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Abstract

Typical drug discovery and development processes are costly, time consuming and often

biased by expert opinion. Aptamers are short, single-stranded oligonucleotides (RNA/DNA)

that bind to target proteins and other types of biomolecules. Compared with small-molecule

drugs, aptamers can bind to their targets with high affinity (binding strength) and specificity

(uniquely interacting with the target only). The conventional development process for apta-

mers utilizes a manual process known as Systematic Evolution of Ligands by Exponential

Enrichment (SELEX), which is costly, slow, dependent on library choice and often produces

aptamers that are not optimized. To address these challenges, in this research, we create

an intelligent approach, named DAPTEV, for generating and evolving aptamer sequences

to support aptamer-based drug discovery and development. Using the COVID-19 spike pro-

tein as a target, our computational results suggest that DAPTEV is able to produce structur-

ally complex aptamers with strong binding affinities.

Author summary

Compared with small-molecule drugs, aptamer drugs are short RNAs/DNAs that can spe-

cifically bind to targets with high strength. With the interest of discovering novel aptamer

drugs as an alternative to address the long-lasting COVID-19 pandemic, in this research,

we developed an artificial intelligence (AI) framework for the in silico design of novel

aptamer drugs that can prevent the SARS-CoV-2 virus from entering human cells. Our

research is valuable as we explore a novel approach for the treatment of SARS-CoV-2

infection and the AI framework could be applied to address future health crises.

Introduction

Viruses contain deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) but are incapable of

self-reproduction and rely on commandeering the cell’s protein creation capabilities to repro-

duce. After the viral protein has been successfully reproduced, it goes on to infect other cells in
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a process known as viral proliferation. Attaching and injecting of viral DNA or RNA to host

cells is achieved through binding to cellular receptor through receptor-binding domain (RBD),

an area on the viral protein evolved to specifically bind hosts’ cell receptor. In the case of the

SARS-CoV-2 spike protein, the RBD targets the lung cell angiotensin-converting enzyme

(ACE2) receptor [1–6].

Typical drug discovery focuses on either preventative triggering of host’s immune system

or interrupting the life cycle of the virus. The former usually refers to vaccines. The latter is

known as a therapeutic, attempting to halt the infection process in a currently-infected host [1,

7, 8]. While vaccines tend to focus on infection prevention [8, 9], therapy development can

help alleviate suffering following infection.

Aptamers are short, single-stranded, oligonucleotides that can bind to targets with high

affinity and specificity. It is hypothesized that specific aptamers can halt a virus during its life

cycle by binding to the viral protein RBD thereby inhibiting its binding to host cell receptors.

Aptamers can be created and modified easily and can bind to specific targets. One of the main

ways to design aptamers is through a process known as systematic evolution of ligands by expo-
nential enrichment (SELEX) [10] or high-throughput SELEX (HT-SELEX) [11] which applies

high-throughput sequencing in each SELEX cycle. Design of aptamers through either SELEX

or HT-SELEX is a slow, highly experimentally demanding process, possibly still providing

sub-optimal designs [12–14] as these approaches essentially rely on a random search of top

hits that are highly dependent on the initial choice of libraries [1, 8, 14–20].

Artificial intelligence (AI) techniques involve the modelling of brain intelligence to solve

various challenging tasks [21]. As the most influential area in AI, machine learning (ML)

improves intelligent agents or models using data and experience [22]. In the past few decades,

machine learning has seen unprecedented progress. A variety of supervised and generative

deep learning (DL) methods, i.e. neural networks, have been designed and achieved state-of-

the-art performances in many domains [23]. Even though various AI and ML models have

been recently developed for small-molecule drug design and achieved promising results [24–

27], the end-to-end design of aptamers is a relatively unexplored domain [16, 19]. This is par-

tially due to the unfamiliarity of aptamers in the AI community, unavailability of quality data,

and the shortage of chemoinformatics tools for this class of molecules. In this research, to

determine if AI approaches can accelerate aptamer drug discovery and development for the

treatment of SARS-CoV-2 infection, we developed an in silico RNA aptamer design process,

named deep aptamer evolutionary model (DAPTEV), similar to the experimental SELEX pro-

cess. DAPTEV takes advantage of the embedding and generating capacity of deep generative
models (DGMs), the high-throughput exploration power of evolutionary computation, and the

quantitative measure of RNA-target binding affinities through molecular mechanism. The per-

formance of DAPTEV was evaluated using the SARS-CoV-2 spike protein as a target. This

work has the following major contributions: (1) we designed a novel end-to-end aptamer gen-

eration and optimization model to explore its performance, which is highly informative to

researchers in the drug design domain; (2) using the SARS-CoV-2 spike protein as a target, we

assembled a benchmark dataset for aptamer drug development, which can be used and

improved by researchers in the future; (3) we applied our framework to search for RNA apta-

mer therapeutics for COVID-19 treatment, discovering new aptamers that can be further vali-

dated as an alternative means to address our pandemic challenge.

Related work

Until recently, patents for the SELEX process limited the potential exploration and innovation

in the field of aptamer-based drug development [19]. Moreover, sources on ML applied to
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aptamers were even more scarce. However, with the patents now expired, new research is

being released (reviewed as below), some of which implement a model related to the one pro-

posed in this research.

Unsupervised aptamer identification methods

A naive method for aptamer selection in SELEX is based on read counts. However, due to bias

in polymerase chain reaction (PCR) [28], the high abundance of reads does not indicate a high

binding affinity. To address this issue, early computational methods focused on aptamer iden-

tification from SELEX pools using clustering and motif finding. Clustering techniques, such as

AptaCluster [29] and FASTAptamer-Cluster [30], attempt to learn aptamer sequence com-

monalities, but suffer from a lack of secondary structure considerations. Motif-finding

approaches, such as MEMRIS [31], Aptamotif [32], MPBind [28], and APtaTrace [33], attempt

to identify structure patterns with strong binding affinities. However, motif-finding

approaches do not consider entire secondary structures. Both options struggle with processing

times associated to large HT-SELEX libraries. To address these issues while utilizing the

strengths of these two approaches, Sequential Multidimensional Analysis AlgoRiThm for apta-
mer discovery (SMART-Aptamer) is presented in [14] which accurately and efficiently identi-

fies aptamers from SELEX libraries containing hundreds of millions of short sequences.

SMART-Aptamer first applies a Markov clustering method to obtain aptamer families and

then filters out the majority of the aptamers using multiple scores considering the enrichment

of motifs, the abundance of aptamer families, and the overall secondary structures.

Supervised aptamer-protein interaction prediction methods

Aptamers that bind to a small number of protein targets have been selected to form limited

aptamer-protein interaction (API) data, enabling the use of supervised models to learn from

known APIs and then predict whether a new aptamer interacts with one of the protein targets

listed in the training data. Due to limited training samples, conventional classifiers and hand-

crafted features have been applied to API prediction and obtained moderate performance (70–

80% accuracy). In [34] a random forest classifier learns on an API dataset containing a few

hundred positive samples. Their input features include nucleotide composition, traditional

amino acid composition, and pseudo amino acid composition. Similarly, in [35], an ensemble

method (random forests) with hybrid features is presented to predict APIs using Pseudo K-
tuple Nucleotide Composition (PseKNC) features to encode aptamers along with protein fea-

tures including discrete cosine transformation (DCT), disorder information, and bi-gram posi-
tion specific scoring matrix (PSSM). The task of ncRNA-protein interaction prediction is

similar to API prediction, but has more data available to enable the training of a deep classifier.

