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Prefrontal cortex state representations 
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Abstract People learn adaptively from feedback, but the rate of such learning differs drastically 
across individuals and contexts. Here, we examine whether this variability reflects differences in what 
is learned. Leveraging a neurocomputational approach that merges fMRI and an iterative reward 
learning task, we link the specificity of credit assignment—how well people are able to appropriately 
attribute outcomes to their causes—to the precision of neural codes in the prefrontal cortex (PFC). 
Participants credit task-relevant cues more precisely in social compared vto nonsocial contexts, a 
process that is mediated by high-fidelity (i.e., distinct and consistent) state representations in the 
PFC. Specifically, the medial PFC and orbitofrontal cortex work in concert to match the neural codes 
from feedback to those at choice, and the strength of these common neural codes predicts credit 
assignment precision. Together this work provides a window into how neural representations drive 
adaptive learning.

Editor's evaluation
This study provides convincing evidence that the fidelity of neural representations of task states is 
associated with assigning credit to these states. The topic is timely and the results are important for 
understanding the neural mechanisms of reinforcement learning. The manuscript will be highly rele-
vant for readers interested in cognitive and decision neuroscience, as well as reinforcement learning.

Introduction
Imagine that you are applying for a job and receive varying feedback on your ‘pitch’ from your inter-
viewers. Which aspects of your pitch bear repeating for future interviews when similar behaviors 
across different settings produce varying outcomes? This example encapsulates the inherent difficulty 
of accurately linking outcomes to specific actions, particularly when the causal structure of the world 
is unknown and decision-irrelevant outcomes occur in close temporal proximity. In such scenarios, 
humans and animals are thought to group action-outcome contingencies together based on causal 
cues that reflect states in the environment, allowing outcomes to be selectively linked to specific 
states (Collins and Frank, 2013; Gershman et al., 2015). However, because learners have yet to 
discover the underlying generative structure of outcomes, and because learning and memory systems 
are fallible, outcomes can be misattributed and spread to irrelevant states—a challenge known as the 
structural credit assignment problem (Hamid et al., 2021; Sutton, 1984). In these cases, information 
gets smeared in memory (Vaidya and Fellows, 2016) which can result in overgeneralization.

While conventional reinforcement learning (RL) algorithms typically assume perfect credit attri-
bution for each outcome observed, in reality, human learners run the gamut of how well they are 
able to actually assign credit. Take for example, learning about how honest each interviewer is in our 
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example. On one end of the spectrum, an individual may be able to link discrete outcomes to each 
interviewer, thus learning specific value associations at the person (stimulus) level. On the other side of 
the spectrum, a learner may average value across all interviewers, instead attributing outcomes to one 
global state. These scenarios represent discrete learning profiles that can substantially shape behavior 
beyond the influence of classic learning parameters, such as the learning rate or the magnitude of 
prediction errors (PE). Little is currently known about how states are represented in the human brain 
during learning (e.g. at the stimulus level or generalized across cues), or how credit is then assigned to 
these specific states. Thus, an open question is how does the human brain represent and successfully 
bind observed outcomes to the appropriate causal state to solve the credit assignment problem?

Non-human animal research hints that the prefrontal cortex (PFC) might play an integral role in 
credit assignment by binding state and action-value representations (Asaad et  al., 2017), which 
could then be reinforced through midbrain dopaminergic signals to selectively gate reward attribu-
tion (O’Reilly and Frank, 2006). Tracking state-contingent outcome history would also be critical to 
properly assigning credit, which is believed to be governed by the lateral orbitofrontal cortex (lOFC; 
Chau et al., 2015; Jocham et al., 2016; Walton et al., 2010). Indeed, humans with lesions in the 
lOFC exhibit reduced state-contingent reward learning (Noonan et al., 2017) and display a greater 
tendency to misattribute rewards to irrelevant causal factors (Vaidya and Fellows, 2016). More recent 
work shows that the medial PFC and lOFC jointly track latent states (Schuck et al., 2016) by lever-
aging surprise signals (Nassar et al., 2019), allowing for credit assignment to be performed for both 
experienced (Akaishi et al., 2016) and unobserved outcomes (Boorman et al., 2021; Witkowski 
et al., 2022).

While prior work across species suggests that the PFC is involved in representing task states, it 
is not known whether the configuration of neural patterns play a role in credit assignment success. 
For example, unlike an eligibility trace, it is possible that learners actively represent task-relevant 
states during learning, enabling selective binding of outcomes to states in memory. Allowing tempo-
rally disparate actions and outcomes to be neurally bound to the relevant state representation likely 
supports increased discrimination between cue-specific decision policies. If this were the case, the 
precision of credit assignment may be contingent on the format and fidelity of state representations 
in the PFC (i.e. the degree of distinctiveness of each representation). Thus, to effectively guide credit 
assignment, a distinct neural code representing the state when feedback is delivered should then 
be evoked during a subsequent related choice. Failures to properly encode a state during choice 
or feedback should therefore result in increased misattribution and credit spreading (i.e. attributing 
outcomes more diffusely to irrelevant states).

