RPR2 GEMM [34,36,53]), and the

RPM model (Rb1fl/fl;Trp53fl/fl;Lox-Stop-Lox[LSL]-MycT58A [36]), and cell lines from the Can-

cer Cell Line Encyclopedia (CCLE) [54] made up largely of the SCLC-A subtype determined in

[33] (Fig 3A and S1 File). While the SCLC-A cell lines are samples from varying (human

patient) genetic backgrounds, we estimate a similar genetic background based on the similar

tumor composition. Previous work from our labs suggests that the tumor genetic background

dictates the potential behaviors of phenotypic subtypes within a tumor population, [55–57]

and so these three datasets represent three potential tumor cell suites of behaviors. Using this

data provided us with proportions of tumor samples assigned to SCLC subtypes, using the

same gene signatures across all samples, automatically determined by CIBERSORT from sam-

ples of CCLE SCLC cell lines [54] and consensus clustering class labels [33]. We consider this

preferable to our own ad hoc decisions of individual cell subtype identity necessary to assign

the required subtype proportions of tumors had we used newer, available single-cell RNA
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sequencing data. The different datasets represented in Fig 3A demonstrate differing SCLC

tumor makeup, according to the experimental model employed in the study.

To explore the roles of phenotypic heterogeneity and cellular behaviors (cell-cell interac-

tions, phenotypic transitions) on SCLC tumor growth dynamics, we used population dynamics

modeling, building on our previous work [55]. Population dynamics models employ a mathe-

matical description of the dynamics within and between heterogeneous subpopulations in an

overall population [58,59]. With such models, researchers can mathematically simulate popu-

lation growth over time and investigate growth dynamics inherent in the simulations (S2 Text

Note A).

With 5,891 candidate models, (Fig 2B–2E) we aimed to determine which one(s) could best

represent the SCLC system [12,16]. Information theoretic approaches for model selection

using the Akaike Information Criterion (AIC) have been used in prior work with success in

determining the optimal model or subset of models, but do not yield a much-needed Bayesian

statistical understanding of the data. For a didactic demonstration of this, we refer the reader

to S1 Text Note A. We therefore employed the marginal likelihood as a more principled

means for model ranking and model averaging.

Prior work has estimated the marginal likelihood for kinetic model fitting using thermody-

namic integration [17]. In this work we instead use nested sampling, [60], which is computa-

tionally more efficient and has fewer limitations with regard to the shape of the probability

space traversed during evidence calculation [19–21]. The nested sampling method was run

once for each of the 5,891 candidate models on each of the three experimental datasets,

Fig 3. Population composition data and probabilistic representation. (A) CIBERSORT deconvolution of TKO and RPM genetically engineered

mouse model (GEMM) samples (previously published) as well as SCLC-A cell line samples. CIBERSORT was performed on bulk RNA-sequencing data.

(B) Probabilistic representation of tumor proportion based on mean and standard deviation of proportions across samples within an experimental

model; these distributions were then used for fitting models to data. TKO, p53fl/fl;Rbfl/fl;p130fl/fl tumors [28]; RPM, Rb1fl/fl;Trp53fl/fl;Lox-Stop-Lox[LSL]-

MycT58A tumors [36]; SCLC-A cell lines, a subset of SCLC cell lines from the CCLE [54] that we previously assigned as representative of tumors made

up largely of the SCLC-A subtype [33].

https://doi.org/10.1371/journal.pcbi.1011215.g003

PLOS COMPUTATIONAL BIOLOGY Determining tumor growth mechanisms via model hypothesis exploration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011215 July 5, 2023 11 / 39

https://doi.org/10.1371/journal.pcbi.1011215.g003
https://doi.org/10.1371/journal.pcbi.1011215


amounting to 17,484 potential interpretations of tumor growth mechanisms. The average fit-

ting time for each model was ~19 wall-clock hours, thus necessitating high-performance com-

puting for a complete parameter space exploration of the candidate models.

Each model is thus optimized to our datasets via nested sampling, which explores the full

volume of the likely parameter space. Each point in parameter space represents a set of possible

parameter values (S3 Fig). At each of these points, nested sampling assigns a likelihood value

for how well that set of parameter values fits the data. On completion of the algorithm, the out-

put includes the highest-likelihood parameter values. Since each tested point in parameter

space is a set of parameter values, the highest-likelihood values for a model are returned by the

algorithm as a list of parameter sets (S4 Fig). Returning a list of parameter sets rather than one

top-scoring set already incorporates Bayesian methodology into the process—each individual

parameter has multiple best-fitting values, which can be interpreted as a distribution of param-

eter values [17]—but with nested sampling we add yet more Bayesian methodology. Having

assigned a likelihood to every point in parameter space, nested sampling uses these to calculate

one overall likelihood per model, the marginal likelihood, which takes into account parameter

fit as well as model simplicity (number of parameters). For more detail on how the marginal

likelihood is calculated to incorporate both model fit and size, see S1 Text Note A and Meth-

ods. Finally, with marginal likelihood values for each model in the candidate set, and the can-

didate model set representing the full hypothesis space with all potential SCLC population

dynamics models, we can calculate a probability. Summing the marginal likelihood values, and

dividing each individual marginal likelihood by these, results in a model posterior probability,

representing a change in probability from pre-model fitting (all models with equal prior proba-

bility) to post-model fitting (see S1 Text Note A). We are then able to compare model proba-

bilities and additionally perform model averaging to evaluate kinetic parameter value

distributions and probabilities of model variables and terms.

A small subset of candidate tumor growth models is supported by

experimental data

We aim to perform multimodel inference, comparing model probabilities and parameters

using model selection and model averaging, to hypothesize which relationships within the

SCLC system are most informed by the data. As noted previously, each model represents the

combination of multiple biological hypotheses, and we begin by determining how well our

candidate SCLC models best represent SCLC.

In our linear regression example, we investigate which predictor variables, with their fitted

coefficients, best match the response variable (Figs 1A and 4A). To evaluate the behavior of

SCLC, we use kinetic models, with cell behavior represented by ordinary differential equations

(ODEs) (see Methods; S2 Text Notes A and B), which for multimodel inference involves

investigating which variables and which model terms, with their fitted kinetic parameters, best

match the data (Fig 4A–4C).

In a Bayesian model selection approach, a more likely model comprises a higher proportion

of the probability of the candidate model space (Fig 4D–4F). After nested sampling, our results

indicate the highest-scoring model for each dataset is ~1019 times more likely than the lowest-

scoring model, and ~103 times more likely than the median scoring model. For reference, the

smallest comparison between models that is considered significant is 101/2 [61] (S1 Text Note

A.6).

Performing nested sampling on all candidate models did not yield a unique best-fitting

model for any dataset (Fig 4D–4F). We therefore leveraged a multi-model inference approach

and calculated a confidence interval (CI) representing a set of best-fitting models per dataset.
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Fig 4. Fitting to data and assigning Bayesian evidence separates candidate models into more and less likely. (A) Aspects of linear

regression model assessed by model selection and model averaging (see Fig 1A). (B) Aspects of mass-action kinetics model / ordinary

differential equation assessed by model selection and model averaging. (C) Schematic representation of the equation in (B). (D)-(F).

Evidence values (left y-axis) and posterior probability values (right y-axis) from nested sampling, one point per model, ordered from model

with greatest evidence to model with least evidence. Models whose evidence value are within 101/2 of the greatest evidence value, the

"relative likelihood confidence interval," are colored in red. Nested sampling and evidence calculation is performed per dataset. (D) TKO

dataset. (E) RPM dataset. (F) SCLC-A cell line dataset. (G) Numbers and percentages of models in the relative likelihood confidence

interval, 95% confidence interval, and remaining non-confidence interval models. TKO, p53fl/fl;Rbfl/fl;p130fl/fl tumors [28]; RPM, Rb1fl/fl;
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While a 95% CI is a traditional approach, (Fig 4D–4F, orange) we also calculate a “relative like-

lihood confidence interval,” as discussed in [12] (see Methods). For this relative likelihood CI,

we calculate the Bayes Factor (BF) between the highest-scoring model and every other model,

using the least strict cutoff of BF> 101/2 (as above, and in S1 Text Note A). Even with this per-

missive cutoff, the relative likelihood CI includes only tens of models per dataset, a large

decrease from the initial number of candidates (~1% or less, Fig 4G).

Because we assigned all candidate models equal likelihood a priori, if post-nested-sampling,

no candidate models were informed by the data, each model would have a similar, though

non-identical, marginal likelihood. In such a situation, it is likely that approximately 95% of

models would fall within the 95% CI. However, our results indicate that 14–26% of candidate

models (depending on the dataset) fall within the 95% CI (contain 95% of the probability in

the model space). Therefore, we consider that the data used for model fitting has informed our

knowledge about the system, because before nested sampling, all models are equally likely.

In summary, we can determine a subset of candidate models that adequately represent the

data, conditional on the fitted parameter sets resulting from the model optimization in nested

sampling. Investigating these parameter sets can provide more insight into the similarities and

differences between candidate models and their fits within and between datasets. Moving

beyond the parameter values assigned to each model term, we wanted to investigate how the

data available can inform model terms. If data does not inform model terms and variables and

the corresponding fitted parameter rates, it indicates that the mechanistic conclusions we desire

to draw from this data using mathematical modeling may require additional or different data.

High-likelihood model topologies are nonoverlapping between datasets

Given our observation that no one candidate model stands out among other models to explain

the experimental data, we employed the multimodel inference technique of Bayesian model

averaging (BMA). Briefly, the reasoning behind BMA is that a combination of candidate mod-

els will perform better in explaining the data than a single model [13]. In BMA, each model is

weighted by its posterior model evidence [14] and the model terms within each model receive

an averaged likelihood [23] (S1 Text, Notes A and B).

To investigate model-averaged parameters, we considered that initiating subtype may affect

fitted parameter rates in that, for example, the rate of a phenotypic transition from SCLC-A to

SCLC-Y may be different in models where A initiates the tumor vs. a model where Y initiates

the tumor. The choice of initiating subtype was not informed by our data (S5 Fig). Had our

analysis resulted in a likely initiating subtype (per dataset), we would select that option to con-

strain initial subtype conditions; since we were left with approximately equivalent probabilities

for initiation, we turned to the literature to impose stricter constraints about initial subtype

conditions. As mentioned previously, reports link NE SCLC subtypes and long-term tumor

propagation [28,39] and, in particular, cells of subtype A [34]. We thus used only candidate

models with an initiating subtype of A, with or without other initiating subtypes. Since we

required that subtype A be an initiating subtype, model structures that do not include subtype

A received zero posterior probability (models 3 and 8–10 in Fig 5A; model topology probabili-

ties without filtering by initiating subtype are shown in S6A Fig).