For instance in [36], RPITER, a hierarchical deep learning model with convolutional neural
network (CNN) and autoencoder (AE) modules, is developed to automatically learn features

from a few thousands ncRNA-protein pairs and obtained promising performance for ncRNA-

protein interaction prediction. When more API data becomes available in the future, similar

deep models are anticipated for API prediction.

Aptamer generation

Im et al. used a generative model to build statically sized (20 nt) DNA and RNA sequences that

bind to a target protein [37]. At the time of their publication, it was specified that their research

was ongoing, but they were able to train a long short-term memory (LSTM) model on a “huge

dataset of sequences from high-throughput experimental technologies . . . such as HT-SELEX

or CLIP-seq”. This dataset, which is still not available publicly, was obtained from DeepBind
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[38]. DeepBind was used to estimate the affinity and specificity of generated sequences. The

target proteins in their research were as follows: DRGX, GCM1, OLIG1, RXRB, NFATC1,

NFKB1, and MBNL1. It was found that the produced sequences possessed structural motifs

similar to known motifs, and that the produced sequences had a strong binding affinity and

specificity to their intended target [37]. This research was continued by Park et al. and a similar

conclusion was drawn for RNA aptamers specifically [39]. In [40], Iwano et al. propose Rapt-

Gen which is similar to [37] and [39]. They too utilized DeepBind, however, RaptGen imple-

mented a CNN-LSTM as their encoder and a profile hidden Markov model as their decoder.

Additionally, while RaptGen starts with static sequence lengths (10 nt), it utilizes some post-

processing techniques to extend the sequence lengths to a set of other fixed sizes, technically

achieving sequence generation with variable lengths. Iwano et al.’s target proteins were the

TGM2 and αvβ3 [40]. The main difference between the research mentioned above and our

own is as follows: (1) our model allows for the specification of a target RBD and calculating

binding affinity based on thermodynamic principles rather than estimating binding via ML

surrogate models; (2) our model optimizes aptamers to produce sequences with better binding

affinity and specificity to the intended target instead of only generating aptamers having the

same distribution as the training data; and (3) our model allows for true variable length

sequences as input and output rather than fixed sized sequences.

In [13], Lee et al. present an aptamer generation method called Apt-MCTS. This method

uses limited positive and negative aptamer-protein pairs to train a random forest classifier as a

surrogate model to predict whether an aptamer can bind to a fixed protein target (one of

6GOF, 3V79_1, 5VOE, 3SN6_4, 2RH1_1, and 1ERK_1). The prediction result is used as a

score to guide a Monte Carlo tree search (MCTS) [41] process for the generation of new apta-

mers. Apt-MCTS and our DAPTEV research utilize the same starting real aptamer data, but

we further expanded this data by generating additional RNA sequences for model training.

Apt-MCTS requires the availability of aptamer-protein pairs to train a surrogate model for

API predictions. This disables the application of Apt-MCTS in our situation where experimen-

tal aptamer-spike protein interaction data are unavailable.

Wornow proposed a conditional VAE to generate novel strong-binding aptamers [19]. This

too is similar to our work and findings. However, Wornow’s work utilized 8 rounds of SELEX

data as a proof of concept on DNA data only. This creates a limitation of requiring experimen-

tal data to be collected before the model’s efficacy can be illustrated or be used in practice and

does not explore the RNA landscape. The target for Wornow’s research is the chemotherapeu-

tic agent daunomycin. Binding affinity was approximated based on ground truth fitness scores

which were later confirmed by wet-lab experiments. They avoid the use of molecular dynamics
(MD) simulations, stating they are computationally expensive and infeasible for use in the

field.

Molecular optimization

Grantham et al. have developed a multi-objective deep learning framework named deep evolu-
tionary learning (DEL) for small-molecule design. DEL is beneficial for improving sample pop-

ulations in terms of property distributions and outperforms other multi-objective baseline

molecular optimization algorithms [26]. While DEL does not work with aptamer data, it does

focus on molecular optimization. Thus, it serves as inspiration for our DAPTEV.

Method

Our deep aptamer evolutionary modelling (DAPTEV) framework is visualized in Fig 1. It is a

hybrid approach that integrates the strengths of DGMs (variational autoencoders) for aptamer
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Fig 1. Flowchart depicting the DAPTEV process for aptamer design.

https://doi.org/10.1371/journal.pcbi.1010774.g001
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encoding and modelling, computational intelligence (evolutionary computation) for aptamer

optimization, and bioinformatics tools for RNA secondary and tertiary structure prediction

and RNA-protein folding-and-docking (Rosetta). The continuous docking score is used as the

fitness value or objective in the evolutionary computation component to guide aptamer

optimization.

First, a dataset must be collected for the training of the deep learning model and the initiali-

zation of the optimization process. The dataset should include a large number of aptamer

sequences of certain lengths, their corresponding secondary structures, and docking scores to

a protein target of interest. The secondary structures (determined by canonical base-pairing

formed by hydrogen bonds) are needed by the Rosetta package [42] for docking. If secondary

structures are unknown, they can be quickly computed using Arnie [43]. For details of assem-

bling data to generate aptamers targeting SARS-CoV-2 spike protein, please refer to Section

Data.

As an initialization step, a variational autoencoder (VAE) [44] is pretrained using the data-

set. This VAE provides an encoding process that transforms an aptamer sequence to a vector

of continuous values which is called the embedding vector or latent vector of the aptamer. Since

the latent space is continuous, various metaheuristic techniques can be applied in this space

for aptamer optimization. The decoder of the VAE enables a decoding process that converts a

latent vector (either randomly sampled or modified using computational intelligence opera-

tions) to an aptamer sequence. Please refer to Section Variational autoencoder for aptamer

modelling for details of our developed VAE.

The main body of the DAPTEV framework is an iterative evolutionary process. At the

beginning of the loop, a population of aptamers are randomly sampled from the original data-

set, then they are passed to the encoder to obtain latent representations. Evolutionary opera-

tions are applied to these latent representations and then these modified latent representations

are decoded using the decoder to obtain their corresponding primary sequences. The fitness of

these new sequences can be measured through aptamer-protein docking. After that, the newly

produced aptamer sequences and the previous population of aptamer sequences are ranked

together and only top aptamers are kept to form a new population of aptamers for the next

generation. In the next generation, this new population is used to fine-tune the VAE model

and then uses the encoder of the fine-tuned VAE to project the new population into the latent

space where evolutionary operations are again applied. See Section Evolutionary operations

for aptamer optimization for detailed discussion of the evolutionary operations. Each time

when a new aptamer sequence is generated, Rosetta needs to be called to calculate the docking

score. The docking component is detailed in Section RNA-protein docking. Furthermore,

docking is a time-consuming process. Its speed-up is discussed in Section Computing time

improvement.