In the current study, we leverage a computational neuroimaging framework by combining RL 
models with representational similarity analysis (RSA) to investigate whether distinct forms of credit 
assignment can be distinguished from neural patterns in the PFC. Our modeling framework allows us 
to estimate the precision of credit assignment from behavior, while RSA allows us to directly measure 
the content and fidelity of evoked neural state representations during choice and feedback. We further 
link the fidelity of these neural representations to how well an individual assigns credit across different 
learning contexts, allowing us to identify how credit assignment mechanisms are tailored to a partic-
ular situation. For example, during social exchanges humans are often able to exploit social feedback 
to quickly learn the value of social partners (Lamba et al., 2020; van Baar et al., 2022), which suggests 
that credit may be assigned selectively to specific individuals. In contrast, when learning in less familiar 
environments with an unknown causal structure (e.g. gambling with slot machines) learners may assign 
credit less precisely by spreading credit across states. Prior work also suggests that humans differ in 
how they strategically use feedback when learning about social partners compared to learning about 
reward-matched bandits (Chang et al., 2010; Lamba et al., 2020), providing an ideal empirical setup 
to probe for differences and commonalities in credit assignment precision across contexts.

Participants played an iterative, multiplayer social learning task which requires participants to 
distinguish between trustworthy and untrustworthy partners when making strategic monetary deci-
sions, as well as a matched nonsocial gambling task with one arm bandits. We developed a credit 
assignment RL algorithm to capture the degree to which outcomes are precisely attributed to specific 
states at the stimulus level (i.e. to specific partners and bandits) or more generally to a single task state 
(i.e. across partners and bandits) through credit spreading. We find that different learning profiles are 
due to how precisely individuals assign credit, with some participants consistently spreading credit, 
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particularly when gambling and after a negative outcome. Multivariate neural patterns in prefrontal 
regions, including the lOFC and mPFC, encode state representations, but do so less precisely in 
those who spread credit. Indeed, high-fidelity state representations were associated with greater task 
earnings and more precise credit assignment—an effect that could not be explained by learning rate 
or the strength of the PE. Precise credit assignment is achieved through neural state representations 
sharing a common geometry across choice and feedback, signifying a persistent neural code indexing 
a stimulus’ identity.

Results
Humans are faster to implement payoff maximizing strategies in the 
social domain
Participants (N=28) completed 60 trials of the Trust Game and a matched bandit task (order counter-
balanced), while undergoing functional neuroimaging (fMRI). Participants made a series of monetary 
decisions with partners and bandits that varied in their reward rate (Figure 1, A to D) and could opti-
mize their earnings by investing the full $10 with the high return stimulus and investing $0 with the low 
return stimulus. Despite being perfectly matched across social and nonsocial conditions, participants 
invested more money with the high return social partner compared to the bandit (mean social invest-
ment: $7.12; mean bandit investment: $6.43; t=–3.57, p<0.001; Figure 2A) and less money with the 
low return partner vs. bandit (mean social investment: $1.71; mean bandit investment: $2.71; t=5.69, 
p<0.001). No differences in mean investments were observed for the neutral or random stimuli across 
tasks (all ps >0.1).

Investments are influenced by history of prior outcomes
To shed light on the credit assignment problem, we used a series of time-lagged regression models 
to examine how participants use relevant and irrelevant outcomes to guide learning. We paired each 
stimulus with its previous outcome and modeled the effect of three stimulus-matched (i.e. relevant) 
prior interactions on current investments (Figure 1D). The most recently experienced relevant outcome 
exerted the largest effect on investments (significant difference between slopes at t-1 vs. t-2: t=–4.98, 
p<0.001; Figure 2B). We also observed a stronger effect of previous outcomes on investments with 
partners compared to bandits (a significant effect at t-1 in which slopes were larger for the social vs. 
nonsocial task: t=3.19, p=0.004; Figure 2B). To investigate whether temporally close but irrelevant 
outcome history biased decisions, we yoked each investment to the immediately preceding outcome, 
irrespective of its identity. These outcomes should not inform choices on the current trial given the 
generative task structure. We observed that recent irrelevant outcomes (mean slope from t-1 through 
t-3) influenced decisions to gamble with bandits (t=1.83, p=0.039; Figure 2B), whereas recent irrel-
evant outcomes were anticorrelated with choices to trust partners (t=–2.73, p=0.011). These task 
differences in using irrelevant prior outcomes to guide choices were significant (t=3.42, p<0.001; 
Figure 2B). We also found a valence-dependent effect of outcome history on learning. Across tasks, 
prior relevant outcomes that were rewarding exerted a stronger influence on choices compared to 
losses (significant difference between slopes for gains versus losses; t=–4.27, p<0.001; Figure 2C). In 
contrast, immediately preceding irrelevant losses disproportionately impacted decisions compared to 
gains (t=2.21, p=0.029; Figure 2C), indicating that outcome misattribution is, in part, driven by losses. 
Put simply, learning from relevant outcomes was largely driven by gains, whereas outcome misattribu-
tion stemmed disproportionately from losses.

Modeling credit assignment precision captures learning asymmetries
Given that we observed asymmetrical learning profiles across contexts, we probed whether diver-
gent learning profiles were due to differences in credit assignment precision. We implemented a 
series of RL models using a continuous choice, logistic function algorithm with valence-dependent 
learning rates (V-LR; see Methods). In particular, we developed a credit assignment model which 
evaluates credit assignment precision along a continuum of perfect credit assignment (i.e. outcomes 
are correctly attributed to specific partner/bandit stimuli) to complete credit spreading across stimuli 
(i.e. outcomes are incorrectly attributed to a global state representing all partners/bandits). A credit 
assignment parameter (CA) evaluated the extent to which each PE selectively updates the expected 
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Figure 1. Experimental design and trial structure. (A) Trust Game and matched bandit task. Participants played 15 trials with each partner/bandit while 
in the scanner. On each trial, participants were paired with one of the four stimuli (partner/bandit) and given $10 to invest using a 5-button response 
box to indicate their investment in $2.50 increments. The monetary investment was then quadrupled, and partners/bandits returned anywhere from 
0% to 50% of the money received, allowing for the possibility to double one’s earnings, lose the full investment, or any outcome in between. (B) Task 
reward structure. Stimuli were randomly assigned to respond with fixed reward rates generated from one of four outcome distributions. Each stimulus 
deterministically returned less than the participant initially invested (low), more (high), an amount close to the initial investment (neutral), or a random 