We perform BMA across all models for each dataset. As shown in Fig 5A, all datasets

(TKO, RPM, and SCLC-A cell lines) support both two- and three-subtype topologies. Higher

Trp53fl/fl;Lox-Stop-Lox[LSL]-MycT58A tumors [36]; SCLC-A cell lines, a subset of SCLC cell lines from the CCLE [54] that we previously

assigned as representative of tumors made up largely of the SCLC-A subtype [33].

https://doi.org/10.1371/journal.pcbi.1011215.g004
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Fig 5. Likely model topologies vary across datasets; transition rates vary according to subtype presence in similar ways. (A) Hypothesis

assessment of model topologies, per dataset. Probability indicates the result of Bayes theorem using equivalent prior probabilities per topology (e.g.,

9% probability that one of the topologies in the x-axis best represents a dataset) and Bayesian evidence values (marginal likelihoods) summed per

topology. Model topologies represented by images and corresponding numbers along the x-axis. Posterior probability based on marginal likelihoods

of all candidate models that include A as an initiating subtype. (B) Division and phenotypic transition parameters for TKO, RPM, and SCLC-A cell

line datasets, comparing between higher-probability topologies (A) and four-subtype topology per dataset. Red arrowheads indicate higher A-to-A2

transition rate in 3-subtype TKO topology (A, A2, Y) compared to A-to-Y and A2-to-Y. Teal arrowheads indicate higher A-to-N transition rate in

4-subtype RPM topology compared to A-to-Y and N-to-Y. TKO, p53fl/fl;Rbfl/fl;p130fl/fl tumors [28]; RPM, Rb1fl/fl;Trp53fl/fl;Lox-Stop-Lox[LSL]-
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probabilities for two-subtype topologies are expected given that nested sampling prioritizes

model simplicity and goodness of fit [60]. Statistically, this result suggests that a two-subtype

model could be used to interpret the data reasonably well, but it also shows that topologies

comprising three subtypes cannot be excluded. As noted previously, we also withheld prior

knowledge from our analysis that tumors with only two subtypes are less likely to explain the

data (as new subtype(s) may appear and are thus phenotypically accessible upon perturbation

[6,28,33,34,36,38]). Given that our data used (Fig 3) does not include perturbations, it is less

surprising that two-subtype models have the highest probabilities. Thus, we consider these

two-subtype topologies important, but we place additional importance on three-subtype topol-

ogies given our understanding of the SCLC system. Approximately 10% of the probability for

the GEMM datasets (TKO and RPM) fall in the three-subtype topology that encompasses the

high-probability two-subtype topologies (model 1 for RPM and model 2 for TKO in Fig 5A).

For the models fit to SCLC-A cell line data, most of the probability occurs in the topologies

with higher probabilities for the GEMM data. This is reasonable, given that SCLC-A cell line

data appears as an intermediate between the GEMMs (Fig 3A). However, the SCLC-A cell line

data also has probability that falls in the A, N, and A2 topology (model 4 in Fig 5A)—this is the

only topology at all likely to represent the SCLC-A cell line data but not at all likely to represent

the other two datasets. We interpret the spread of probabilities across multiple topologies, and

that most topologies either are probable as representing either TKO or RPM data but not both,

to mean that data coverage from these datasets is not sufficient to support one unifying topol-

ogy. Therefore, each dataset supports a different representation of SCLC tumor growth given

its particular (epi)genetic background and environment. This does not mean that a unifying

topology or unifying model of SCLC growth cannot exist, but that the biases underlying the

experimental data result in different explanations for tumor growth mechanisms.

All datasets support alteration of phenotypic transition rates in the

presence of N or A2 subtypes

After establishing that multiple model topologies can explain tumor growth mechanisms, and

given our multimodel inference results from two-, three-, and four-subtype models, we wanted

to compare kinetic parameters across models to learn about dynamic variation between model

topologies. We aim to make predictions about how the presence of a subtype in the system

may affect cell behaviors. We again use BMA to attain this goal, applying the approach to fitted

kinetic parameter distributions from nested sampling. In this setting, parameter values from

more likely models are assigned higher weights and corresponding parameter distributions are

weighted accordingly [14].

While we compare changes in model-averaged parameter rate distributions across model

topologies, we do not aim to draw conclusions about specific fitted parameter rates themselves

and what a rate may mean for a phenotypic transition in isolation. The nature of the data used

for our multimodel inference process cannot provide the information necessary to predict the

exact rate of a phenotypic transition, as the small number of datapoints, the steady-state nature

of the data, and model topology affect parameter fitting. However, bringing together the data

and model topologies to the parameter fitting process can help predict trends in how subtypes,

and changes in subtype presence, affect parameter rates in a general sense.

MycT58A tumors [36]; SCLC-A cell lines, a subset of SCLC cell lines from the CCLE [54] that we previously assigned as representative of tumors

made up largely of the SCLC-A subtype [33]. (*) indicates significance between samples from BMA parameter distributions at family-wise error rate

(FWER) = 0.01, averaged over ten sampling iterations using one-way ANOVA plus Tukey HSD.

https://doi.org/10.1371/journal.pcbi.1011215.g005
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The highest likelihood model topologies (Fig 5A, blue) for the TKO GEMM data, along

with the four-subtype topology, are compared in Fig 5B (left). Four model terms have signifi-

cantly different parameter rates across model topologies, all of which are discussed in S4 Text.

Here we highlight differences in the A-to-Y and A-to-A2 transitions across model topologies

in the TKO dataset: the A-to-Y transition has a slower rate if A2 is present in the population; Y

affects the A-to-A2 transition, increasing its rate. The mechanistic implication of these obser-

vations is as such: A2 may represent an intermediate subpopulation in the tumor that is lon-

ger-lived, and will only slowly transition to Y. In the topology with A, A2, and Y (Fig 5A,

structure 2), the A-to-A2 transition takes up more of the flux in the network than the other

hierarchical (NE-to-NonNE directional) transitions (Fig 5B left and S6B Fig, red arrowheads).

Additionally, the N-to-Y transition is faster relative to the A2-to-Y transition (S6B Fig, red

bar), suggesting that N is a shorter-lived intermediate in the A-to-N-to-Y transition. This

result aligns with previous experiments [34] where N was identified as a short-lived state in the

A-to-N-to-Y transition. We therefore predict that A2 and N are involved in regulating the rela-

tive abundance of, and flux between, A and Y in the tumor.

We also compared the highest likelihood model topologies (Fig 5A, red) for RPM-fitted

models, as well as the four-subtype topology (Fig 5B, middle). Five model term parameter

rates are significantly different across model topologies, and we highlight again the A-to-Y

transition and here the A-to-N and N-to-Y transitions (see S4 Text for discussion of the

remaining significantly different parameter rates). The same A-to-Y transition affected in the

TKO-fitted models is affected in the RPM model in the same way (reduced rate via an interme-

diate, in this case N). Here, the A-to-N transition is not affected by Y, but instead increased by

the presence of A2; A2 also decreases the N-to-Y transition rate. These similar effects on the

A-to-Y transition occur despite the experimental data used for BMA being different. We thus

predict that N and A2 are modulating the transition between, and relative abundance of, A

and Y. Unlike in the TKO data, when A2 is present in the RPM tumor background, (topology

with A, N, A2, Y; Fig 5A, structure 4) the flux through the system spends more time in the N

subtype, with more frequent transitions from A to N and less frequent transitions from N to Y

(Fig 5B middle and S6B Fig, teal arrowheads). We predict that while N may be a shorter-lived

intermediate than A2, A2 regulates the flux from A-to-N-to-Y.

Next, we compared the highest likelihood model topologies (Fig 5A, green) for the SCLC-A

cell line data and the four-subtype topology (Fig 5B, right). Seven model term parameter rates

are significantly different across model topologies, five of which recapitulate rate alterations

based on the presence or absence of different subtypes in TKO or RPM datasets, including the

rate alterations discussed above (see S4 Text for more detail).

In summary, BMA enabled us to determine that the A-to-Y transition is regulated in a simi-

lar manner for the RPM, TKO, and SCLC-A. Using the higher likelihood model topologies

and model-averaged parameter sets, we can infer features of the SCLC tumor generally, despite

disparate datasets. Finding the same or similar effects on kinetic parameter rates across inde-

pendent datasets lends more weight to these predictions about how the N and A2 subtypes

may regulate the system flux from A to Y through intermediates and is an advantage of our

methodology using Bayes-MMI to work toward a unifying model of SCLC tumor growth

based on multiple datasets.

Model analysis supports a non-hierarchical differentiation scheme among

SCLC subtypes

We have considered candidate models (Fig 4), model topologies (Fig 5A), and kinetic parame-

ters (Fig 5B) to explore tumor growth mechanisms in SCLC. There is compelling experimental
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evidence for multi-subtype tumor composition, which implies multiple potential growth mech-

anisms [6,28,34,36,38]. We therefore focused on model topologies 1, 2, and 4, which are three-

subtype topologies with detectable probability (> 1%) (Fig 5A), along with the four-subtype

model. Using these, we integrate candidate models, topologies, and kinetic parameters, investi-

gating phenotypic transitions between subtypes, whether the presence of certain subtypes

affects the behaviors of other subtypes, and if so, which subtypes bring about the effects

(Table 3). We conclude by proposing a unifying four-subtype model of tumor growth in SCLC,

aiming to represent with one model the varying growth mechanisms accessible across datasets.

We investigate the posterior probabilities, and therefore posterior odds, of each model term

(see Methods). Despite different posterior probability values (Fig 6A), the probabilities of

model terms across datasets were similar in their trends: across all three-subtype topologies,

phenotypic transition probabilities were all more than ½ (Fig 6A, red squares). While some

probability values were poorly informed (light red), (probability between ½ and ⅔), more

were informed by the data (deep red) (⅔ or more). Conversely, probabilities of Non-NE effects

on the growth or transitions were all less than ½ (Fig 6A, blue squares). Some probability val-

ues were poorly informed, (light blue) (between ⅓ and ½) and others were informed (deep

blue) (⅓ or less) with the addition of data.

Overall, the data suggests that Non-NE effects on transition rates of N-to-Y, or A2-to-Y, are

unlikely, (Fig 6B–6D, deep blue) regardless of whether “Non-NE” defines only the Y subtype,

or both A2 and Y are Non-NE (Fig 2C). Inter-subtype effects on SCLC phenotypic transition

Table 3. Probabilities after hypothesis exploration using Bayesian multimodel inference.

Informed high posterior probabilities

• Simulated tumors appeared more likely to be made up of fewer than four subtypes, indicating the model selection

algorithm’s preference for parsimony (fewer subtypes to explain the same data).

• Phenotypic transitions A-to-N, N-to-Y, A-to-Y had posterior probabilities between 61% and 75%

• Posterior odds for these are between ~1.5 and 3.0.

• Transitions are bidirectional: phenotypic transitions N-to-A, A2-to-A, Y-to-N, Y-to-A2, and Y-to-A, had

posterior probabilities between 63% and 82%

• Posterior odds: ~1.5 to 4.5.