Variational autoencoder for aptamer modelling

VAE is a probabilistic deep generative model that takes advantage of the autoencoder architec-

ture where the encoder network corresponds to the inference qϕ(z|x) and the decoder network

realizes the generative component pθ(z)pθ(x|z). Here x is the vector of random variables for

observed data (i.e., an aptamer sequence in our case), z is the vector of latent random variables,

ϕ and θ are respectively the parameters of the inference network (encoder) and generative net-

work (decoder) [44]. In our work, since aptamers are represented in primary sequences, gated
recurrent units (GRU) [45] are used in the encoding and decoding processes. Thus, the

resulted VAE is a probabilistic Seq2Sep structure. See Fig 2 for a depiction of the implemented

VAE.
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Using “A” for adenine, “C” for cytosine, “G” for guanine, and “U” for uracil, an aptamer

sequence of length L can be represented as x = [xi|xi 2 {A, C, G, U}, i = 1, 2, � � �, L]. The word
embedding representation techniques [46, 47] can be used here by treating each letter as a

word. However, this alone does not provide the model with enough context for how an RNA

structure will interact with itself and the possible structural motifs that can occur. Thus, the

combination of all possible 1, 2, and 3-mer strings (as tokens) are included in the vocabulary

V ¼ fA;C;G;U;AA;AC; � � � ;UU;AAA;AAC; � � � ;UUUg. Conversely, adding too many

combinations could drastically increase the computing time and the need for more training

data. Thus, we restrict our vocabulary up to 3-mer. Three more special tokens are inserted into

the vocabulary: <BOS> for beginning of sequence, <EOS> for end of sequence, and<PAD>

for padding. Both the<BOS> and the <EOS> tokens inform DAPTEV of the character

boundaries for each sequence. When working with sequences, one inevitably must choose

how to handle sequences of variable lengths. Rather than restricting all sequences to the same

length, limiting the versatility and learning capabilities of the model,<PAD> tokens are

inserted into each sequence. In the encoding process, the sequence needs to be parsed into

tokens. The 3-mer tokens have the highest priority in this process. A 2 or 1-mer token only

appears at the end of the parsed result when a 3-mer parsing is no longer possible. Taking

sequence GGCACAGAAGAUAUGGCUUCGUGCC for example, the parsed sequence of

tokens is [GGC, ACA, GAA, GAU, AUG, GCU, UCG, UGC, C]. The decoding process follows

a similar scheme. The decoding will stop when (1) it generates a 2 or 1-mer token, (2) an

<EOS> token is generated, or (3) the length of the generated sequence meets the prespecified

maximal length.

The bottleneck between the encoder and decoder is the latent layer representing the embed-

ding of the whole sequence. From the autoencoder perspective, a latent vector contains the

compressed key information about the corresponding input and this latent vector can be

decoded to reconstruct the input. From the generative model perspective, the latent vector, fol-

lowing a simple prior distribution (a multivariate standard Gaussian distribution in our case),

Fig 2. Depiction of the implemented VAE.

https://doi.org/10.1371/journal.pcbi.1010774.g002
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is the start of the generation process. The feasible domain of the latent vector forms the latent

space.

Up to this point, the VAE designed above is not necessarily learning what makes an RNA

sequence good or bad with respect to the Rosetta docking score. The VAE should be able to

produce sequences with strong docking capabilities to a specified target. It is for this reason

that an MLP component was included in the architecture of the VAE. This MLP performs

score-based classification and further regularizes the latent representation. It takes a latent vec-

tor as input and predicts whether the sequence associated with the latent vector is good in

terms of target binding, this vector and its associated score will be given to the MLP. A lower

docking score implies a tighter binding. Thus, a “good docking score” is defined as� the user-

chosen score threshold parameter and a “bad docking score” is defined as> the score thresh-

old. This converts the scores to 1 (good) or 0 (bad). Note that one cannot simply set the score

threshold to any low value desired as it can result in highly imbalanced data. To determine the

optimal score threshold, one may locate the lowest score that still labels at least 25% of the data

to Class 1 (as a rule of thumb only). For example, it was found that 26.28% of our data (see Sec-

tion Data) fell within the docking score range of 3,500 and below for this research. Thus, a

score threshold of 3,500 was chosen in our experiment. Why is the docking quality prediction

modelled as a classification problem rather than a regression problem? According to our expe-

rience in docking score modelling, regression usually has unsatisfactory performance.

The loss function of the VAE to be minimized in DAPTEV is formulated below

lðϕ; θ;ψÞ ¼ � EqϕðzjxÞ
½log pθðxjzÞ� þ bKLðqϕðzjxÞjjpθðzÞÞ

þaEqϕðzjxÞ
½BCEðfψðzÞ; yÞ�;

ð1Þ

where the first term corresponds to the reconstruction error, the second term is the Kullback-
Leibler (KL) divergence that pushes the posterior towards the prior, and the last term is the

binary cross-entropy (BCE) loss for the MLP (parameterized by ψ) performance where fψ(z) is

the predicted value and y is the actual class label. The trade-off hyperparameters α and β con-

trol the balance among these three terms. The KL loss term tends to vanish easily during train-

ing in the vanilla VAE where β = 1. This can negatively affect the reconstruction learning

process. To address this issue, we implemented a technique known as KL annealing [26, 48] to

control the value of β. The annealing process applies a small weight, between 0 and 1, to the

KL loss value and linearly increases this weight during training.

Evolutionary operations for aptamer optimization

Each evolutionary generation ensures the VAE has finished a round of training (fine-tuning)

such that DAPTEV can then begin the sequence optimization step. This is when DAPTEV

searches for better sequences and update its running data accordingly in every generation.

Three Darwinian evolutionary operations are involved in this step.

The first operation is known as tournament selection with elitism. Elitism is the action of

selecting the top e best individuals (sequences) in a population to be carried forward into the

next generation. This ensures the best individuals remain in the running data and are not fil-

tered out during tournament selection. Tournament selection is the process of randomly sam-

pling sequences from the population and having these candidates compete in a tournament.

The winner of each tournament will be selected as a parent to produce the next generation of

children. This process is repeated multiple times until the parent pool equals the chosen popu-

lation size. The tournament selection operation is controlled by two hyperparameters. One is

the k value which indicates how many contenders with which to build a tournament round.

The higher the k value, the more likely a stronger performing individual will be selected to win
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the tournament and proceed as a parent for the next generation. This, in turn, means there is a

higher likelihood that poor-performing individuals will not be selected to proceed as parents

(referred to as selection pressure), which can often have a detrimental effect on exploration.

The other hyperparameter is the selection rate. This parameter creates a possibility for the best-

performing individual in a tournament pool to opt out, allowing some poor-performing indi-

viduals to be selected instead.

The second evolutionary operation is crossover. This is the process of producing children

from two parents, attempting to simulate a child obtaining features from their parents. After

the selection operation is performed, the sequences are passed through the VAE’s encoder to

obtain their latent representations (zs). Then, the crossover operation is applied to these parent

z vectors whereby parent zpa and parent zpb will each copy random parts of their latent vectors

to new children vectors zca and zcb. This procedure is repeated until the number of children

equals the population size. Similar to the tournament selection, this operation also has a proba-

bility of occurring (called crossover rate). Note that too small of a population size will result in

a low amount of “genetic diversity” which can quickly converge to a local minimum (subopti-

mal solution). This means that there will not be enough sequences in a given generation to

produce sufficiently dissimilar children from the parent sequences. Eventually, all produced

sequences could start to resemble each other and/or the algorithm will be unable to find better

sequences due to the lack of “genetic diversity” among available sequences.