Figure 1 continued on next page
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value of the relevant stimulus or updates the expected value of all stimuli concurrently (Figure 3A). 
Our model set included: (1) a baseline RL model that uses the Rescorla-Wagner update rule (see 
Methods), (2) a credit assignment model that includes a CA parameter controlling the degree to which 
outcomes affect the expected value of irrelevant states (V-LR, CA model), (3) a two parameter credit 
assignment model in which CA parameters were fit separately for positive versus negative PEs (V-LR, 
V-CA model), and (4) a model in which learned values decay gradually on each trial, such that errors 
were modeled through forgetting as opposed to a credit spreading mechanism (V-LR, Decay model). 
Behavior was best fit by the credit assignment model with valenced CA parameters (V-LR, V-CA) in 
both the trust and bandit task (see Methods). Consistent with the behavioral analyses above, our 
model reveals that people assigned credit more precisely to partners, and spread credit more diffusely 
across bandits (trust task mean CA estimate = 0.74; bandit task mean CA estimate = 0.54; F=10.67, 
p=0.002; Figure 3B)—an effect that was heightened for gains compared to losses (F=4.72, p=0.033; 
Figure 3C). Thus, our best fitting model revealed that different learning profiles across tasks were 
linked to credit assignment precision.

amount. (C) Task event sequence. Participants were given up to 3 s to indicate their choice, after which they experienced a jittered inter-stimulus 
delay. The returned investment was then displayed on the screen for a fixed 2 s duration. (D) Within-task stimulus presentation. Trials were randomly 
interleaved such that interactions with each stimulus could occur anywhere from 1 to 15 trials apart, allowing us to probe learning effects from relevant 
versus temporally adjacent irrelevant outcomes.

Figure 1 continued

Figure 2. Behavioral differences across social and bandit tasks. (A) Learning curves from social and bandit tasks. Predicted investments over trials 
computed from fixed-effects regression model show faster learning in the social task. Shaded gray regions correspond to the standard error of the 
mean of the regression line. (B) Effect of relevant and irrelevant outcome history on choice. Model terms show increased learning from the most 
recent relevant outcome in the social task and an increased effect of irrelevant outcomes on investments in the bandit task. The box-length denotes 
the standard error of the mean, and the black line corresponds to the mean beta estimate for the lag term. (C) Effect of valence-dependent outcome 
history on choices. Relevant prior gains compared to losses exerted a greater influence on investments. (D) Correlation matrix of relevant and irrelevant 
outcomes on investments for a prototypical participant. The participant shows a strong pattern of learning exclusively from relevant outcomes in the 
social task but applies irrelevant outcomes to learning in the bandit task. Asterisks (*,**,***) denote p<0.05, p<0.01, p<0.001, respectively.

https://doi.org/10.7554/eLife.84888
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Credit assignment predicts the fidelity of state representation during 
choice
Identifying and characterizing the neural circuitry involved in state representation can further clarify 
how credit assignment is implemented. We test the prediction that credit assignment requires a high 
fidelity (i.e. distinct and consistent) neural representation of a stimulus’ identity during choice, which 

Figure 3. Illustration of credit assignment model and task differences in credit assignment precision. (A) Schematic visualization of credit assignment 
and credit spreading mechanisms. In a perfect credit assignment scenario (left side), PEs only update the expected value of the current state. A 
hypothetical credit matrix shows how credit assignment may impact the discriminability between states. Credit assignment values closer to 1 (perfect 
credit assignment) only use PEs from the relevant state to update expected values, therefore allowing for increased differentiation in the state space. 
Conversely, in a credit-spreading scenario illustrated with a hypothetical matrix (right side), PEs are used to update the expected value of current and 
irrelevant states, as if stimuli were clustered into a single causal state. This would result in less differentiation between states and increased confusability. 
(B) Credit assignment parameter estimates from the V-LR, V-CA model across social and bandit tasks. Mean CA fits show more precise credit assignment 
in the social task and increased spreading in the bandit task. Purple dots show individual parameter estimates and error bars denote the standard error 
of the mean. (C) Valenced credit assignment parameter estimates from the V-LR, V-CA model. Parameter fits from our valenced CA model show more 
precise credit assignment for gains (CA-pos) and more spreading for losses (CA-neg). Error bars show the standard error of the mean computed from a 
sample size of N = 28.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Continuous choice, logistic RL algorithm.

Figure supplement 2. Model performance and comparison.

Figure supplement 3. Model identifiability.

Figure supplement 4. MLE predictive check.