• Transitions between N and A2 (N-to-A2, A2-to-N) had posterior probability 69%

• Posterior odds: ~2

Informed low posterior probabilities

• Low probability of effects that lead to more/quicker phenotypic transitions from NE to Non-NE subtypes,

posterior probabilities between 17% and 46% (average 33.4%)

• Posterior odds: ~0.5

• In SCLC-A cell line datasets, trophic effects, where Non-NE subtypes increase NE division and decrease NE

death, had posterior probability 16%

• Posterior odds: 0.19

Uninformed posterior probabilities

• Initiating / early post-initiation number of subtypes: out of 15 model initiation options (6.67% prior per initiation

hypothesis), each probability was between 0.2% and 19.6%

• Phenotypic transitions A-to-A2 and A2-to-Y had posterior probabilities between 53% and 69% (average 58.7%)

• Posterior odds for these are between 1.13 and 2.2 (average 1.42).

• In TKO and RPM datasets, trophic effects, where Non-NE subtypes increase NE division and decrease NE death,

had posterior probabilities between 44% and 45%

• Posterior odds: 0.79 to 0.82.

• In TKO three-subtype models (only three-subtype model with both types of effects) A2 and Y effects are 54%

probable vs. Y only effects at 46% probable

• Posterior odds for A2 and Y effects is 1.17, posterior odds for Y-only effects is 0.85.

https://doi.org/10.1371/journal.pcbi.1011215.t003
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Fig 6. Across datasets, multimodel inference indicates likely bidirectional phentoypic transitions, suggesting high SCLC

phenotypic plasticity. (A) Heatmap for high probability three-subtype topologies for each dataset (rows), all models initiated by A +/-

other subtypes. Color represents the probability of each cellular behavior (column). Since prior probability starts at 0.5 (white), deeper

colors indicate a larger deviation from the prior, with red vs blue indicating more likely or less likely, respectively. (B)-(D). Model

schematics with each cellular behavior represented by edges coming from or moving toward each cell subtype, (gray circles) growth

rates, (self-arrows) or transitions (arrows between gray circles). Edge colors correspond to colors for that behavior in the heatmap in

(A). Top-scoring three-state topology for TKO dataset (B), RPM dataset (C), and SCLC-A cell line dataset (D). (E) Schematic of

consolidated model behaviors, drawn from each dataset’s high-probability three-subtype topology results ((B)-(D)). When multiple
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rates have not previously been studied and our analysis predicts that at least effects on “late

transition” (Fig 6A), those interactions affecting N-to-Y or A2-to-Y, are unlikely to exist. By

contrast, transitions involving A-to-N, N-to-A, A2-to-A, N-to-Y, Y-to-N, A2-to-Y, Y-to-A2,

N-to-A2, A2-to-N, A-to-Y, and Y-to-A had posterior probabilities informed by the data (Fig

6B–6D, deeper red). We interpret these results as transitions being likely, i.e., our degree of

belief in these transitions has increased. Investigating initiating events via one or multiple cells

of origin across the candidate models, we find that from equal prior probabilities of 6.67% per

initiating subtype(s) (S2G Fig) the posterior probabilities are not significantly altered, being

between 0.2% and 19.6% (S5 Fig). Thus, initiating subtype events were poorly informed by the

data. Additionally, analyzing specific model terms, inter-subtype effects on NE subtype

growth, inter-subtype effects on transition rates between A and N, or A and A2, and the A-to-

A2 transition, were also poorly informed by the data (Fig 6B–6D, light blue, light red).

Finally, to consolidate phenotypic transitions and cell-cell interactions into a unifying

mechanism for SCLC tumor growth, we integrated model probabilities from each of the three-

subtype topologies for each dataset into one model (Fig 6E). Briefly, phenotypic transition

probabilities were chosen from the models least informed by the data in an attempt to make

conservative predictions (for more details, see Methods). Model-averaged parameter rates

were visually compared (Fig 6F) to ensure that they were within reasonable bounds and that

transition rates relate to each other between datasets similarly to our analyses using high-prob-

ability topologies (Fig 5B). We chose to consolidate datasets in this way rather than performing

multimodel inference on all datasets together: based on our likelihood function, (see Methods)

evaluating parameters by comparing simulations to each dataset is equivalent to averaging sub-

type compositions across datasets and fitting to those proportions. Averaging compositions

across datasets leads to a misleading subtype composition that is not representative of SCLC

biology, and no information would be gained about any known SCLC system; as such, we con-

solidated three-topology models as described here instead.

Taken together, these results provide insight not only into what model terms and variables

the data is able to inform, but SCLC tumor behavior as well. Knowledge of trophic effects pro-

vided by Non-NE cells to the benefit of NE cells was not provided by this particular data; there-

fore, we cannot use it to understand this behavior. However, we were able to gain knowledge

about the likelihood of phenotypic transitions, in fact indicating that nearly all options for phe-

notypic transitions are likely to exist. We interpret this as high SCLC plasticity, supporting a

non-hierarchical differentiation scheme where tumor population equilibrium is achieved

through any phenotypic transitions (Fig 6E). It is also clear that consolidating the results across

different tumor types is an important step in order to achieve a broader view of the SCLC

tumor as a system rather than as one particular experimental model.

Discussion

The experimental data used for this analysis favors two-subtype topologies as higher-probabil-

ity candidates. This is not surprising, because nested sampling prioritizes simpler models.

dataset results included different posterior probabilities for a model feature, the one closest to 0.5 was chosen (most conservative).

Edge colors correspond to posterior probabilities, with intensity of colors representing information gained from data, as in (A)-(E).

(F) Parameter fitting results (part of the nested sampling algorithm) for four-subtype topology models initiated by A +/- other

subtypes, across datasets. tsn, transition (e.g., subtype transition). TKO, p53fl/fl;Rbfl/fl;p130fl/fl tumors [28]; RPM, Rb1fl/fl;Trp53fl/fl;Lox-

Stop-Lox[LSL]-MycT58A tumors [36]; SCLC-A cell lines, a subset of SCLC cell lines from the CCLE [54] that we previously assigned as

representative of tumors made up largely of the SCLC-A subtype [33]. (*) indicates significance between samples from BMA

parameter distributions at family-wise error rate (FWER) = 0.01, averaged over ten sampling iterations using one-way ANOVA plus

Tukey HSD.

https://doi.org/10.1371/journal.pcbi.1011215.g006
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However, studies in SCLC [6,28,34] have shown that phenotypes not measurable in a popula-

tion initially may emerge upon perturbation, such as drug treatment [40–45] or changes in

microenvironment or related factors [34,46]. The data used for our analyses is steady-state

data, and we require candidate model simulations to reach steady state as part of the model-fit-

ting process. As such, with this data we are unable to model subtypes emerging upon perturba-

tion in one sample or dataset. Thus, all four subtypes in one tumor type are not captured in

our analysis, resulting in the four-subtype topology receiving very low probability. Even so, we

consider the four-subtype topology in Fig 6 a potential unifying mechanism, as it enables us to

explain the behavior of the three different SCLC genetic backgrounds (TKO GEMM, RPM

GEMM, human SCLC-A cell lines) via one model. However, context is necessary in evaluating

a potential hypothesis; to predict specific behavior in the TKO GEMM, it is likely optimal to

make predictions using the three-subtype model in Fig 6B.

Despite our prior knowledge that more than two subtypes are likely to be accessible, we

were interested in the use of Bayes-MMI more generally. We thus aimed to perform a less

biased approach, evaluating two-, three-, or four-subtype models. Importantly, having evalu-

ated two-subtype models, we are able to compare trends in parameter rates across models in

adding or removing particular subtypes (Fig 5B). While we cannot identify exact parameter

rate values for phenotypic transitions, our analysis allows us to make predictions about how

the presence of a subtype in the system may affect cell behaviors. The Bayes-MMI workflow

enabled us to perform this analysis as well as evaluate the likelihood of each biological process

in Table 2 through model-averaged probabilities across candidate models with and without

that process (Table 3). Therefore, we highlight that despite our use of steady-state data, we can

learn about SCLC tumor growth and draw conclusions about its behavior with accompanying

probabilities of how likely each conclusion is.

The posterior probabilities for some aspects of our models did not increase or decrease

from prior probabilities after incorporation of data, namely cell-cell interactions: we consider

these biological processes “uninformed” by the data (Table 3). We hypothesize that to evaluate

models with such interactions, data measuring transient dynamics, such as found in [62] will

be necessary to perform model selection. With this, we may be able to determine the probabil-

ity of cell-cell interactions related to growth, as well as the origin of these interactions (whether

from a “NonNE compartment” represented by A2 and Y, or by Y alone). We also note that the

invasive or metastatic potential of the SCLC tumor is known to be increased by Non-NE sub-

types [29,63].

Future work will better evaluate the optimal SCLC model topology(ies), cell-cell interaction

effects, cell-cell interaction origins, and the physiologic context in which tumors may exist.

This can be done by incorporating time-course data, perturbation data, and data from tumors

both in situ and during invasion. Perturbation and likely environmental data (local vs invasive

tumor) will enable the measurement of, and thus fitting to, more subtypes in our data. Time-

course data will enable the assessment of cell-cell interactions. Most ideally, experiments mea-

suring subtypes, initial conditions, and tumor population growth and change over time, such

as the model selection analysis done in [62], could be designed with our multimodel inference

workflow in mind. This would then combine experimental and computational perspectives, to

enable biological hypotheses to be most optimally assessed.

The results presented here provide strong evidence for phenotypic plasticity in SCLC

tumors, based on the higher likelihood for most phenotypic transitions tested, regardless of

differentiation hierarchy. We cannot claim that the inferred rate values of phenotypic transi-

tions are precise, an endeavor limited by the data at hand, but we can evaluate the likelihood of

biological hypotheses represented in our models, with focus on the likelihood of phenotypic

transitions. The general question of whether phenotypic transition hypotheses are more or less
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likely in SCLC tumor growth, is answered using all possible initiating subtype combinations in

each condition, and we find that the data supports phenotypic transitions over lack of cellular

transitions. With a more plastic and less stem-cell based phenotypic equilibrium, instead of

rare remaining stem-like populations leading to regenerate a tumor after treatment, we

hypothesize that any SCLC subtype that remains post-treatment can lead to tumor regenera-

tion and subsequent treatment resistance, patient morbidity and mortality. In considering

hierarchical phenotypic heterogeneity vs. phenotypic plasticity, we would propose evaluating

an SCLC population for our highest-probability non-hierarchical transition, the Y-to-A transi-

tion: sorting a population for SCLC-Y cells and evaluating over time for the appearance of

SCLC-A cells would test our prediction that the Y-to-A transition exists. In fact, such plasticity

in general, and the Y-to-A transition specifically, has recently been experimentally studied in

SCLC, where Gopal and colleagues measured the Y-to-A transition in untreated ex vivo PDX

cells, among other nonhierarchical transitions [64]. In keeping with our predictions that plas-

ticity is highly likely, Gopal and colleagues found the Y-to-A and other nonhierarchical transi-

tions. It continues to be of particular interest to compare phenotypic plasticity and the

prevalence of non-hierarchical transitions in treated vs. untreated tumor samples, as treatment

is likely to alter the mechanisms by which tumor population equilibrium is maintained. Time-

course experiments with surface marker labeling or live-reporter imaging can resolve and pro-

vide confirmation for bidirectional phenotypic transitions in the treated or untreated context,

which are crucial to understand in order to battle SCLC treatment resistance.