The last evolutionary operation is mutation, mimicking random mutations in evolution.

Some random influence should be allowed such that an individual may find themselves per-

forming significantly better than the rest. In DAPTEV, mutation is implemented by selecting,

with a probability called mutation rate, a child from the crossover result. Then a random index

of that child’s z vector is chosen and replaced with a random, normally distributed value. The

mutation rate should be very small. A large rate will result in the algorithm essentially perform-

ing just a random search, corrupting any learning.

Once the new latent vectors have completed a round of evolutionary operations, they are

sent through the VAE’s decoder. This will generate the sequences based on the VAE’s previ-

ously trained decoding capabilities. The output will be a list of new sequences. Any duplicates

in this list, as compared to themselves, the starting data, and any previously predicted

sequences will be removed and replaced with new, folded, random sequences. However, dock-

ing scores for these new sequences are unknown. Thus, the docking simulation is repeated

before the VAE continues to fine-tune using the new population.

RNA-protein docking

Different from previous sequential prefold-and-dock methods, Rosetta’s RNP-denovo [42]

models RNA-protein complexes by simultaneously folding and docking an RNA to a protein

surface via a statistical RNA-protein docking scoring function [42]. It is reported in [42] that,

over ten popular scoring systems, Rosetta was the most accurate among the methods tested. It

is for this reason that Rosetta was used as a docking platform in this research. Meanwhile, the

readers are reminded that, highly precise RNA-protein docking remains a challenging prob-

lem in the community partially due to the lack of high-resolution RNA-protein complexes.

While Rosetta’s method tends to correctly determine global folds, it is not accurate enough to

reliably determine atomic positions. Further improvement of Rosetta for RNA-protein dock-

ing is necessary in the future, but beyond the scope of this paper.

Rosetta allows one to specify a target protein and the target’s RBD. There are two scoring

functions within DAPTEV’s usage of Rosetta: native Rosetta docking score function and con-
straint scoring function. The native Rosetta scoring function is a low-resolution, coarse-
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grained, knowledge-based (statistical) RNA-protein potential. This serves as an energy func-

tion for scoring Monte Carlo steps within the tertiary structure prediction and docking simula-

tion. The lower the returned score is after the tertiary structure prediction and docking

simulation, the more stable the predicted complex is considered to be. In Rosetta, all previously

published score terms describing RNA structure and RNA-protein interactions are included

in this scoring function [42], while also providing rapid computation and maintaining coarse-

granularity.

The constraint scoring function applies to where on the protein the RNA docks. This con-

straint function allows one to specify the target’s RBD region without having to force a fixed

binary interaction between specific atoms of the RNA and the target protein. Instead, one indi-

cates to Rosetta their chosen constraint type, to which atoms on the target and the RNA the

constraint applies, and what built-in formula the constraint will use to calculate an energetic

penalty. This penalty will be applied against the returned Rosetta score to passively discourage

the RNA from docking elsewhere on the target. As a result, the RNA has a range of acceptable

distances it can deviate from the target’s RBD during the docking simulation.

DAPTEV uses an “atom pair” constraint with a flat harmonic function. The middle position

(nucleotide) of every produced RNA sequence is chosen as the constrained RNA nucleotide.

This function is formulated below,

f ðxÞ ¼

0 if x0 � tol � x � x0 þ tol
�
x � x0

sd

�2

otherwise
;

8
>><

>>:

ð2Þ

where, x represents the distance between the two atoms (this varies as Rosetta attempts multi-

ple conformations), x0 is the user-chosen ideal distance between the atoms, sd is the user-cho-

sen allowable standard deviation from the ideal distance, and f(x) is the returned penalty. This

function produces a penalty of 0 if x falls in the range [x0 − tol, x0 + tol], where tol means toler-

ance. All units of distance are measured in Ångströms. In our research, we set x0 = 0,

sd = 0.125, and tol = 1.

Computing time improvement

A challenge for utilizing Rosetta in DAPTEV is the computational demand and time required

to perform docking simulations. For an experiment with population size 800, generation num-

ber 10, and 3 runs, it could take about 4 years if the full SARS-CoV-2 spike protein was used

and docking simulations ran sequentially. The running time can be reduced to roughly one-

third of a year by reducing the protein file to just the RBD. However, this is still too long to

wait for one experiment to finish. As such, multiprocessing was implemented into DAPTEV.

Multiprocessing is a technique to run multiple docking simulations on a computer’s multiple

CPUs at the same time (in parallel). DAPTEV utilized 18 CPUs to effectively reduce comput-

ing time for each docking simulation from roughly 6.5 minutes (also using the reduced pro-

tein) to 1 minute per aptamer sequence.

Experimental results

Data

In our experiments, we used the SARS-CoV-2 spike glycoprotein (closed state, PDB: 6VXX)

[5] as the docking target with an RBD between residues 333 and 524 [2, 4–6, 49]. See Fig 3 for

an illustration. As it shows, the SARS-CoV-2 spike protein’s RBD represents a relatively small

area at the apical face of the protein. Using the entire spike protein in the docking procedure
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would drastically increase the computation time. For example, performing five runs of the

docking process with an RNA base count of 25 on the full SARS-CoV-2 spike protein took

over 98 minutes to finish computing. Thus, one should remove all unnecessary residues from

the target PDB file and save the new PDB structure and the new FASTA sequence. Unneces-

sary residues are those on the target that an RNA could not possibly interact with during the

RBD-docking process due to constraint specification. Once these residues are removed, the

PDB file must be cleaned (renumbered and sequenced).

For the implementation in the docking, the protein is cropped according to the RBD and

renumbered. The chosen RBD residue number is 201 (499 in the original pdb file) and the

associated chain is “A” for the Rosetta constraint. Fig 3 shows a visual of the chosen residue.

The carbon atom “C5” is ubiquitous among all four standard RNA bases [50]. This was the rea-

son behind choosing “C5” as the RNA atom parameter. Doing so required no additional calcu-

lations to be performed and was simple to implement.

While an entire dataset can be created using the random sequence generator, it is best to

augment the dataset with known aptamers. Providing existing aptamer data will add diversity

into the dataset, will expose the model to physical characteristics of existing aptamers, and will

help the model learn these traits. This will also allow DAPTEV to rule out or confirm existing

aptamers as potential solutions to the given problem as it is possible that a known aptamer is

already a good fit for the specified target. As a result, supplying existing aptamer data could

provide DAPTEV with a strong starting position before it begins exploring other options.

We do not allow unfolded RNA secondary structures to be created when performing ran-

dom sequence generation. Associated secondary structures will be restricted to having at least

one set of brackets (base pair connections). It has been observed during the experimental

phase that unfolded secondary structures produce RNA tertiary structures that are more mal-

leable when docking to the target’s RBD. Thus, unfolded sequences can better form to the tar-

get’s RBD topology, producing strong binding scores (binding affinity). However, aptamers

are designed not only for high binding affinity but also for target specificity [1, 8, 15–18, 20].