Figure supplement 5. Parameter recovery.
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should in theory support retrieval of the state-specific decision policy (NB: while we use state repre-
sentation to describe the process, precise credit assignment is observed when a specific stimulus’ 
identity is associated with a discrete outcome). Using a whole brain searchlight, we extracted single 
trial coefficients of the neural pattern on each trial and for each stimulus to create a neural represen-
tational dissimilarity matrix (RDM), separately for choice and feedback (Figure 4A; see Methods). We 
then computed the correlation distance between each searchlight RDM and our identity hypothesis 
matrix, controlling for additional regressors in regions of interest (ROIs; separate ROIs constructed 
from choice and feedback searchlights) that survived correction for multiple comparisons (Figure 4B; 
see Methods). This enabled us to evaluate the degree to which neural patterns differed across stim-
ulus’ identities, while also measuring the extent to which neural patterns were consistent across trials, 
thus serving as a high-fidelity ‘stamp’ of the stimulus identity for credit assignment.

Neural patterns in a constellation of brain regions including the mPFC, lOFC, and mOFC met basic 
criteria for providing state representations (statistically significant beta coefficients of the identity 
RDM) at the time of choice (Figure 5B; see Supplementary file 1a for ROI coordinates). Within these 
regions, stimulus’ identity was more strongly encoded in the trust vs. bandit task across ROIs (trust 
task mean β=0.019; bandit task mean β=0.012; t=–3.64, p<0.001; Figure 5B), consistent with the find-
ings from our model. There was also a positive relationship between an individual’s mean CA param-
eter estimates and the strength of the stimulus’ identity representation in the PFC ROIs across both 

Figure 4. Representational similarity analysis (RSA) captures the format of state representations. (A) Conceptual depiction of RSA methods with whole 
brain searchlight. Multivoxel patterns were extracted for all trials and reorganized into a correlation distance (1 r) matrix with trials nested within stimulus 
identities for each task. State representation was evaluated separately for choice and feedback. (B) Regression approach estimating state representation 
in neural ROIs, controlling for expected value (V) and trial autocorrelation.

https://doi.org/10.7554/eLife.84888
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Figure 5. Social and bandit task state representations during choice and feedback. (A) Task-summed group-level t-map of state representation during 
choice and feedback; image is thresholded at the cluster-level (PFWE <.05) and at peak level (P<.0001). (B) Beta estimates of state representation across 
ROIs identified from choice phase searchlight, broken down by social and bandit tasks. RSA results indicate stronger state representation in the social 
task. Individual asterisks denote a significant within-subject effect for the specified ROI. (C) Predictive association between individual CA parameter 

Figure 5 continued on next page
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tasks (t=3.38, p<0.001; Figure 5C) which did not depend on outcome valence (CA positive: t=3.26, 
p=0.0014; CA negative: t=2.50, p=0.014)—revealing that individuals who assigned credit more selec-
tively to the relevant stimulus’ identity also had more consistent and distinct neural representations of 
it. Furthermore, the more money earned in the task, the more discriminable these stimulus representa-
tions were in the PFC ROIs in both tasks (t=4.14, p<.001). These results accord with the prediction that 
the fidelity of state representations in the PFC during choice control the precision of credit assignment 
by supporting increased differentiation between state-specific decision policies.

Reward enhances encoding of state representations during feedback
At the time of feedback, a stimulus’ identity must be sufficiently encoded so that outcomes can 
be linked to the appropriate prior action. Using our searchlight approach, we identified a suite of 
regions providing state representations during feedback (Figure  5D; see Supplementary file 1b 
for ROI coordinates). We observed stronger identity representations in the trust task in the mPFC 
(t=–2.41, p=0.023; the fidelity of state representations did not differ across tasks in any additional 
ROIs). We then examined whether positive vs. negative PEs differentially modulate the strength of 
state encoding during feedback. We estimated the strength of stimulus’ identity encoding within our 
prefrontal ROIs separately for positive and negative PE trials for each participant (Methods). Across 
tasks we observed stronger identity encoding during positive vs. negative PE trials in the mPFC (main 
effect of valence: F=4.33, p=0.039; Figure 5E) and lOFC (F=5.98, p=0.017), an effect that was signifi-
cantly greater in the trust compared to bandit task (t=–2.71, p=0.008). Together, this suggests that 
valence asymmetries in credit assignment precision (i.e. more precise credit assignment for rewards, 
and increased credit spreading for losses) emerge because reward enhances the strength of state 
representations in the PFC, especially in social contexts.

Successful credit assignment hinges on shared representational 
geometry between choice and feedback
How is information from choice and feedback integrated to support learning? We consider the possi-
bility that credit assignment is achieved by neurally binding a specific outcome to certain stimuli. 
One way in which this may happen is by matching the identity representations from the last relevant 
outcome to the next relevant choice. Given the observed involvement of the mPFC and lOFC, these 
brain regions are likely candidates for being able to match neural codes across time. The idea is 
that greater alignment of neural representations across choice and feedback can preserve a common 
neural code of the stimulus’ identity, supporting increased credit assignment precision. To examine 
the shared representational structure between these timepoints and the extent to which increased 
alignment reflects a common identity representation, we identified conjunction ROIs from voxels that 
survived permutation testing in both the choice and feedback searchlight analyses (Figure 6A, B). 
We then computed the degree of neural pattern similarity between the representations at choice and 
feedback in these PFC ROIs, and evaluated the degree to which the shared geometry preserves infor-
mation about the stimulus’ identity (Methods). Across both tasks, we observed a significant positive 
relationship between an individual’s credit assignment precision (CA parameters) and the consistency 
of their representations of the stimulus across both timepoints in the mPFC and lOFC (pooled esti-
mate across ROIs: t=2.17, p=0.033; Figure 6C; see Supplementary file 1c for ROI coordinates)—an 
effect that was selectively enhanced for gains but not losses (t=3.48, p<0.001). Thus, the precision of 
credit assignment, particularly for rewarding outcomes, was associated with increased neural binding 
between feedback and choice—a process supported by shared geometry of stimulus’ representation 
across distinct phases of learning.