We believe a shift from information theoretic multimodel inference toward a Bayesian

approach, in the context of model averaging especially, will benefit modeling in systems biol-

ogy. The methodology employed herein incorporates model selection and model averaging

into a multimodel inference framework, followed by Bayesian analysis to identify not only

whether a hypothesis investigated via mechanistic modeling is or is not likely, but how likely

(and thus how informed by the data) that hypothesis is. Understanding which hypotheses are

informed by the data is especially important given variability between data in investigations of

the same systems, such as a particular tumor type. It is difficult to attain a consensus model

since investigators use varying experimental models within the same physiologic or disease

process and thus may draw nonoverlapping conclusions, building parts of a picture but not a

whole. Striving for the whole picture, via principled statistical analysis, to be followed by exper-

iments based on informed model predictions, will advance cancer research and lead to better

treatments.

Methods

CIBERSORT deconvolution of RNA sequencing data

Data from two GEMM models provide multiple replicates of tumors from two genetic back-

grounds: one from p53fl/fl;Rbfl/fl;p130fl/fl (triple-knockout, or TKO) GEMM tumors [28], and

another from Rb1fl/fl;Trp53fl/fl;Lox-Stop-Lox[LSL]-MycT58A (RPM) GEMM tumors [36]. We

also used publicly available SCLC cell line data. Having been originally derived from human

tumors, each cell line has a different genetic background, and therefore we have only one

(genetically identical) replicate per cell line sequencing event. To approximate genetic similar-

ity between cell lines, and thus approximate multiple replicates, we expect that cell lines exhib-

iting similar steady state composition will be more genetically similar than those whose steady

state compositions differ. Previously, in [33], we both clustered publicly available SCLC cell

line data into clusters that align with the different SCLC subtypes and used CIBERSORT to

deconvolute the proportions of cell line data and tumor samples into SCLC subtypes from

their RNA sequencing signatures. Results used for this publication can be found as S1 File.
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Population dynamics modeling in PySB

A population dynamics model represents the abundance of species over time, whether increase

or decrease due to birth/growth or death. We use ordinary differential equation (ODE) models

coded via PySB to generate population dynamics models [65]. PySB is a rule-based modeling

language, where one will encode

A!k 2A; k ¼ 0:469 ð1Þ

to indicate that A doubles at a rate of 0.469 doublings per day. PySB then generates the ODEs

from encoded rules, such as the following related to the single rule in Eq (1):

dA
dt
¼ k A½ � ð2Þ

Inter-subtype effects are represented by the increase or decrease of the rate of affected reac-

tion. For example, the above division rule has a baseline rate of 0.469 doublings per day, but in

the presence of an effector subtype the division rule will have a rate of 0.469*1.05 = 0.493 dou-

blings per day. In this case the effector subtype has increased the division rate by 5%. Thus the

rule-based representation is

Aþ Y!k∗ 2Aþ Y; k∗ ¼ 0:493 ð3Þ

A!k 2A; k ¼ 0:469

to indicate that while A doubles at a rate of 0.469 per day, it doubles at a rate of 0.493 doublings

per day in the presence of Y. PySB will generate this ODE from the encoded rules:

dA
dt
¼ k A½ � þ k∗ Y½ � A½ � ¼ kþ k∗ Y½ �ð Þ A½ � ð4Þ

To simulate the passage of time, the speed at which the division/death/transition reaction

occurs–its rate, k, of cells per unit time–must be assigned as in the equations above. While a lit-

erature search reveals approximate rates of division and death among different SCLC subtypes

(S1 Table), each of these are in a different context than the system we model here—for exam-

ple, division rates for the A subtype are measured in vitro in the presence of only that one sub-

type, whereas our population dynamics model is meant to simulate this subtype in the

presence of others as well as in vivo in a mouse tumor. Therefore, we use the rates in the litera-

ture as our prior expectations for division and death, that is, we use these values as approxi-

mate starting values for these parameters during the estimation process. Other rates, such as

those indicating the speed of transitions between subtypes, or any rates including the effects of

Non-NE subtypes, have not previously been noted in the literature and we used much wider

ranges for each as our prior expectations. Rate prior expectations (S3 Fig) are then provided to

the Multinest algorithm to perform nested sampling.

Multiple hypothesis generation via HypBuilder

Because we perform model selection, we use 5,891 ODE models coded via rule-based modeling

in PySB. Each model is generated to include or exclude from 44 reaction rules. There are eight

rules that represent division and death for each subtype, and with the potential for three differ-

ent inter-subtype effects (including none) to have an impact on division or death, each division

and death reaction has 3 options, leading to 24 potential rules relating to division/death in

total. There are four rules that represent hierarchical phenotypic transitions, which likewise
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have three potential inter-subtype effects, for 12 rules in total representing hierarchical pheno-

typic transitions. There are eight rules related to non-hierarchical phenotypic transitions, for

20 total potential phenotypic transition rules out of the 44 rule options.

We use HypBuilder (https://github.com/LoLab-VU/HypBuilder) to automatically gener-

ate the 5,891 PySB models that we would otherwise have to code by hand. HypBuilder is soft-

ware for the automatic generation user-specified collections of mechanistic rule-based

models in the PySB format. The input CSV file contains a global list of all possible model

components, and reactions, as well as any instructions regarding model creation. The

instructions dictate which subsets of model components and reactions will be combinatori-

ally enumerated to create the collection of models. The reactions are parsed via HypBuilder’s

molecular interaction library, a library of defined reaction rule sets that is outfitted with

common PySB interactions and is customizable to include more interactions should the user

need them. Once parsed and enumerated each combination of rules is exported as an execut-

able model via PySB.

The instructions for model construction used in this work direct HypBuilder to use a “list”

method to enumerate all candidate models of interest using prior knowledge of likely combi-

nations of model variables (see https://github.com/LoLab-MSM/Bayes-MMI for code used to

enumerate candidate models and create the list for HypBuilder).

If the candidate model set contains every relevant biologically plausible possibility, we can

consider the entire set of models as representative of 100% of the probability that one of the

candidate models explains, or provides the mathematical basis underlying, the data. This is an

assumption that cannot truly be met, and most model selection literature acknowledges that

one cannot find the “true” model [12,16]. However, prior knowledge enables us to determine

that all 5,891 models represent all possibilities with regard to outstanding SCLC hypotheses to

the best of our ability.

We visualize the prior expectations for the 44 rate parameters as a probabilistic distribution

per parameter (prior marginal distribution) (S3 Fig). Correspondingly, a probabilistic repre-

sentation of best-fitting rates for each model is returned by the Multinest algorithm (posterior

marginal distribution) (e.g., Figs 5B and 6E and S6B Fig).

Parameter estimation and evidence calculation by nested sampling

As noted in Eqs (1) and (3), rate parameters must be set in order to run simulations of a math-

ematical model. Parameter estimation is the process of determining optimal rates that result in

a model simulation recapitulating the data it is meant to represent. Multiple methods exist for

parameter fitting or model optimization, [66,67] with Bayesian methods utilizing a prior rate

parameter distribution, P(θ), where θ represents the set of n parameters {θ1, θ2, . . ., θn}, and a

likelihood function to assess a parameter set

L Djθið Þ ¼ P Djθið Þ; ð5Þ

Where θi is the ith parameter set and D represents the data being used for fitting. Parameter set

θi is scored via the likelihood function L(D|θi) and optimization continues, moving toward

better-scoring parameter sets until an optimal score is reached.

With a prior probability, P(θ), and a likelihood (Eq 5) the posterior probability can be calcu-

lated via Bayes’ Theorem,

P θijDð Þ ¼
P Djθið ÞP θið ÞR
PðDjθÞP θð Þdθ

ð6Þ
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The denominator of Bayes’ Theorem represents the likelihood integrated over all parameter

sets, called the marginal likelihood or model evidence. Nested sampling computes this value

(Skilling, 2004).

To perform nested sampling, we utilize the Multinest algorithm [19–21]. Multinest samples

multi-dimensional parameter space, bounding its search by parameter values along each axis

in each of the multiple dimensions based on prior expectation of parameters, P(θ) input by the

user. It removes the lowest-probability parameter set and chooses a new one from within the

bounded parameter space, subsequently re-drawing the search space with the bounds incorpo-

rating the new parameter set. This continues until all parameter sets representing the bounds

of the search space have approximately equal probability, and the algorithm estimates that the

remaining probability of parameter sets within the bounds is less than a user-defined toler-

ance. Each parameter set is evaluated based on a user-defined likelihood function (Eq 5).

Finally, the likelihood values that correspond to each sampled parameter set are arranged in

the order they were replaced, and the integral over these is taken to approximate the integral

over all possible models, that is, the marginal likelihood or Bayesian model evidence.

Nested sampling marginal likelihood calculation for comparison to AIC

analysis

For this analysis we used simulated data generated via code provided by Galipaud and col-

leagues [15] (see S1 Text Note A.7). This data includes values for one response variable y and

four predictor variables x1-4, so we aimed to use nested sampling to determine coefficients for

the linear regression model that minimized the mathematical distance between model simu-

lated y values (ysim) and “ground truth” (simulated data) y values ydata. Here,

ysim ¼ b0 þ x1data
∗ b1 þ x2data

∗ b2 þ x3data
∗ b3 þ x4data

∗ b4

� �
; ð7Þ

where each βi scalar in Eq (7) is equivalent to a parameter θi (as in (Eq 5)) and represents the

value in each ith dimension of parameter space that Multinest searches. For simulating y values

ysim during Mulitnest’s parameter search, each predictor variable array xi_data and the response

variable array ydata values in Eq (7) are from the simulated data (snippet shown in S1 Text

Note A.7). For prior distributions of each parameter/regression coefficient βi, we used uniform

prior distributions from 0 to 10 for β1–4 and a uniform prior distribution -10 to +10 for the

intercept β0. For the model selection problem, if a predictor variable xi was not included in the

model, its regression coefficient βi was set to zero.