An unfolded structure would not be considered “specific” to a target because it could

Fig 3. Visualizing the spike protein and the cropped version. Location of the chosen residue (201A, atom C5, dark

blue dot) on the renumbered SARS-CoV-2 spike protein RBD. Note: the full spike protein shown (left) is for reference

but the protein file in DAPTEV is cropped. PDB: 6VXX.

https://doi.org/10.1371/journal.pcbi.1010774.g003
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potentially bind just as well to another target. Furthermore, the Rosetta scoring function for

the docking process includes the quality of the RNA tertiary structure prediction. This means

that the returned score for any sequence in this model may be deceptively “improved” due to

encountering few stability-related penalties during the structure prediction and docking pro-

cess. As a result, the scores produced by unfolded RNA structures are artificially and signifi-

cantly better than their more structurally-complex peers. This can result in the algorithm

producing many unfolded RNA aptamers, which would not be ideal for aptamer drug develop-

ment as the goal is to optimize the aptamer discovery process for a specific target only. While

binding specificity is a challenging requirement to evaluate [51], in this paper we instead assess

fold rate which is a weaker criterion on structural complexity.

After obtaining 849 unique known aptamer sequences [13, 52, 53], only 390 met the condi-

tion of being between the minimum (20) and maximum (40) sequence lengths. Of those 390

aptamer, 344 contained at least one connection (base pairing) in their secondary structures. 44

sequences were too small, 417 sequences were too large and an additional 44 sequences were

unfolded (based on the returned Arnie secondary structure predictions). As 12,000 data points

were required, an additional 11,656 random sequences were generated and scored. These

sequences were restricted to having lengths between 20 and 40 nts, an approximate GC per-

centage of 50%, and containing at least one secondary structure connection.

Hyperparameter setting

In our experiments, the settings of hyperparameters for the data collection process, the evolu-

tionary optimization process, and the structure and training of the VAE are listed in Table 1.

Table 1. DAPTEV hyperparameters used in our experiments.

Initial Data Collection Hyperparameters

Min Seq Length 20 Max Seq Length 40

GC Content 50% Force Folded True

Data Size 12,000

Evolutionary Optimization Hyperparameters

k in Tournament 2 Selection Rate 0.95

Elitism Rate 0.01 Crossover Rate 0.01

Population Size 800 # Generations 10

Repeated Runs 3

Encoder Structure

Embedding Size 87 Hidden Layers [256]

μ Layer [512] log σ Layer [512]

Latent Vector Size 10 Bidirectional True

Decoder Structure

Hidden Layers [512,1024] Output Layer [87]

Bidirectional False

MLP Structure

Hidden Layers [64,32] Output Layer [1]

VAE-Specific Training Hyperparameters

Score Threshold 3,500 Pretrain. Epochs 45

Fine-tun. Epochs 10 Initial Learn. Rate 3e-3

End Learn. Rate 3e-4 Starting β 1e-3

End β 0.5 α 1

https://doi.org/10.1371/journal.pcbi.1010774.t001
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Baselines

The experiment of DAPTEV is accompanied by three additional comparison models: the

DAPTEV model with the starting 344 real aptamer data points replaced by randomly gener-

ated sequences containing at least one base pairing in each secondary structure (DAPTEV-X),

a genetic algorithm on the sequence space (GA), and a “hill climber” algorithm (HC).

DAPTEV-X was provided to illustrate the difference in performance when running the

DAPTEV model with real aptamer data and excluding this data. It is possible that adding only

344 real aptamer data points will be insignificant when compared to the 12,000 total data

points utilized in this experiment. However, it is also possible that adding even a few real apta-

mers will introduce the DAPTEV model to some real-world motifs, structures, and other pat-

terns that the random sequence generator cannot capture. While the main focus of this

research is to create a generative model that simulates and expedites the SELEX process, com-

paring the model’s performance with and without real data can provide scientists with more

information on the effectiveness of the model and how best to utilize it. Nonetheless, it is

important to include these real aptamers in the model such that they can be explored as poten-

tial drug candidates for the given target.

The GA baseline is to simply remove the VAE from DAPTEV, resulting in a GA operating

on the problem space rather than the latent space, to see how their performance differs. It is

worth noting that the VAE and the GA are not restricted to producing only folded structures.

As such, these models do have a possibility of generating unfolded sequences. This is allowed

to more deeply explore the solution landscape and potentially encounter stronger sequences

through the prediction process. For the crossover function in GA, instead of selecting random

indices of parent zpa and parent zpb (latent vectors), parents xpa and xpb will have random indi-

ces of the sequence space selected for crossover. The resulting children will be two new

sequences. For the mutation function in GA, an individual is selected with a small probability.

If selected, a random index of within the sequence is randomly chosen such that the corre-

sponding letter is replaced with a random token from the vocabulary list excluding <BOS>,

<PAD>, and<EOS>.

The HC baseline generates random sequences using our dataset creation script with the

same chosen hyperparameters as the DAPTEV. This process is repeated for the same number

of sequences, generations, and runs as the DAPTEV. The best performing sequences are car-

ried forward into the next generation and all other sequences up to the chosen population size

are discarded. This is known as a “hill climber” because this algorithm employs the simple heu-

ristic of “always take the best” without any actual “learning”.

VAE performance

Fig 4 shows how the VAE’s encoder, MLP, and decoder modules performed per epoch and

over each generation (plotted separately on the same graph). The total loss values are also

shown in this figure. In the first generation, the VAE is trained on the entire dataset of 12,000

sequences. It shows that the KL loss can quickly decrease to a small value after 10 epochs. Each

subsequent generation shows the encoder module continues to improve on the KL loss and

approaches a near zero loss value. The MLP regularization module performs similarly. It

shows that this module is also refining its performance. In fact, the module learned to perfectly

classify the data halfway through generation five. The reconstruction loss graph suggests that,

after the first generation, the decoder is learning how to reproduce the encoded latent vectors

very well. The total loss graph shows the VAE’s overall performance per epoch per generation.

As each model effectively reduced its loss values, it stands to reason that the total loss would

reflect this performance. The right side of Fig 4 shows all the same information, but for the
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DAPTEV-X comparison model. Here, we can see that removing the 344 real aptamer data

points has significantly affected the performance of each module’s ability to learn. The KL loss

started significantly higher, became worse in epoch 1 before beginning to converge, and did

not converge until the third generation. The regularization module performs much worse and

does not converge until the fourth generation. It also starts significantly higher. The recon-

struction module starts in a similar position to the DAPTEV model, but clearly has difficulty

learning as quickly as DAPTEV did. The total loss is still quite similar to the reconstruction

module’s performance, but it is clearly affected by both the regularization and KL modules

more than the DAPTEV model is. Thus, the presence of the real aptamer data points did help

the DAPTEV model learn better than the DAPTEV-X variant.