estimates and the fidelity of state representation in mPFC, lOFC, and mOFC during choice. Across both social and bandit tasks, credit assignment 
predicts the strength of state representation in the PFC. *** Denotes the main effect of CA on the pooled estimate of state representation across ROIs 
(p<0.001). (D) State representation estimates in ROIs during feedback. Task differences only emerge in the mPFC. (E) Effect of PE valence on state 
encoding in the PFC during feedback. Across social and bandit tasks, positively valenced PEs were associated with higher-fidelity state representations 
in the mPFC and lOFC. Pooling across mPFC and lOFC ROIs, state encoding was greater in the social compared to bandit task on positive PE trials. 
Error bars show the standard error of the mean computed from a sample size of N = 28.

Figure 5 continued

https://doi.org/10.7554/eLife.84888
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The strength of learning signals cannot explain credit assignment 
precision
Given that we observed individual differences in credit assignment precision across tasks, we tested 
whether these differences could be explained by the strength of PE signaling. Our results could be 
simply explained by the magnitude of PE signaling in the social task. To rule this out, we conducted 
a whole brain parametric modulation to test the relationship between trial level PEs from our V-LR, 
V-CA model and changes in the amplitude of the BOLD signal (see Methods). A task-summed t-map 
revealed significant clusters in the ventral striatum and ventral medial prefrontal cortex (vmPFC; 
corrected for multiple comparisons; Figure  7A; see Supplementary file 1d for ROI coordinates). 
Critically, the strength of PE signaling did not differ across the trust and bandit tasks in these regions 
(all ps >0.1; Figure 7B), even at a lowered threshold (p<0.001 uncorrected). We also wanted to rule 

Figure 6. Cross-timepoint representational similarity analysis (RSA). (A) Conceptual depiction of cross-timepoint RSA. For each participant, cross-
timepoint matrices were constructed as the correlation distance between even and odd trial neural RDMs (Methods). Cross-timepoint cells from the 
matrix were selected and then correlated with a cross-timepoint identity matrix to estimate the degree to which the shared structure within the neural 
patterns across choice and feedback reflected a stimulus’ identity. (B) Task-summed group-level t-maps displaying results of conjunction contrasts 
(Methods). Group-level image is thresholded at the cluster-level (PFWE <.05) and at peak level (p<0.0001). (C) Predictive association between individual 
credit assignment estimates and the consistency of identity representational structure in mPFC and lOFC (i.e., conjunction ROIs) across choice and 
feedback. * Denotes the effect of CA on the pooled estimate of shared state representation across ROIs (p<0.05).

https://doi.org/10.7554/eLife.84888
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out the possibility that CA precision might simply be attributed to learning rate (LR) differences. 
We interrogated whether the influence of PEs on the expected value of each state predicted the 
format of stimulus representations in the PFC, either at the time of choice or in the cross-timepoint 
representation. The effect of CA on stimulus representation was significant even when controlling for 
the learning rate (choice: t=3.31, p<0.0012, cross-timepoint: t=2.11, p=0.036; both LR and CA were 
included as additive terms predicting choice and cross-timepoint beta coefficients for state represen-
tation), and LR was not significant in either model (all ps >0.09). Together, these findings support the 
claim that it is not the overall magnitude of learning signals that shape the specificity of learning, but 
rather, how these learning signals are attributed to specific states through credit assignment.

Discussion
Adaptable learning systems—whether human, animal, or artificial—must be able to exploit causal 
structure by differentiating between spatial and temporal cues, allowing learners to balance behav-
ioral flexibility with specificity (Asaad et al., 2017; Soto et al., 2014; Tenenbaum et al., 2011; Walton 
et al., 2010). Structural credit assignment in particular, enables learners to integrate contingencies into 
a set of learned decision policies from predictive features and cues in the environment (O’Reilly and 
Frank, 2006; Sutton, 1984). Here we show how humans achieve successful structural credit assign-
ment. First, people are more precise when attributing outcomes to other people than they are to slot 
machines, an effect that is enhanced for gains compared to losses. Second, the PFC assigns credit 
by matching neural codes across time. State representations must be initially sufficiently encoded 
during feedback, a process that is more robustly observed in the gain, compared to loss, domain. 
High fidelity state representations during subsequent choice also support increased state discrimina-
tion and improved learning specificity. The critical lynchpin for how precisely credit is assigned in the 
PFC is the degree to which an individual exhibits a shared neural geometry in state representations 
between feedback and choice. Put simply, the PFC serves as a hub for credit assignment by lever-
aging reward signals and organizing state representations into a shared neural code, allowing for the 
efficient transfer of credit from feedback to subsequent choice. This functional coordination between 
distinct phases of learning aligns with prior work demonstrating that lOFC and mPFC track task states 
(Schuck et al., 2016), particularly those that govern the structure of rewards, so that humans can 

Figure 7. Strength of PE signaling across social and bandit tasks using parametric modulation analysis. (A) Task-summed group-level t-map displaying 
the parametric modulation effect of PEs on the BOLD signal (Methods). Significant clusters were observed in the ventral striatum and vmPFC. Group-
level image is thresholded at the cluster-level (PFWE <.05). (B) Despite observed learning differences in the two tasks, the magnitude of PE modulation 
did not differ between social and bandit tasks.
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respond flexibly and adaptively to shifting environmental demands (Jocham et  al., 2016; Nassar 
et al., 2019; Witkowski et al., 2022).