Sampling regression coefficient values across the parameter space and using them and

xi_data values to calculate ysim, we then calculate distance between simulation and data via least

squares estimation with

ydata � ysimð Þ
2

s2
ydata

ð8Þ

Using the Multinest algorithm results, the minimal distance, which, assuming normally-

distributed error, corresponds to maximum log-likelihood, can be determined out of all

regression coefficient sets [68]. Multinest then returns the marginal likelihood (Bayesian evi-

dence) for each candidate model. We used the Multinest-returned “vanilla” nested sampling

evidence value [21].
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Nested sampling marginal likelihood calculation for SCLC candidate

models and SCLC datasets

For this analysis we used data as described above in “CIBERSORT deconvolution of RNA

sequencing data”, representing each SCLC dataset’s tumor steady-state proportions probabilis-

tically, with a Beta distribution (bounded by zero and one). We selected a Beta distribution as

it is a suitable model to capture the behavior of proportions, or relative abundances, [69–71]

and we are here fitting to percentage (proportional) data (Fig 3). The Beta distribution recog-

nizes the relationship between mean and variance that is likely to occur with proportions, and

a mean close to zero or one generally has a smaller variance than proportions with a mean fur-

ther from zero or one [70]. In this way, means close to zero and one are likely to have small

enough variances for the distribution to be bounded by zero and one without an abrupt cutoff,

as would be necessary had we used a normal distribution with a mean near zero or one.

We use the means and variances of previously published sample replicate subtype propor-

tions [33] as our data. For each dataset, then for each subtype in Fig 3A, the mean and variance

of the proportion of that subtype across samples is used.

For our likelihood function, we simulate the tumor for 60 time steps (representing days)

and require that 1) at 60 days, the total tumor is more than 100 cells and less than too many

cells for the ODE solver to handle (in this case the solver returns NaN), and 2) the last 7.5%

(~4.5 days) of the simulation, each subtype proportion has reached steady-state, i.e. each sub-

type’s proportion trajectory has a derivative < 0.0001 and> -0.0001. We then compare each

subtype proportion at steady-state in the dataset of interest (D) to each simulated steady-state

subtype proportion (θ), thus evaluating P(D|θi) (Eq 5). We set the simulated proportion of a

subtype (one value per subtype, given that the ODE model is deterministic) as the mean mssim
,

with the variance of the data (Fig 3 and S1 File) as the variance s2
sdata

[17,72]. Then we used

these values to calculate a Beta distribution, that is calculating α and β using the mean μ and

variance σ2 of each dataset [73]:

n ¼ aþ b ¼
m 1 � mð Þ

s2
� 1; where n ¼ aþ bð Þ > 0 meaning s2 < m 1 � mð Þð Þ ð9Þ

a ¼ mn ¼ m
m 1 � mð Þ

s2
� 1

� �

; if s2 < m 1 � mð Þ ð10Þ

b ¼ 1 � mð Þn ¼ 1 � mð Þ
m 1 � mð Þ

s2
� 1

� �

; if s2 < m 1 � mð Þ ð11Þ

We then calculated the log likelihood of the mean of the data xs using the constructed Beta

reference distribution,

XS� 1

s
LL ;

where

LL ¼
log

x
assim � 1

sdata 1 � xsdata

� �bssim � 1

B a;bð Þ

0

B
@

1

C
A if s 2 simulated model topology

log le� lxsdata
� �

; where l ¼
1

ssdata

; otherwise

ð12Þ

8
>>>>>><

>>>>>>:
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where S is the set of subtypes, assim
and bssim

indicate the calculation of α (Eq 10) and β (Eq 11)

as discussed above, xsdata
is the mean proportion of subtype s in the dataset, B(α,β) is

Γ að ÞΓ bð Þ

Γ aþbð Þ
and

Γ is the Gamma function, and ssdata
is the standard deviation of the data. Using the exponential

function (log le� lxsdata
� �

) as part of the log-likelihood (Eq 12) enabled us to calculate a likeli-

hood value for subtypes not present in a model’s topology, which should be a poor log-likeli-

hood if the subtype has a high proportion in the data but was not included in the model

topology, or a better log-likelihood if the subtype has a low proportion in the data but was not

included in the model topology (and therefore potentially contributing to overfitting). The

Python module scipy.stats was used to calculate the Beta log likelihood (Eq 12, top) and the

exponential log likelihood (Eq 12, bottom). A simulation would not be scored (return NaN
and thus be thrown out by the Multinest fitting algorithm) if the tumor subtype proportions

did not reach steady state (calculated by whether a proportion timecourse had a slope of zero

for the last 7.5% of the simulation). We used the Multinest-returned importance nested sam-

pling evidence value, because multiple importance nested sampling runs (multiple ‘replicates’)

for the same candidate model and prior parameters returned more consistent evidence values

than ‘vanilla’ nested sampling [21].

Multinest is run per model per dataset, which equates to performing 5,891 mechanistic

interpretations, 3 times each. CPU time for one model fitting was on average 19 hours (~0.80

days), with a range of 5 minutes to 28 days. If Multinest had not reached its stopping point by

28 days, we assumed that all regions of parameter space were similarly unlikely and that further

running of the algorithm would only continue to refine the search of the unlikely space; mod-

els with this difficulty are very likely to have low marginal likelihood due to the unlikeliness of

the parameter space. We do not include these incompletely-searched models in our multimo-

del inference analyses (Figs 4–6) and we confirmed that all models that reached 28 days of

CPU time without reaching the Multinest stopping point have a low evidence value at the time

they were terminated.

Calculating Akaike Information Criterion (AIC) and corrected AIC (AICc)

The AIC balances the maximum log-likelihood score from parameter fitting with the number

of parameters θ in the candidate model; penalizing by number of parameters is meant to

reduce bias (see S1 Text Note A.3 for more detail). The AIC is denoted by

AIC ¼ � 2 ln L θbestjDð Þð Þ þ 2K ð13Þ

where L(θbest|D) is the likelihood of the best-fitting parameter set and K is the number of

parameters in the model.

The corrected AIC, AICc, is used to account for small sample sizes. We use this for calculat-

ing information criterion for models in the simple example of [15]:

AICc ¼ AICþ
2K2 þ 2K
n � K � 1

ð14Þ

Where AIC and K are as used in Eq (13), and n is the sample size of the data.

We chose to calculate AIC (rather than AICc) for the comparison of AIC, BIC, and mar-

ginal likelihood for our SCLC data (S1 Fig). This is due to the fact that Eq (14) was derived for

a linear regression model with normally distributed errors, which is the case for the dataset in

[15], but not for our SCLC multimodel inference analysis [74].
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Calculating Akaike weights (here noted as AICc weights) and sums of AICc

weights (SW)

Model AICc scores are first scaled with respect to the minimum AICc value [12,16], resulting

in AICc differences,

Dk ¼ AICck � min AICcð Þ ð15Þ

Where min(AICc) is the AICc value of the lowest-scoring (best) model candidate, and delta_k

is the AICc difference for model k compared to the model with the lowest AICc. Using AICc

differences, AICc weights are calculated,

wk ¼
e�

Dk=
2

PR
r¼1

e�
Dr=

2

ð16Þ

where R is the number of models in the candidate set. AICc weights represent relative likeli-

hoods of the models given the data, and are interpreted as probabilities [12], which can be seen

in Fig 1C, red points.

SWHi
¼

XR
r¼1

wr if Mr 2 Hif g ð17Þ

SWHi
is the sum of AICc weights for hypothesis Hi, which can represent a model term, but in

our example represents the inclusion of a response variable x1-4 in the optimal model (Fig 1).

Here, the AICc weight wr for model Mr is summed only if model Mr falls under the hypothesis

Hi—in the case of Fig 1, if Mr includes the model variable for which the SW is being calculated.

Candidate model prior and posterior probabilities and confidence interval

calculation

Each candidate model is considered equally likely prior to fitting by Multinest. That is, every

candidate model has an equal prior probability of being the optimal model to represent the

underlying SCLC tumor system,

P Mkð Þ ¼
1

jMj
; ð18Þ

Where M is the set of all candidate models. With the model evidence, or marginal likelihood, P
(D|Mk) estimated by Multinest, [19–21] the posterior probability per model can be calculated

as

P MkjDð Þ ¼
P DjMkð ÞP Mkð Þ

X

jP DjMj

� �
P Mj

� � ð19Þ

With a posterior probability per model, (Fig 4) we calculate a 95% confidence interval. This

is accomplished by summing decreasing model posterior probabilities until the sum is 0.95,

then considering those models as our 95% CI [12] (Fig 4, orange). Using this confidence inter-

val results in ~1000 models per dataset, a considerable decrease from the initial 5,891. This is a

more traditional approach to determining a confidence set of models.

We also took an approach discussed in [12]. In this approach, a CI is informed by use of the

Bayes Factor between the highest-scoring model and consecutively decreasing scoring models,

until the Bayes Factor is larger than a particular cutoff. The models in this CI would be those

models I for which
P Mhighestð Þ

P Mið Þ
> cutoff . Burnham and Anderson denote such a method as a
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“relative likelihood confidence interval” and discuss its support by statistical theory, noting

that it is uncommonly found in the model selection literature [12]. We used a cutoff of 101/2,

the lowest Bayes Factor at which a difference may be determined [61]. Even with this permis-

sive cutoff, the relative likelihood CI includes only tens of models, an even greater decrease

from the initial number of candidates.

Prior and posterior probabilities per hypothesis being investigated

Each hypothesis has an assigned prior probability based on our prior expectations. For all

hypotheses, we took an approach where we considered each hypothesis as equally likely com-

pared to competing hypotheses. For the inclusion of most variables (Fig 1) and model terms

(Fig 5), this was a prior probability of 0.5 or 50%, where it is 50% likely the model term is part

of a model that is the best representation of the tumor system, and 50% likely that same term is

not part of that model. For the inclusion of effects in the candidate models, the prior probabil-

ity for a given effect is 33%, where it is equally likely that an effect is generated by Y, generated

by A2 and Y, or that no effect is present. The comparison between effect types (including

none) is included in S2–S4 Tables, while the comparison of any effect at all vs. no effect (50%

vs. 50%) is included in the main text.

For the model topology analysis, we considered it equally likely that any model topology

could best represent the tumor system that generated each dataset, and with 11 possible model

topologies this resulted in a 9% prior probability per model topology (Fig 5A). For model initi-

ating subtype hypotheses, (S2G Fig) with 15 potential combinations of initiating subtypes,

each initiating subtype combination has a 6.67% prior probability.

Each candidate model can then be assigned a prior probability conditional on the hypothe-

sis being considered, P(Hi), where Mk is the kth candidate model and Hi is the hypothesis being

considered. The calculation of P(Hi) is based on the number of candidate models that fall

under the hypothesis being considered,

P MkjHið Þ ¼
P Hið Þ�

�
�
� Mj 2 M;Hi

n o��
�
�

ð20Þ

where {Mj�M, Hi} is the set of all models assigned to Hi. For example, if Hi is the hypothesis

that the model term “A to Y transition” is part of the model that would best represent the

SCLC tumor system, then {Mj�M, Hi} is the set of all candidate models that include the “A to

Y transition” model term.

Using this prior probability, the posterior probability for an individual model, conditional

on the hypothesis being considered, can be calculated as

P MkjD;Hið Þ ¼
P DjMk;Hið ÞP MkjHið Þ

X

j
P DjMj;Hi

� �
P MkjHið Þ

ð21Þ

Where P(D|Mk,Hi) is the Bayesian model evidence (marginal likelihood) for Modelk.