Fig 4. DAPTEV and DAPTEV-X comparison. KL loss, MLP regularization loss, reconstruction loss, and total loss

values (top to bottom respectively) per epoch for each generation. The left graphs show the VAE performance with the

starting 344 real aptamer data points. The right graphs show the performance of the VAE after replacing the 344 data

points with randomly generated sequences (DAPTEV-X). Note: total loss values include the KL weight factor over

time.

https://doi.org/10.1371/journal.pcbi.1010774.g004
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Comparison in terms of docking score

Table 2 provides details on the overall docking score optimization performance for each

model. Here, it can be seen that both DAPTEV and the GA improved significantly from their

worst scores to their best scores, with GA outperforming DAPTEV. However, in comparison

to the hill climber model, both DAPTEV and GA have performed better. One can also observe

that DAPTEV performed better than DAPTEV-X in every docking score metric.

Fig 5 shows the best, worst, mean, and median performing docking scores produced by

each model per generation. The provided graphs are scaled logarithmically as the hill climber

(“Random” in the legend) experiment performed significantly worse than DAPTEV, DAP-

TEV-X, and GA. It is clear that GA produced better results than DAPTEV in terms of docking

scores. The lowest (best) score produced by DAPTEV was 98 in generation three, whereas GA

obtained its lowest score of 4 in generation nine. DAPTEV’s worst scores fell from 1,470 to

857 whereas GA’s worst score fell from 1,439 to 460. Both the means and medians seem to fol-

low a fairly similar trend and are comparable in score output. Additionally, in every situation,

the DAPTEV model outperformed DAPTEV-X.

It also seemed prudent to consider the best five and worst five mean scores for each experi-

ment. The absolute best and worst can send an extreme message and may not convey the true

performance of each experiment. This is because the absolute best and worst do not include

neighbouring sequence performance. If these models are indeed performing well, then one

would expect to see the sequences near the best and worst improving overall. Fig 6 depicts the

best and worst five score means per generation. Here, one can see that GA is indeed perform-

ing better than DAPTEV, and DAPTEV better than DAPTEV-X, in terms of docking score

statistics across generations.

Furthermore, to have a full view of the binding score distribution for each method, the den-

sity curves of the aptamers’ binding scores in the last generations of DAPTEV, DAPTEV-X,

GA, and HC (i.e. Random) are displayed in Fig 7. From the density plots, one can conclude

that (1) DAPTEV, DAPTEV-X, and GA obtained aptamer sequences with significantly better

binding scores than HC (Mann-Whitney U test: p-value = 7.25e-226, p-value = 3.15e-181, and

p-value = 2.31e-256, respectively), (2) providing real aptamer data positively impacts the DAP-

TEV model’s performance, and (3) GA’s result is better than DAPTEV’s result in terms of

docking score distribution (Mann-Whitney U test, p-value = 8.47e-142).

Comparison in terms of fold rate

Thus far, it has seemed as though GA is the best suited model for this application. However,

there are two goals for this experiment. While the first goal is to optimize the docking scores,

Table 2. The average score performance in the first and last generations for each experiment. Standard deviation provided in brackets. DAPTEV, DAPTEV-X, and GA

were, respectively, run 3 times. HC was simulated based on our original dataset, thus was only run once. DAPTEV-X represents the DAPTEV model with the starting 344

real aptamer data points replaced with random sequences prior to running the simulation.

Docking Score DAPTEV DAPTEV-X GA HC

First Gen Best 118 (14) 128 (0) 100 (41) 18,250

Mean 897 (207) 1032 (7) 781 (337) 23,635

Median 925 (204) 1056 (9) 801 (343) 21,957

Worst 1,256 (297) 1457 (3) 1,098 (489) 60,677

Last Gen Best 72 (31) 90 (29) 32 (24) 128

Mean 578 (49) 603 (18) 292 (58) 1,098

Median 602 (49) 634 (15) 303 (59) 1,122

Worst 796 (77) 844 (21) 390 (86) 1,530

https://doi.org/10.1371/journal.pcbi.1010774.t002
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the second goal is to produce sequences with at least one connection (nucleotide base pairing)

in the secondary structures. In other words, these models were also supposed to learn the key

features of well-performing structural motifs applied to the SARS-CoV-2 spike protein RBD.

Table 3 provides further details on the produced folded sequences. GA performed rather

poorly in this task, only producing 47 (on average) folded structures out of 800 total sequences,

achieving an 6% fold rate. Conversely, DAPTEV produced 272 (on average) folded structures

out of 800 total sequences, achieving a 34% fold rate. While DAPTEV-X produced marginally

more folded RNAs than DAPTEV, combining this knowledge with the previous graphs and

tables indicates that these folded sequences from DAPTEV-X have lower docking scores. This

can be observed by the amount of skew present for DAPTEV-X in Fig 7. Furthermore, each

docking metric in Table 3 also shows DAPTEV outperforming DAPTEV-X. It is important to

note that the HC (Random) algorithm is entirely constructed of folded RNAs as the dataset

creation script does not allow for unfolded structures in its random search.

Fig 5. Best, worst, mean, and median score performance. The best (top-left), worst (bottom-left), mean (top-right),

and median (bottom-right) scores plotted per generation on a logarithmic scale in a computational run for all three

models. Note: DAPTEV-X refers to the DAPTEV model, but with the starting 344 real aptamer data points replaced

with randomly generated sequences.

https://doi.org/10.1371/journal.pcbi.1010774.g005

Fig 6. Best and worst 5 mean scores’ performance. The three models’ 5 best (left) and worst (right) mean scores

plotted per generation on a logarithmic scale. DAPTEV-X, the DAPTEV model with the 344 starting aptamers

replaced with random sequences, is also included here for comparison.

https://doi.org/10.1371/journal.pcbi.1010774.g006

PLOS COMPUTATIONAL BIOLOGY DAPTEV: Deep aptamer evolutionary modelling for COVID-19 drug design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010774 July 5, 2023 16 / 27

https://doi.org/10.1371/journal.pcbi.1010774.g005
https://doi.org/10.1371/journal.pcbi.1010774.g006
https://doi.org/10.1371/journal.pcbi.1010774


In Fig 8a, the best folded complex has a docking score of 128 with two base pairings in its

secondary structure. Interestingly, every model produced the same best performing folded

RNA. The median complex has a score of 653, also with two base pairings, and the worst has a

score of 857 with one base pairing. Fig 8b has a median docking score of 358 with four base

pairings, and the worst score of 460 has three base pairings. Every complex in Fig 8c has folded

RNAs due to the nature of the dataset creation script. The median score is 1,122 with three

base pairings and the worst score is 1,530 with one base pairing.

Fig 7. Density curves of binding scores. Density curves of binding scores for aptamer samples in the last generations

of DAPTEV, GA, and HC (Random). DAPTEV-X refers to the DAPTEV model’s performance when the 344 starting

aptamer data points are replaced with random sequences. The top-left graph shows all scores produced in each model’s

best run. The top-right graph shows all folded complex scores from each model’s best run. The bottom-left shows all

scores from all three runs. The bottom-right shows all folded complex scores from all three runs.

https://doi.org/10.1371/journal.pcbi.1010774.g007

Table 3. Average docking scores and base pairings relating to the folded RNAs in each model. Standard deviation provided in brackets. Note: all values relate only to

the folded RNAs in the last generation.