We further observed that an outcome’s valence asymmetrically shapes the specificity of assigning 
credit. More precise outcome attribution was observed for gains while increased credit spreading was 
observed for losses. Although past studies offer insight into credit assignment for rewards (Asaad 
et al., 2017; Hamid et al., 2021; Jocham et al., 2016; Walton et al., 2010), no studies that we are 
aware of have documented asymmetrical effects of PE valence driving the precision of credit assign-
ment. Thus, these results offer an interesting parallel to existing stimulus generalization theories. Prior 
work using classical conditioning paradigms, in which a neutral stimulus is paired with an aversive 
outcome, shows that the conditioned response is also evoked by novel stimuli (Dunsmoor and Paz, 
2015; Hull, 1943; Schechtman et al., 2010). Transfer effects to a new stimulus follows a general-
ization gradient in which the experienced intensity of the prior aversive outcome predicts increased 
threat generalization (Dunsmoor et al., 2017; Lissek et al., 2005), and greater perceptual generaliza-
tion (Davis et al., 2010; FeldmanHall et al., 2018). Although our paradigm articulates generalization 
through credit spreading mechanisms, from a signal detection standpoint, these findings undoubtedly 
dovetail with that notion that it is ‘better to be safe than sorry’ in the aversive domain (Dunsmoor and 
Paz, 2015). This may help to explain why increased credit spreading of negative PEs across irrelevant 
cues can become pathological and maladaptive, offering potential inroads into understanding the 
etiology of generalized anxiety disorders.

While this work unveils a generalizable computational and neural mechanism for structural credit 
assignment, there are a few limitations and a number of unanswered questions that future work can 
help address. First, our study did not control for the visual complexity of the stimuli across tasks 
(i.e. human faces compared to colored bandits). While it is possible that the observed differences in 
learning and state decoding reflects the salience of faces in the trust task, our prior work suggests 
that this account is unlikely, given that when the stimuli’s complexity was perfectly matched across 
social and nonsocial tasks, we still observe faster learning in the social domain (Lamba et al., 2020). 
An open question revolves around the valence-asymmetric credit assignment effects, which may 
have interesting mappings onto dopamine modulation in the striatum and amygdala. Recent work 
in mice finds that wave-like dopamine signals from the dorsal striatum communicate when successful 
actions performed during instrumental learning are necessary for performance, offering insight into 
the underlying neuromodulatory dynamics of credit assignment in the reward domain (Hamid et al., 
2021). Conversely, prior work suggests that dopamine modulation in the amygdala gates the selec-
tivity of an acquired threat response, whereas inhibition of amygdala dopamine receptors is linked 
to threat overgeneralization (De Bundel et al., 2016). These findings are consistent with our results 
that the strength of PE signaling alone does not sufficiently explain differences in learning specificity. 
Future work should consider how midbrain dopamine modulation in the striatum and amygdala mech-
anistically interact to shape the format of downstream state representations.

Notably, our whole brain searchlight also picked up state representations in other prominent 
cortical networks, such as the control network (lateral parietal, anterior cingulate, and dorsal lateral 
prefrontal regions), and may accord with the possibility that distinct functional networks encode 
abstract state representations that vary only in format to optimize for differing task demands (Vaidya 
and Badre, 2022). Future work could consider how prefrontal and control networks interact during 
successful credit assignment, particularly when abstract state representations are required to perform 
complex sequences of actions. To summarize, our results identify a simple and domain-general neural 
mechanism for credit assignment in which outcomes and states are temporally bound together in the 
PFC, revealing a biologically grounded model for how humans assign credit to causal cues encoun-
tered in the world. How this mechanism coordinates with other known neural systems and deviates in 
psychiatric disorders has yet to be uncovered.

Methods
Participants
Data was collected from 30 right-handed adults (ages 21–36; mean age = 23.5, Nfemale = 16) in the 
Providence, Rhode Island area. Our study protocol was approved by Brown University’s Institu-
tional Review Board (Protocol #1607001555) and all participants indicated informed consent before 
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completing the social and the bandit tasks in the scanner. After all fMRI preprocessing steps were 
completed, two participants were removed from the final sample due a high degree of motion arti-
facts (movement >3 mm). All participants received monetary compensation ($15 /hour) and additional 
performance-based bonus payment of up to $20.

Instructions and stimulus presentation
Prior to scanning, all participants were given instructions for the social and bandit tasks and instruction 
ordering was counterbalanced depending on which task participants completed first in the scanner. 
For the social task, participants were told they would see the faces of previous participants who had 
already indicated the proportion of the investment they wished to return and who had been photo-
graphed prior to leaving their session. In reality, each of the four face stimuli were drawn from the 
MR2 database (Strohminger et al., 2016). All face stimuli included in our task were prejudged to 
be equivalent on trustworthiness and attractiveness dimensions by independent raters (Strohminger 
et al., 2016). Slot machine stimuli varied by visually distinct colors (purple, blue, yellow, and orange).