The posterior probability for an individual model k under hypothesis Hi, P(Mk|D,Hi), is not

directly used, as the posterior probability of Hi itself, P(Hi|D) is of principal interest. Under

Bayes’ Theorem,

P HijDð Þ ¼
P DjHið ÞP Hið Þ

X

j
P DjHj

� �
P Hj

� � ð22Þ

Where P(D|Hi) is the marginal likelihood of Hi over all models to which it applies, {Mj�M,

PLOS COMPUTATIONAL BIOLOGY Determining tumor growth mechanisms via model hypothesis exploration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011215 July 5, 2023 29 / 39

https://doi.org/10.1371/journal.pcbi.1011215


Hi}. According to [61], this can be calculated as

P DjHið Þ ¼ SkP DjMk;Hið ÞP MkjHið Þ ð23Þ

with a summation instead of an integral because each model has a discrete prior probability as

calculated in Eq (20).

Using the results of Eq (23) in Eq (22), we then calculate the posterior probability for each

hypothesis, pictured in Fig 6A–6D and noted in Table 3. In this way, we can use Bayesian cal-

culation rather than sums of AICc weights [18,15] (the direct comparison of these in our

example is shown in Fig 1C; for additional details see S1 Text Note A) to determine the poste-

rior probability of each model term. This also enables us to avoid bias in considering models

with and without certain model term, if an uneven number of candidate models contain a

model term vs. do not contain the term (see S1 Text Note B) [75].

Posterior odds per hypothesis being investigated

All model terms and variables begin with a prior probability of 0.5. With equal prior probabili-

ties across all model term hypotheses, the posterior odds represented by
posterior probability

1� posterior probabilityð Þ
is

equivalent to the Bayes Factor. Therefore, calculation of the posterior odds and the Bayes Fac-

tors for each model term are equivalent.

A posterior probability of model term inclusion of 0.75 or more, or probability of 0.25 or

less, would be considered substantial evidence for inclusion or exclusion of that term, respec-

tively [61]. Given the nature of the posterior odds, where a value of 2 indicates that one

hypothesis is twice as likely to be true as the other, we also consider posterior probabilities of

0.667 or more, or 0.333 or less, to be notable evidence for inclusion or exclusion of the model

term considered. We consider probabilities between 0.333 and 0.667 to not have been signifi-

cantly informed by the data.

Bayesian model averaging of parameter sets

Since Multinest returns multiple best-fitting parameter sets, each parameter in a model has a

frequency distribution representing the values it takes on over these parameter sets. We thus

consider each parameter using a probabilistic representation, per model (posterior marginal

distribution) (Figs 5B and 6E and S6B Fig). Since each candidate model is assigned a posterior

probability as in Eq (11), all best-fitting parameter sets for that model can be assigned the same

posterior probability. The frequency distribution of one parameter’s values across a model’s

best-fitting parameter sets are thus weighted by its model’s posterior probability. Then, the fre-

quency distributions of weighted parameter values per model can be combined, representing

the distribution of potential values of a particular parameter, weighted by model posterior

probabilities. This way, parameter values in the distribution that come from models with a

higher posterior probability (thus higher model evidence) will have more of an effect on the

probabilistic representation, since they represent more likely values for the parameter.

To assemble representative fitted parameter sets for each candidate model, we used the first

1000 parameter sets from the Multinest equally weighted posterior samples per model. With

up to 44 parameters and up to 5,891 models, the collection has 44 parameter columns and up

to 5,891,000 rows representing a parameter vector. The collections were made per dataset.

Comparing parameter distributions

As above, each kinetic parameter has a frequency distribution representing 1000 fitted values

per candidate model, meaning up to 5,891,000 fitted values across all models (weighted using
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Bayesian model averaging, as above). To compare parameter rates across models in the same

dataset but with different topologies, we grouped each parameter according to the model

topology from which it came. We then sampled 1000 values from the BMA-weighted distribu-

tion per kinetic parameter across all models of the same topology. We performed ANOVA fol-

lowed by Tukey HSD at family-wise error rate (FWER) of 0.01, using the Python module

statsmodels. Below an FWER of 0.01, we considered the sampled parameters significantly dif-

ferent across models. We then repeated the sampling, ANOVA, and Tukey HSD for a total of

10 iterations. We then averaged across determinations of significant/non-significant and if a

parameter comparison across model topologies was significantly different more often than it

was not different, we considered the parameter rates to be different comparing model topolo-

gies. The same methodology was used to compare parameter rates across different datasets.

Generating a consolidated model of the SCLC tumor

A hypothesis (model term) whose posterior probability is further from its prior probability

indicates more information gained during the nested sampling process—more knowledge pro-

vided by the data. Conversely, a posterior probability similar to the corresponding prior proba-

bility indicates that the data did not inform our prior knowledge.

To unify the varying models into one view of SCLC biology, we brought together model

probabilities from each three-subtype topology per dataset (Fig 6E). To bring together the

results for each three-subtype topology results in the investigation of what appears as a four-

subtype topology. In fact, if we are to envision one model that can represent one system that

generated all three datasets, it would need to include all four subtypes. We consider this a rea-

sonable practice in that all transition posterior probabilities in the three-topology subtypes

either were little informed by the data or had a value indicating that transitions are likely; in

addition, all Non-NE effects were either little informed by the data or had a value indicating

that these effects are unlikely. Posterior probabilities were not the same between three-subtype

topologies, but these trends of likely or unlikely model features generally agreed.

When consolidating models in this way, if model terms were part of multiple topologies

(e.g., the A-to-N transition is part of the A, N, and Y topology, best representing the RPM data-

set, and the A, N, and A2 topology, best representing the SCLC-A cell line dataset) we took the

posterior probability of the model feature closer to 0.5. For example, the posterior probability

for the A to N transition in the RPM dataset is 0.709 and the posterior probability for this same

transition in the SCLC-A dataset is 0.626. Therefore, in the four-subtype consolidated repre-

sentation, the posterior probability for the A to N transition is 0.626. This is the most conserva-

tive way to represent the knowledge gained by the data from the perspective of the entire

SCLC system, allowing for the most uncertainty to remain. We consider this practice as avoid-

ing claiming more certainty about model features than the data may provide.

Supporting information

S1 Text. Didactic example contrasting Akaike Information Criterion and Bayesian poste-

rior probability. Note A. Contrasting AIC vs posterior probability calculated by Bayes-MMI

for model selection and multi-model inferenceA.1. Using multiple models to evaluate how

well a variable informs the observed data: an example. A.2. Marginal likelihood or “evidence”

is calculated using model optimization followed by Bayes’ Theorem. A.3. AIC is calculated as

an estimate of the Kullback-Liebler divergence. A.4. Notable differences between AIC and

Bayesian evidence / posterior probability. A.5. Model selection allows us to evaluate which var-

iables or terms have the largest effect on observed data. A.6. Model averaging uses model selec-

tion outcomes from all models to demonstrate how the observed data informed the model
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variables or terms that represent our hypotheses. A.7. Advantages of Bayes-MMI over AIC for

model selection and model averaging: continuing example. Note B. Sums of AIC weights (SW)

and posterior probability on a subset of the candidate models. Note C. Bayesian Information

Criterion. Table A Summary of nested sampling model selection results on the simulated data-

set and model selection problem in Galipaud et al., 2014, ranked by AICc. Table B Summary

of nested sampling model selection results on the simulated dataset and model selection prob-

lem in Galipaud et al., 2014, ranked by posterior probability. Table C SW and posterior proba-

bility calculations for each model variable in both full candidate set and partial candidate set

examples. Table D Summary of AICc and nested sampling model selection results using a par-

tial candidate set. Table E Summary of nested sampling model selection results on the simu-

lated dataset and model selection problem in Galipaud et al., 2014, ranked by BIC-estimated

posterior probability. Table F Comparing BIC-estimated probability and marginal likelihood-

calculated probability for each model variable in full and partial candidate sets.
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S2 Text. Population dynamics modeling of small cell lung cancer. Note A. Population

dynamics modeling and inter-subtype effects. Note B. Ordinary differential equations repre-

senting each SCLC subtype in the population dynamics models.
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S3 Text. Simulations using best-fitted parameters, as opposed to randomly-selected

parameters from the prior distributions, replicate subtype proportions at steady state.
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S4 Text. All datasets support alteration of phenotypic transition rates in the presence of N

or A2 subtypes.
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S1 Table. Existing data pertaining to SCLC intratumoral heterogeneity and communica-

tion used for rate parameter priors.
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S2 Table. Model term posterior probabilities after hypothesis exploration, TKO high-

probability 3-subtype topology.
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S3 Table. Model term posterior probabilities after hypothesis exploration, RPM high-

probability 3-subtype topology.
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S4 Table. Model term posterior probabilities after hypothesis exploration, SCLC-A cell

line data high-prob. 3-subtype topology.

(DOCX)

S1 File. CIBERSORT-deconvoluted data from three SCLC datasets (p53fl/fl;Rbfl/fl;p130fl/fl

(TKO) GEMM tumors, Rb1fl/fl;Trp53fl/fl;Lox-Stop-Lox[LSL]-MycT58A (RPM) GEMM

tumors, publicly available SCLC cell line data from CCLE. CIBERSORT deconvolution pro-

vides proportions of SCLC subtypes in cell line data and tumor samples from their RNA

sequencing signatures.

(CSV)

S1 Fig. Comparing marginal likelihood-based posterior probability and information crite-

ria probability estimation. (A) Comparing posterior probability calculations from marginal
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likelihood returned by nested sampling to posterior probabilities estimated by information cri-

teria, for the 16-candidate model set and simulated data from the linear regression model

selection example in Galipaud et al., 2014 [15]. Pearson correlation coefficient (r) is shown for

each comparison. Comparison to posterior probability calculated from the BIC-estimated

marginal likelihood, left. Comparison to AICc weights, right. (B) Comparing posterior proba-

bility calculations from marginal likelihood to posterior probabilities estimated by information

criteria, for the SCLC analysis of 5,891 models compared to TKO data. Multimodel inference

comparing candidate models to RPM and SCLC-A cell line data provide similar results. Pear-

son correlation coefficient (r) is shown for each comparison. Comparison to posterior proba-

bility calculated from the BIC-estimated marginal likelihood, left. Comparison to AICc

weights, right.

(TIFF)

S2 Fig. Prior probabilities values and schematics. (A) Rate of a cell fate (division, death, or

phenotypic transition) for x (vfate) can be calculated as a function of the population size of

the effector cell w (see S2 Text Note A) [1]. (B) Example calculation of division rate parame-

ter prior for H841, representation of subtype Y, (see S1 Table) converting doubling times to

“per day” units. (C) Division prior for subtype Y, (blue dashed line centered at the mean) as

well as inter-subtype effect on division, whose mean is centered 5% lower (red dashed line;

see S1 Table) with wider variance to account for more uncertainty in inter-subtype effects.