DAPTEV DAPTEV-X GA HC

Folded 272 (35) 286 (19) 47 (21) 100

Rate (%) 34 (4) 36 (2) 6 (3) 100

Docking Scores Best 128 (0) 128 (0) 128 (0) 128

Mean 631 (57) 674 (12) 315 (62) 1,098

Median 664 (57) 706 (15) 324 (65) 1,122

Worst 796 (77) 844 (21) 388 (88) 1,530

Base Pairs Minimum 1.0 (0) 1.0 (0) 1.0 (0) 1.0

Mean 2.3 (0.1) 2.3 (0) 2.1 (0.1) 2.6

Median 2.0 (0) 2.0 (0) 2.0 (0) 3.0

Maximum 5.0 (0) 5.0 (0) 3.7 (0.5) 7.0

https://doi.org/10.1371/journal.pcbi.1010774.t003
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For a comparison, we found three recently published DNA SARS-CoV-2 spike protein

RBD-targeting aptamers (CoV2-RBD-1C, CoV2–6C3, nCoV-S1-Apt1) (from Table 2 of [54]).

Since our docking module only works for RNAs, we converted them to RNA via a base change

of thymine to uracil, obtained their secondary structures via Arnie, and then ran them through

the Rosetta docking program against our cropped version of the SARS-CoV-2 protein, con-

straining them to the RBD area. Fig 9 depicts the docked complexes. CoV2-RBD-1C is 51 nt

Fig 8. Folded RNAs docked to the SARS-CoV-2 RBD based on Rosetta-returned scores. Associated docking scores

are in brackets next to the classification of each complex.

https://doi.org/10.1371/journal.pcbi.1010774.g008

Fig 9. SARS-CoV-2 spike protein RBD targeting aptamers. CoV2-RBD-1C (left), CoV2–6C3 (middle), and

nCoV-S1-Apt1 (right) docked to the cropped spike protein.

https://doi.org/10.1371/journal.pcbi.1010774.g009
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long, has a docking score of 24,411, and contains 13 base pairs in its secondary structure.

CoV2–6C3 is 46 nt long, has a docking score of 8,786, and contains 9 base pairs. nCoV-

S1-Apt1 is 40 nt long, has a docking score of 20,799, and contains 9 base pairs. These three

existing aptamers have much larger docking scores and more base pairs than the results

obtained by DEPTEV. It is worth noting that the conversion to RNA may negatively affected

the docking scores and increased the numbers of base pairs as RNA aptamers tend to form

more enriched structures than DNA aptamers [54]. To compare these three real existing apta-

mers and the ones designed by DAPTEV in the 3D structure space, we applied the US-align

platform [55] to compared the structure similarity among DAPTEV’s best three aptamers,

among DAPTEV’s median three aptamers, between DAPTEV’s best and the three existing

aptamers, and between DAPTEV’s median and the three existing aptamers. Fig 10 shows the

Fig 10. 3D structure alignments of aptamers. (a) Alignment of the top three aptamers designed by DAPTEV. (b)

Alignment of the median three aptamers designed by DAPTEV. (c) Alignment of the best aptamer designed by

DAPTEV with three existing aptamers targeting the RBD of the SARS-CoV-2 spike protein. (d) Alignment of the

median aptamer designed by DAPTEV with three existing aptamers targeting the RBD of the SARS-CoV-2 spike

protein.

https://doi.org/10.1371/journal.pcbi.1010774.g010

PLOS COMPUTATIONAL BIOLOGY DAPTEV: Deep aptamer evolutionary modelling for COVID-19 drug design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010774 July 5, 2023 19 / 27

https://doi.org/10.1371/journal.pcbi.1010774.g010
https://doi.org/10.1371/journal.pcbi.1010774


comparison results including their associated TM-scores (ranging from 0 to 1 with 1 indicat-

ing an identical structure match, and� 0.45 meaning the RNA structures share the same

global topology). We can see that the top three (and median three) aptamers designed by DAP-

TEV are structurally diverse. Furthermore, DAPTEV’s best and median aptamers do not share

significant topological similarity with the three existing aptamers.

Validation using molecular dynamics

Molecular dynamics (MD) simulations were performed to validate the behaviour and charac-

teristics of the generated aptamers. In particular, 8 aptamers were used in the MD simulations,

comprising of the best (best-128, best-213, best-223), median (median-653, median-656,

median-658), and worst (worst-53159, worst-60678) scoring sequences, where the numeric

postfixes indicate the corresponding binding scores.

In preparation for MD simulation, the production of RNA-protein complex PDB files for

each aptamer were generated using the Schrödinger PyMOL visualization package [56]. After-

wards, system assembly and MD production runs were conducted utilizing GROMACS [57].

Following the completed MD production runs, analysis and visualization were subsequently

made using the in-built GROMACS utilities, alongside the Visual Molecular Dynamics (VMD)

software package [58].

To analyze the dynamics and stability of each RNA-protein complex, the root mean squared
deviation (RMSD) for each aptamer was calculated with least-squares fitting to the protein

backbone (Fig 11a). Measurement of RMSD allows for quantification of structural deviation

over time, with reduced fluctuations and RMSD values potentially indicative of stability. Based

on the MD simulation, apart from best-223 and worst-53159, each aptamer appears to have

equilibrated by 500 ps. After 500 ps, the RMSD values had collectively ranged between 0.63

nm to 2.37 nm, suggesting aptamer stability with regards to low structural movement over

time. Moreover, the standard deviation of each individual aptamer ranges from 0.04 nm to

0.28 nm, potentially indicative of aptamer stability regarding low structural fluctuation over

time.

Furthermore, to observe the structural size and shape of the RNA-protein complex, the

radius of gyration (Rg) was subsequently obtained for each RNA-protein complex following

MD simulation (Fig 11b). Calculation of Rg values may be utilized in quantifying changes in

structural compactness and stability of the RNA-protein complex over time. Based on the

observed values after 500 ps, excluding worst-53159, Rg for each of the aptamer complexes

remained stable with standard deviations of individual RNA-protein complex ranging between

0.008 nm to 0.025 nm. Therefore, in addition to the RMSD values, the Rd values may further

Fig 11. Molecular dynamics simulation results. (a) Root mean squared deviation (RMSD) of RNA aptamers, and (b)

radius of gyration (Rg) for each RNA aptamer-protein complex. RMSD of the RNA aptamers was obtained after least

square fit to the protein backbone.

https://doi.org/10.1371/journal.pcbi.1010774.g011
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indicate the stability of the generated aptamers based on low fluctuations in variation and

compactness respectively. For more information on MD utilization, please see the S1 File sup-

plementary document.

Novelty and diversity of generated aptamers

Lastly, two additional metrics were calculated to assess model performance. These metrics,

expressed as ratios, include novelty and diversity. Novelty is calculated as the number of gener-

ated sequences that do not exist in the initial training data versus the total number of generated

sequences in a generation (the “population size”). Diversity is calculated as the number of gen-

erated unique sequences versus the total number of generated sequences in a generation. The

novelty values calculated for DAPTEV and GA’s last generations are 0.8475 and 0.9962 respec-

tively. Similarly, the diversity values were 0.8487 and 0.9937 respectively. Hence, both DAP-

TEV and GA show good novelty and diversity, and GA seems always to produce novel and

unique sequences.