For each task, participants were required to pass a basic comprehension check to ensure that they 
understood the payoff structure of each game. Stimuli were presented using Psychtoolbox in MATLAB 
2017a. Each trial was designed to elapse over a 16 s duration. The trial was initiated with a choice 
phase with a 3 s response window in which participants indicated their investment using a 5-button 
response box (options: $0, $2.50, $5.00, $7.50, $10.00). After participants keyed in their response, a 
jittered interstimulus interval (ITI), randomly distributed between 1 and 5 s, reminded participants of 
their investment. The outcome was then presented for a fixed 2 s duration, following by an additional 
ITI, filled with however many seconds remained for the full 16 s trial duration (between 6 and 13 s). 
If participants failed to indicate their investment within the 3 s response window, the investment was 
considered $0, and a missed trial prompt appeared during the ITI. Missed trials were omitted from all 
behavioral and RSA analyses. Stimulus ordering was randomly interleaved, and therefore consecutive 
presentations of the same stimulus could occur anywhere from 1 to 15 trials apart following a right-
skewed distribution, such that most consecutive stimulus interactions occurred within 1–5 trials.

Reward structure
Each stimulus in the social and bandit tasks was randomly assigned to follow one of four reward 
distributions, such that stimulus identities were counterbalanced across different payoff structures. 
The high reward stimulus always returned more than the participant initially invested and thus always 
resulted in a net gain, whereas the low reward stimulus always returned a lower amount resulting in a 
net loss. Neutral and random stimuli were designed to return a roughly equivalent amount and served 
as a control for outcome valence, allowing us to examine outcome attribution precision with stimuli 
that resulted in net gains and losses with equal frequency. Neutral and random stimuli only differed in 
terms of their return variance (i.e. the extremity of gains and losses). Rather than truly sampling from a 
payoff distribution which could have resulted in vastly different observed outcomes across participants 
and tasks (e.g. observing a consistent string of gains or losses on the extreme end of the distribution 
simply due to chance), we preselected the return rates so that the full range of the distribution was 
sampled from. We then applied these preselected return rates for all participants and in each task but 
allowed their ordering to be randomized across trials. Notably, although return rates were fixed, the 
payoff on each trial was still dependent on the participant’s investment (see task structure in Figure 1).

Time-lagged behavioral regression analyses
Single trial investments were modeled using a regression that included the monetary amount returned 
on previous trials at various time points (i.e. lags) as explanatory variables. To capture individual 
learning effects, we modeled investment data for each participant separately including both social 
and bandit tasks in the same linear regression model. Investments were modeled as a weighted sum 
of previous returns experienced on relevant trials (i.e. those with a matched stimulus) as well as irrele-
vant trials (i.e. those that immediately preceded a given investment, irrespective of stimulus identity). 
We fit slopes for the contribution of each lag term using previous returns from the nth trial back 
in each task (social vs. bandit), yielding 13 coefficients per participant (model equation below; i,t 
denotes each participant and trial, respectively).
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	﻿‍

Investment(i,t) = β0 + β1,2Lag1Rel(i,t)|task + β3,4Lag2Rel(i,t)|task + β5,6Lag3Rel(i,t)|task +

β7,8Lag1Irrel(i,t)|task + β9,10Lag2Irrel(i,t)|task + β11,12Lag3Irrel(i,t)|task ‍�

To model whether rewards vs. losses differentially impacted reward attribution, for each partic-
ipant we separated trials into scenarios in which the previous stimulus-matched and previous irrel-
evant outcome resulted in a net gain (return >investment) or a net loss (return <investment). Here 
we considered only lag1 trials to minimize parameter tradeoffs that prevented model convergence, 
and furthermore ran four separate regression models quantifying the effects of lag1 returns for each 
combination of relevant vs. irrelevant and gain vs. loss trials.

Logistic reinforcement learning model
To better understand trial-to-trial changes in investing, we developed a nested set of RL models to 
translate trial-outcomes into behavioral updates. Because choices in the task were both discrete and 
ordinal in their magnitude (choice options: $0, $2.50, $5.00, $7.50, $10.00), we used a logistic function 
to model the learned value of investing with each partner/bandit type based on trial and error.

Model investment function
In each of our models, all choices in which the participant responded were included in model fitting. 
Predicted investments for each trial were generated from a sigmoid function that included parameters 
to account for individual investment biases (i.e. baseline differences in investment preferences) and 
the slope of the relationship between Vt and predicted investments (m; Figure 3—figure supplement 
1A), where V(t,j) reflects the expected value for investing in stimulus j (i.e. a specific partner/bandit) 
on trial t:

	﻿‍
pred. investmentt = max investment

1 + e−m(V(
t,j
)−bias) ‍�

To get the likelihood with which our model would produce all possible investments on a given trial, 
we assumed that the probability of a given investment would fall off according to a Gaussian prob-
ability density function (PDF) around the predicted investment (Figure 3—figure supplement 1B):

	﻿‍
p
(
investments

)
= 1

σ
√

2π
e
−
(
all investments − pred.investment

)2

2σ2

‍�

The width of the Gaussian distribution was fixed to a value of 1 in all models, controlling the 
variability in model investments. The probability of investing—p(investment)—generated from the 
Gaussian PDF was normalized on each trial such that the total probability across investments was 
equal to 1, and the model was fit by minimizing the negative log of the sum of p(investments) corre-
sponding to the actual participant investments across trials.