(D) Example calculation and visualization of death rate parameter prior for Y (blue dashed

line at mean) and inter-subtype effect on death (red dashed line at mean, 5% higher). (E)

Example uniform transition prior, (see S1 Table) here showing N to Y transition; blue dashed

line at baseline transition rate center, red dashed line at inter-subtype effect transition rate

center. (F) Equilibrium assumption prior, representing KDKx
eq in the equation (A). Each

affected interaction has a unique KDKx
eq prior, but all such priors have identical values (cen-

tered at 1000) before fitting. (G) Different model initiation hypotheses, where a model can

be initiated by one or more subtypes (thick red outline) depending on the subtypes present

in the topology. For an n-subtype topology, there are 2n-1 potential initial conditions. Here,

the 4-subtype topology is shown, in a table representing all options for initial number of cells

of each subtype (left) and in model schematics (right), with 24−1 = 15 initial conditions.

With equal prior probabilities, each hypothesis about which cell types initiate the tumor has

a prior probability of 6.67%.

(TIFF)

S3 Fig. Parameter prior distributions for all possible reactions in a candidate population

dynamics model. If a candidate model does not contain a reaction, for example a model with

the topology A, N, and Y does not include A2 and thus will not include A2 division, death, or

transitions to/from A2, then the rate parameter priors for A2-related reactions will not be

included as a parameter prior for model fitting.

(TIFF)

S4 Fig. Nested sampling’s fitting results in better-fitting simulations than simulations

using randomly selected parameter values. Left, Data distribution, prior predictive distribu-

tion, and posterior predictive distribution for each dataset and all candidate models. Data is

represented by a Beta distribution, bounded by zero and one, and used in the likelihood func-

tion input for Multinest (see Methods). Prior predictive distribution represents model simula-

tions using parameters randomly drawn from the prior. Posterior predictive is generated by

model simulations using best-fitting parameters returned by Multinest. Right, prior predictive

distribution, simulation steady-state proportions using independently-sampled posterior
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marginal parameters (“subtype independent post. predictive”), and simulation steady-state

proportions using parameters sampled from the joint posterior distribution (“subtype joint

posterior predictive”, same as posterior predictive distribution on the left). See S3 Text for

more detail and discussion related to these results. Data and predictive distributions for each

dataset shown. (A) TKO, (B) RPM, (C) SCLC-A cell lines.

(TIFF)

S5 Fig. Prior and posterior probabilities for tumor-initiating subtype hypotheses. Hypoth-

esis assessment of tumor-iniating subtypes, per dataset. Probability indicates the result of

Bayes theorem using equivalent prior probabilities per initiating subtype, black dotted line

(located at 6.67% probability that one of the initiation schemes in the x-axis best represents the

data) and marginal likelihoods summed per initiation scheme. All topologies (Fig 5A) used in

this analysis.

(TIFF)

S6 Fig. Transition parameter rates vary in similar ways across datasets. (A) Hypothesis

assessment of model topologies per dataset, posterior probabilities based on all candidate mod-

els, with no filtering based on initiating subtype (see S4 Fig). Model topologies represented by

images and corresponding numbers along the y-axis. (B) Comparison of phenotypic transition

parameter posterior marginal distributions, BMA-weighted, per dataset, separated by topol-

ogy. In 3- and 4-subtype topologies, distributions are further separated by hierarchical or non-

hierarchical transition status. Bars indicate significance between samples from BMA parameter

distributions at family-wise error rate (FWER) of 0.01, using one-way ANOVA plus Tukey

HSD. Red bar: comparing N-to-Y rate with A2-to-Y rate, noted in the main text. Red arrow-

heads: higher A-to-A2 transition rate in 3-subtype TKO topology (A, A2, Y) compared to A-

to-Y and A2-to-Y (noted in Fig 5B as well). Teal bar: comparing A2-to-N rate with N-to-A2

rate, noted in the main text. Teal arrowheads: higher A-to-N transition rate in 4-subtype RPM

topology compared to A-to-Y and N-to-Y (noted in Fig 5B).

(TIFF)
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36. Mollaoglu G, Guthrie MR, Böhm S, Brägelmann J, Can I, Ballieu PM, et al. MYC Drives Progression of

Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibi-

tion. Cancer Cell. 2017 Feb 13; 31(2):270–85. https://doi.org/10.1016/j.ccell.2016.12.005 PMID:

28089889

37. Shue YT, Drainas AP, Li NY, Pearsall SM, Morgan D, Sinnott-Armstrong N, et al. A conserved YAP/

Notch/REST network controls the neuroendocrine cell fate in the lungs. Nat Commun [Internet]. 2022

[cited 2022 Dec 13]; 13(2690). Available from: https://doi.org/10.1038/s41467-022-30416-2 PMID:

35577801

38. Stewart CA, Gay CM, Xi Y, Sivajothi S, Sivakamasundari V, Fujimoto J, et al. Single-cell analyses

reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung can-

cer. Nat Cancer [Internet]. 2020 Apr 17 [cited 2021 Apr 25]; 1(4):423–36. Available from: https://doi.org/

10.1038/s43018-019-0020-z PMID: 33521652

39. Jahchan NS, Lim JS, Bola B, Morris K, Seitz G, Tran KQ, et al. Identification and Targeting of Long-

Term Tumor-Propagating Cells in Small Cell Lung Cancer. Cell Rep [Internet]. 2016 Jul 19 [cited 2021

Nov 4]; 16(3):644–56. Available from: http://www.cell.com/article/S2211124716307616/fulltext. PMID:

27373157

40. Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM, Mulvey HE, et al. Tumor cells

can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition.

Nat Med. 2016; 22(3):262–9. https://doi.org/10.1038/nm.4040 PMID: 26828195

41. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, et al. Rb1 and Trp53 cooperate to sup-

press prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science (1979)

[Internet]. 2017 Jan 6 [cited 2022 Dec 12]; 355(6320):78–83. Available from: https://www.science.org/

doi/10.1126/science.aah4199. PMID: 28059767

42. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity

and antiandrogen resistance in TP53-and RB1-deficient prostate cancer. Science (1979) [Internet].

2017 Jan 6 [cited 2022 Jan 19]; 355(6320). Available from: https://www.science.org/doi/abs/10.1126/

science.aah4307.

43. Risom T, Langer EM, Chapman MP, Rantala J, Fields AJ, Boniface C, et al. Differentiation-state plastic-

ity is a targetable resistance mechanism in basal-like breast cancer. Nat Commun [Internet]. 2018; 9

(3815):1–17. Available from: www.nature.com/naturecommunications. PMID: 30232459

44. Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, et al. Rare cell variability and

drug-induced reprogramming as a mode of cancer drug resistance. Nature. 2017; 546(7658):431–5.

https://doi.org/10.1038/nature22794 PMID: 28607484

45. Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, Sun Y, et al. Transdifferentiation as a Mechanism

of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discov

[Internet]. 2017; 7(7):737–49. Available from: www.aacrjournals.org.

46. Watson SS, Dane M, Chin K, Jonas O, Gray JW, Korkola JE. Microenvironment-Mediated Mechanisms

of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Syst [Internet].

2018 [cited 2022 Jan 19]; 6:329–42. Available from: https://doi.org/10.1016/j.cels.2018.02.001 PMID:

29550255

47. Chen X, Wang Y, Feng T, Yi M, Zhang X, Zhou D. The overshoot and phenotypic equilibrium in charac-

terizing cancer dynamics of reversible phenotypic plasticity. J Theor Biol. 2016 Feb 7; 390:40–9. https://

doi.org/10.1016/j.jtbi.2015.11.008 PMID: 26626088

48. Fuentes-Garı́ M, Misener R, Garcı́a-Munzer D, Velliou E, Georgiadis MC, Kostoglou M, et al. A mathe-

matical model of subpopulation kinetics for the deconvolution of leukaemia heterogeneity. J R Soc Inter-

face [Internet]. 2015 Jul 6 [cited 2021 Nov 4]; 12(108). Available from: https://royalsocietypublishing.

org/doi/abs/10.1098/rsif.2015.0276. PMID: 26040591

49. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, et al. Stochastic State Transitions

Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells. Cell [Internet]. 2011 Aug 19 [cited

2021 Nov 4]; 146(4):633–44. Available from: http://www.cell.com/article/S0092867411008245/fulltext.

PMID: 21854987

50. Greene JM, Levy D, Fung KL, Souza PS, Gottesman MM, Lavi O. Modeling intrinsic heterogeneity and

growth of cancer cells. J Theor Biol. 2015 Feb 21; 367:262–77. https://doi.org/10.1016/j.jtbi.2014.11.

017 PMID: 25457229

51. Wang W, Quan Y, Fu Q, Liu Y, Liang Y, Wu J, et al. Dynamics between Cancer Cell Subpopulations

Reveals a Model Coordinating with Both Hierarchical and Stochastic Concepts. PLoS One [Internet].

2014 Jan 9 [cited 2021 Nov 4]; 9(1):e84654. Available from: https://journals.plos.org/plosone/article?

id=10.1371/journal.pone.0084654. PMID: 24416258

52. Zhou JX, Pisco AO, Qian H, Huang S. Nonequilibrium Population Dynamics of Phenotype Conver-

sion of Cancer Cells. PLoS One [Internet]. 2014 Dec 1 [cited 2021 Nov 4]; 9(12):e110714.

PLOS COMPUTATIONAL BIOLOGY Determining tumor growth mechanisms via model hypothesis exploration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011215 July 5, 2023 37 / 39

https://doi.org/10.1016/j.ccell.2016.12.005
http://www.ncbi.nlm.nih.gov/pubmed/28089889
https://doi.org/10.1038/s41467-022-30416-2
http://www.ncbi.nlm.nih.gov/pubmed/35577801
https://doi.org/10.1038/s43018-019-0020-z
https://doi.org/10.1038/s43018-019-0020-z
http://www.ncbi.nlm.nih.gov/pubmed/33521652
http://www.cell.com/article/S2211124716307616/fulltext
http://www.ncbi.nlm.nih.gov/pubmed/27373157
https://doi.org/10.1038/nm.4040
http://www.ncbi.nlm.nih.gov/pubmed/26828195
https://www.science.org/doi/10.1126/science.aah4199
https://www.science.org/doi/10.1126/science.aah4199
http://www.ncbi.nlm.nih.gov/pubmed/28059767
https://www.science.org/doi/abs/10.1126/science.aah4307
https://www.science.org/doi/abs/10.1126/science.aah4307
http://www.nature.com/naturecommunications
http://www.ncbi.nlm.nih.gov/pubmed/30232459
https://doi.org/10.1038/nature22794
http://www.ncbi.nlm.nih.gov/pubmed/28607484
http://www.aacrjournals.org
https://doi.org/10.1016/j.cels.2018.02.001
http://www.ncbi.nlm.nih.gov/pubmed/29550255
https://doi.org/10.1016/j.jtbi.2015.11.008
https://doi.org/10.1016/j.jtbi.2015.11.008
http://www.ncbi.nlm.nih.gov/pubmed/26626088
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2015.0276
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2015.0276
http://www.ncbi.nlm.nih.gov/pubmed/26040591
http://www.cell.com/article/S0092867411008245/fulltext
http://www.ncbi.nlm.nih.gov/pubmed/21854987
https://doi.org/10.1016/j.jtbi.2014.11.017
https://doi.org/10.1016/j.jtbi.2014.11.017
http://www.ncbi.nlm.nih.gov/pubmed/25457229
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084654
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084654
http://www.ncbi.nlm.nih.gov/pubmed/24416258
https://doi.org/10.1371/journal.pcbi.1011215


Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110714. PMID:

25438251

53. Olsen RR, Ireland AS, Kastner DW, Groves SM, Spainhower KB, Pozo K, et al. ASCL1 represses a

SOX9 + neural crest stem-like state in small cell lung cancer. Genes Dev [Internet]. 2021 [cited 2021

Jun 17]; 35:847–69. Available from: http://www.genesdev.org/cgi/doi/10.1101/gad.348295.121. PMID:

34016693

54. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line

Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012 483:7391 [Inter-

net]. 2012 Mar 28 [cited 2022 May 28]; 483(7391):603–7. Available from: https://www.nature.com/

articles/nature11003. PMID: 22460905

55. Harris LA, Beik S, Ozawa PMM, Jimenez L, Weaver AM. Modeling heterogeneous tumor growth

dynamics and cell–cell interactions at single-cell and cell-population resolution. Curr Opin Syst Biol.