Discussion and conclusion

Observations

While it may seem that GA performed the best in terms of docking scores, this is not actually

the case if the aptamer structures are considered as well. As previously mentioned, the docking

score can be artificially improved by producing an unfolded RNA secondary structure which,

in turn, will incur fewer penalties during the RNA tertiary structure prediction and the dock-

ing simulation. If a model prioritizes only unconnected structures, it stands to reason that it

would seem to perform better when only considering score output. However, the expectation

of this research is three-fold. (1) The docking scores has to be optimized. This was accom-

plished best by GA as substantiated by the returned scores and statistical analysis. (2) Some

learning of well-performing structural motifs in the provided RNA secondary structures is

required. Producing unfolded RNAs is not overly helpful when attempting to develop apta-

mer-based drugs. Even if this is a desirable trait, we expect to produce more complex struc-

tures from intelligent models and not be forced to sacrifice these features. Based on the

percentage of folded structures in the last generation, it is clear that DAPTEV performs signifi-

cantly better than GA. This points to the conclusion that GA solely prioritized the optimiza-

tion of scores to the detriment of structural complexity. These results also indicate that

DAPTEV is indeed able to learn structural motif patterns from the training data. (3) The deep

learning model has to possess the ability to be queried for new, well-performing, structurally

connected RNAs to explore aptamer-based drug discovery. This point implies the persistence

of a trained model and a way to request new data. A GA must be trained every time new

sequences are required. A VAE, conversely, can have its current state of learning saved and

reloaded nearly immediately. Furthermore, new sequences can be obtained immediately. With

everything mentioned above, one could posit that DAPTEV performs admirably in all three

requirements. Additionally, every score produced in the last generation of DAPTEV was

below the score threshold of 3,500, which was the docking score limit set initially to tell the

VAE that a sequence was performing well. DAPTEV was able to learn structural features and

other characteristics that make RNA perform well when docking to a specific target. Finally,

the model can be saved and queried for new sequences that should perform well at docking to

a specific target’s RBD while also maintaining some structural complexity. In contrast, GA and

the hill climber algorithm must both be retrained every time, GA prioritized score optimiza-

tion at the cost of motif preservation, and the hill climber is likely to yield poor results due to

premature convergence at a local minimum.
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Limitations

There are some limitations of this research. Firstly, DAPTEV did not have enough starting

aptamer data in the initial dataset. Only 849 unique, known, aptamer sequences were found

during the literature review stage, but that was narrowed down further to only 344 due to

parameter and computation time constraints.

Secondly, While this research was mainly focused on RNAs, some other research has

worked on DNAs. It would have been preferable to include DNAs in the capabilities of this

model. At present our RNA-protein docking module we are using may not be directly used for

DNA aptamers because, in addition to the well-known difference nucleobases (U versus T),

the sugars in RNAs and DNAs are also different. Due to these differences, RNA aptamers in

general have more intrinsic structures than DNA aptamers. In our future work, we will

develop an efficient DNA-protein docking module.

The randomly generated sequences must have at least one connection. However, more con-

trol over the secondary structure is preferred. The specification of connection amounts or a

range of acceptable connections would be beneficial. Furthermore, the DAPTEV model is

affected by limited accuracy from the structure/energy prediction process of both secondary

and tertiary structures.

Currently, DAPTEV assumes that the latent space follows a Gaussian distribution. This dis-

tribution may not be robust enough to capture the complexity of the task. Testing different dis-

tributions could have yielded further insight into the VAE’s ability to operate in this problem

space.

Several in silico designed aptamers were validated using MD simulation in this study. Even

though MD is a convenient approach to gain insights into the interactions between aptamers

and the target protein, it is limited with a simplified molecular environment model. Ideally, an

experimental protocol should be established to synthesize these aptamers and validate their

interactions with the spike protein.

Conclusion

The goal of this research was to see if a deep generative model would be efficient at accelerating

the RNA aptamer drug development process. While this research was applied to the SARS-

CoV-2 spike protein, careful consideration was placed into the universal design for nearly any

protein target. With regard to target affinity, one could conclude that both DAPTEV and GA

performed well at this task. While the GA did outperform DAPTEV in this regard, the differ-

ence between these two models was not very large. Especially when considering that the score

threshold was set to 3,500 and DAPTEV was still able to produce scores significantly lower

than that. For fold rate, DAPTEV certainly shows some promising results. This is especially

true when compared to GA. DAPTEV had an output with 34% of its produced sequences con-

taining at least one connection in the secondary structure. This number could have been even

higher if more vocabulary combinations had been implemented and some additional parame-

ter tests were run. Conversely, GA only produced a 6% fold rate. This indicates that the VAE

was indeed able to learn some structural features of the data and the MLP regularizer per-

formed well at its task. The code for this model is accessible at https://github.com/candress/

DAPTEV_Model.

Future work

Several additional features and considerations could improve this research. (1) One such con-

sideration is the fact that DAPTEV’s performance is improved when enriching the data with

real aptamers. It would have been preferable to add more to the starting dataset.
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Unfortunately, at the time of searching, it seemed most of the aptamer datasets and databases

were taken down. (2) Currently, this model only accepts RNA data. However, DNA aptamers

are more common in literature. It would be beneficial to include the capability to work with

DNA data. (3) Allowing the user to perform tertiary structure prediction separately, or to pro-

vide pre-calculated tertiary structure may be beneficial if a prefold-then-fold-and-dock-then-
refinement strategy is implemented in the future. (4) Also, statically choosing the protein atom

of CA and the RNA atom of C5 may be negatively affecting the performance as there is no

determination of which atoms are more likely to interact. Instead, the interactions between

each atom present in the protein residue and the possible RNA bases could have been pre-cal-

culated. (5) It would be beneficial to increase the vocabulary combination amount. This DAP-

TEV only allows for combinations up to three characters long to reduce computation time.

However, a vocabulary length of size three impedes the model’s ability to learn more complex

structural motifs. (6) Some additional considerations and implementations could be the follow-

ing: a learnable KL/reconstruction loss balancing component could be implemented so the

model regulates the weights of the KL and the reconstruction loss [59]. Transformer is another

versatile deep learning model that relies entirely on self-attention and is well-suited for design

tasks [60], but requires more data to train. Given more data available in the future, it would be

interesting to switch out the VAE with a Transformer to see how the results are affected. (7) The

RNA-protein binding affinity score is the objective in our optimization process. In future devel-

opment, other objectives, such as structural complexity and specificity via counter docking, will

be considered. (8) It is difficult to make conclusive observations at this moment due to the few

number of experimental runs. Ideally, at least 30 runs per experiment per model should be per-

formed. However, this would take an inordinate amount of time given the current computing

restrictions (Rosetta RNA-protein docking) for this research. Only way this would be feasible is

if one had access to a cluster to distribute the workload. Another future option is to develop a

GPU-empowered aptamer docking module which is expected to significantly improve the scal-

ability of this research. (9) Our discovered new aptamers with promising binding affinity and

folding rate to the SARS-CoV-2 spike protein can be tested in wet-lab experiments.

Supporting information

S1 File. Molecular dynamics methodology. More information regarding the method, consid-

erations, and findings during the molecular dynamic simulations.

(PDF)
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