2019 Oct 1; 17:24–34. https://doi.org/10.1016/j.coisb.2019.09.005 PMID: 32642602

56. Hayford CE, Tyson DR, Jack Robbins C, Frick PL, Quaranta V, Harris LA. An in vitro model of tumor

heterogeneity resolves genetic, epigenetic, and stochastic sources of cell state variability. PLoS Biol.

2021 Jun 1; 19(6).

57. Paudel BB, Harris LA, Hardeman KN, Abugable AA, Hayford CE, Tyson DR, et al. A Nonquiescent

“Idling” Population State in Drug-Treated, BRAF-Mutated Melanoma. Biophys J. 2018;

58. Charlebois DA, Balázsi G. Modeling cell population dynamics. In Silico Biol [Internet]. 2019 Jan 1 [cited

2021 Nov 10]; 13(1–2):21–39. Available from: https://github.com/dacharle42/MCPD. PMID: 30562900

59. Metzcar J, Wang Y, Heiland R, Macklin P. A Review of Cell-Based Computational Modeling in Cancer

Biology. JCO Clin Cancer Inform. 2019 Dec 4;(3):1–13. https://doi.org/10.1200/CCI.18.00069 PMID:

30715927

60. Skilling J. Nested Sampling. AIP Conf Proc [Internet]. 2004 Nov 22 [cited 2021 Nov 3];735(1):395.

https://aip.scitation.org/doi/abs/10.1063/1.1835238.

61. Kass RE, Raftery AE. Bayes Factors. J Am Stat Assoc. 1995; 90(430):773–95.

62. Bast L, Calzolari F, Strasser MK, Hasenauer J, Theis FJ, Ninkovic J, et al. Increasing Neural Stem Cell

Division Asymmetry and Quiescence Are Predicted to Contribute to the Age-Related Decline in Neuro-

genesis. Cell Rep. 2018 Dec 18; 25(12):3231–3240.e8. https://doi.org/10.1016/j.celrep.2018.11.088

PMID: 30566852

63. Kwon MC, Proost N, Song JY, Sutherland KD, Zevenhoven J, Berns A. Paracrine signaling between

tumor subclones of mouse SCLC: a critical role of ETS transcription factor Pea3 in facilitating metasta-

sis. Genes & Development [Internet]. 2015 [cited 2022 May 30]; 29(15):1587–92. Available from: http://

www.genesdev.org/cgi/doi/10.1101/gad.262998.115. PMID: 26215568

64. Gopal P, Petty A, Rogacki K, Bera T, Bareja R, Peacock CD, et al. Multivalent state transitions shape

the intratumoral composition of small cell lung carcinoma. Sci Adv [Internet]. 2022 [cited 2023 Jan 26]; 8

(50):eabp8674. Available from: https://www.science.org. https://doi.org/10.1126/sciadv.abp8674

PMID: 36516249

65. Lopez CF, Muhlich JL, Bachman JA, Sorger PK. Programming biological models in Python using PySB.

Mol Syst Biol [Internet]. 2013 Jan 1 [cited 2021 Nov 4]; 9(1):646. Available from: https://onlinelibrary.

wiley.com/doi/full/10.1038/msb.2013.1. PMID: 23423320

66. Mitra ED, Hlavacek WS. Parameter estimation and uncertainty quantification for systems biology mod-

els. Curr Opin Syst Biol [Internet]. 2019 [cited 2022 Mar 10]; 18:9–18. Available from: https://doi.org/10.

1016/j.coisb.2019.10.006 PMID: 32719822

67. van Ravenzwaaij D, Cassey P, Brown SD. A simple introduction to Markov Chain Monte–Carlo sam-

pling. Psychon Bull Rev. 2018 Feb 1; 25(1):143–54. https://doi.org/10.3758/s13423-016-1015-8 PMID:

26968853

68. Charnes A, Frome EL, Yu PL. The Equivalence of Generalized Least Squares and Maximum Likelihood

Estimates in the Exponential Family. J Am Stat Assoc. 1976 Mar; 71(353):169–71.

69. Chai H, Jiang H, Lin L, Liu L. A marginalized two-part Beta regression model for microbiome composi-

tional data. PLoS Comput Biol [Internet]. 2018 Jul 1 [cited 2023 Mar 26]; 14(7):e1006329. Available

from: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006329. PMID: 30036363

70. Paolino P. Maximum Likelihood Estimation of Models with Beta-Distributed Dependent Variables. Politi-

cal Analysis [Internet]. 2001 [cited 2023 Mar 26]; 9(4):325–46. Available from: https://www-cambridge-

org.proxy.library.vanderbilt.edu/core/journals/political-analysis/article/maximum-likelihood-estimation-

of-models-with-betadistributed-dependent-variables/CF04F05F5EF5A5E6AF2FAC843F3A94ED.

71. Wadsworth GP, Bryan JG. Continuous Random Variables. In: Blackwell D, editor. Introduction to proba-

bility and random variables [Internet]. New York: McGraw-Hill; 1960 [cited 2023 Mar 12]. p. 78–119.

Available from: http://hdl.handle.net/2027/uc1.31822013426929.

PLOS COMPUTATIONAL BIOLOGY Determining tumor growth mechanisms via model hypothesis exploration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011215 July 5, 2023 38 / 39

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110714
http://www.ncbi.nlm.nih.gov/pubmed/25438251
http://www.genesdev.org/cgi/doi/10.1101/gad.348295.121
http://www.ncbi.nlm.nih.gov/pubmed/34016693
https://www.nature.com/articles/nature11003
https://www.nature.com/articles/nature11003
http://www.ncbi.nlm.nih.gov/pubmed/22460905
https://doi.org/10.1016/j.coisb.2019.09.005
http://www.ncbi.nlm.nih.gov/pubmed/32642602
https://github.com/dacharle42/MCPD
http://www.ncbi.nlm.nih.gov/pubmed/30562900
https://doi.org/10.1200/CCI.18.00069
http://www.ncbi.nlm.nih.gov/pubmed/30715927
https://aip.scitation.org/doi/abs/10.1063/1.1835238
https://doi.org/10.1016/j.celrep.2018.11.088
http://www.ncbi.nlm.nih.gov/pubmed/30566852
http://www.genesdev.org/cgi/doi/10.1101/gad.262998.115
http://www.genesdev.org/cgi/doi/10.1101/gad.262998.115
http://www.ncbi.nlm.nih.gov/pubmed/26215568
https://www.science.org
https://doi.org/10.1126/sciadv.abp8674
http://www.ncbi.nlm.nih.gov/pubmed/36516249
https://onlinelibrary.wiley.com/doi/full/10.1038/msb.2013.1
https://onlinelibrary.wiley.com/doi/full/10.1038/msb.2013.1
http://www.ncbi.nlm.nih.gov/pubmed/23423320
https://doi.org/10.1016/j.coisb.2019.10.006
https://doi.org/10.1016/j.coisb.2019.10.006
http://www.ncbi.nlm.nih.gov/pubmed/32719822
https://doi.org/10.3758/s13423-016-1015-8
http://www.ncbi.nlm.nih.gov/pubmed/26968853
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006329
http://www.ncbi.nlm.nih.gov/pubmed/30036363
https://www-cambridge-org.proxy.library.vanderbilt.edu/core/journals/political-analysis/article/maximum-likelihood-estimation-of-models-with-betadistributed-dependent-variables/CF04F05F5EF5A5E6AF2FAC843F3A94ED
https://www-cambridge-org.proxy.library.vanderbilt.edu/core/journals/political-analysis/article/maximum-likelihood-estimation-of-models-with-betadistributed-dependent-variables/CF04F05F5EF5A5E6AF2FAC843F3A94ED
https://www-cambridge-org.proxy.library.vanderbilt.edu/core/journals/political-analysis/article/maximum-likelihood-estimation-of-models-with-betadistributed-dependent-variables/CF04F05F5EF5A5E6AF2FAC843F3A94ED
http://hdl.handle.net/2027/uc1.31822013426929
https://doi.org/10.1371/journal.pcbi.1011215


72. Chen WW, Niepel M, Sorger PK. Classic and contemporary approaches to modeling biochemical reac-

tions. Genes Dev [Internet]. 2010 [cited 2023 Mar 14]; 24:1861–75. Available from: http://www.

genesdev.org/cgi/doi/10.1101/gad.1945410. PMID: 20810646

73. John Kruschke. Doing Bayesian data analysis: a tutorial introduction with R. 2nd ed. Elsevier Science &

Technology; 2014.

74. Hurvich CM, Tsai CL. Regression and time series model selection in small samples. Biometrika [Inter-

net]. 1989 Jun 1 [cited 2023 Mar 30]; 76(2):297–307. Available from: https://academic.oup.com/biomet/

article/76/2/297/265326.

75. Garthwaite PH, Mubwandarikwa E. SELECTION OF WEIGHTS FOR WEIGHTED MODEL AVERAG-

ING. Aust N Z J Stat. 2010; 52(4):363–82.

PLOS COMPUTATIONAL BIOLOGY Determining tumor growth mechanisms via model hypothesis exploration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011215 July 5, 2023 39 / 39

http://www.genesdev.org/cgi/doi/10.1101/gad.1945410
http://www.genesdev.org/cgi/doi/10.1101/gad.1945410
http://www.ncbi.nlm.nih.gov/pubmed/20810646
https://academic.oup.com/biomet/article/76/2/297/265326
https://academic.oup.com/biomet/article/76/2/297/265326
https://doi.org/10.1371/journal.pcbi.1011215