Modeling learning
We fit a learning model to behavior separately for social and bandit tasks. In our baseline model, we 
used the Rescorla-Wagner learning rule (Rescorla, 1972) to compute the reward prediction error (‍δ‍) 
on each trial (t), which updated the expected value (V) of investing with each partner/bandit type (j) 
after each outcome observation. Error-driven learning was then scaled by the learning rate (‍a‍):

	﻿‍ δ = rewardt − V(
t−1,j

)
‍�

	﻿‍ V(
t, j

) = V(
t−1,j

) + a · δ‍�

We used a matrix to store the updated value of V on each trial separately for each stimulus, 
resulting in a trial × stimulus V matrix for each participant and each task. Most of our models included 
a prior parameter (see Supplementary file 1e), which estimated the initial value of V in the first row 
of the V matrix. If a prior parameter was not included in the model, the V matrix was initialized at 0. 
In the baseline model, outcomes were always attributed to the appropriate state (i.e. updated V for 
only the appropriate stimulus), effectively performing standard model-free RL. We included additional 
learning rate, credit assignment, and decay parameters to the base model to construct a set of models 
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that varied in complexity, and that provided distinct conceptual accounts of learning differences, 
but notably all models mapped experienced outcomes to learned values to guide future choice (see 
Supplementary file 1e for a full list of models tested and Supplementary file 1f for a description of 
each parameter).

To capture individual differences in credit assignment vs. credit spreading, we introduced a credit 
assignment parameter (CA) that quantifies the degree to which observed outcomes on the current 
trial influenced the expected value of irrelevant causes (i.e. all other partners/bandits not engaged 
with on the current trial), denoted with the index k.

	﻿‍ V(
t, j

) = V(
t−1,j

) + a · δ · CA‍�

	﻿‍
V(

t,k
) = V(

t−1,k
) +

a · δ ·
(
1 − CA

)
nk ‍�

To account for valence-dependent learning effects, we fit models with valenced learning rate (V-LR) 
parameters, in which PEs greater or less than 0 were scaled by positive or negative learning rates, 
respectively (V-LR, CA model). We also fit a model with valenced CA terms (V-CA) to capture valence-
specific differences in reward attribution (i.e. whether credit assignment vs. spreading is dependent 
on observing better or worse than expected outcomes). This model (V-LR, V-CA) was algorithmically 
identical to the V-LR, CA model, except that two separate CA parameters were used to account for 
credit assignment on positive and negative PE trials.

Decay models
We modeled forgetting effects based on a decay model previously described in Collins and Frank, 
2012 in which a decay parameter gradually adjusts learned values back to initial ones (i.e. the prior), 
proportionally to the degree of forgetting. In our model (V-LR, Decay), decay (‍γ‍) and the prior were fit 
as additional free parameters to each participant.

	﻿‍ V(
t, j

) = V(
t−1,j

) + a · δ‍�

	﻿‍
V(

t,k
) = V(

t−1,k
) + γ ·

(
prior − V(

t−1,k
)
)
‍�

Model comparison
Model fits were then evaluated using the Akaike information criterion (AIC), which we computed as:

	﻿‍ AIC = −2
(
BayesLL

)
+ 2

(
n parameters

)
‍�

We performed model selection by maximizing the negative AIC and minimizing Δ AIC, which was 
calculated as the difference between each participant’s best-fitting model and every other model in 
the set. This approach allowed us to evaluate model performance penalized for additional terms and 
the model fit advantage of each participant’s best-fitting model relative to every other model in the 
set. Thus, the best-fitting model would ideally be able to explain each participant’s data approxi-
mately as well, if not better, in most instances. Model comparison was performed separately for social 
and bandit tasks (see Supplementary file 1g-1h and Figure 3—figure supplement 2 for AIC and Δ 
AIC values of each model).

Model validation
Model confusability was evaluated by simulating 100 participants per model. For each simulated 
participant, free parameters were randomly sampled from a uniform distribution and trial-to-trial 
investments were generated under the sampled parameterization. Each model was fit to each simu-
lated participant using 20 iterations of gradient descent, and classification rates were computed 
as the frequency with which each participant was best fit by the correct generative model, which 
we evaluated by maximizing the negative AIC (rate of winning model/true model; see Figure 3—
figure supplement 3A). The inverse confusion matrix (Figure 3—figure supplement 3B) was based 
on the same data but shows the probability that each generative model gave rise to a given ‘best 
fitting’ model. We also performed a maximum likelihood estimation check (i.e. posterior predictive 
check) for the set of MLE-optimized parameters from the V-LR, V-CA model. Model generated data 
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shown in Figure 3—figure supplement 4 captures empirical patterns. Parameter recovery, shown in 
Figure 3—figure supplement 5, indicates that parameters from the V-LR, V-CA model were reliably 
estimated and recoverable.

MRI data acquisition
Data was acquired at the Brown University MRI Facility with the Siemens Prisma 3T MRI Scanner. 
Anatomical scans were collected using a T1-weighted sequence with 1 mm3 isotropic voxels, 1900ms 
TR, flip angle = 9 degrees, 160 slices/volume, 1 mm slice thickness, for a duration of 4 min, 1 s. Func-
tional scans were acquired using a T2-weighted sequence with 3 mm3 isotropic voxels, 2000ms TR, flip 
angle = 78 degrees, 38 slices/volume, 3 mm slice thickness. Each task was divided into 2 functional 
runs, each consisting of 246 volumes, for a duration of 8 min and 12 s. We used a bounding box with 
a forward tilt along the AC-PC axis to ensure we were imaging lateral and medial OFC.

Data preprocessing
Data was preprocessed in SPM12. For multivariate analyses, data was preprocessed in the following 
sequence: slice-time correction, realignment, co-registration, segmentation, normalization, spatial 
smoothing. Images were normalized to a standard MNI template and resampled to 2 mm3 voxels. 
For univariate parametric modulation analyses, we used the same preprocessing sequence, except 
images were realigned prior to slice-time correction.

Images were smoothed using a 2 mm3 smoothing kernel for multivariate analyses and with an 8 
mm3 kernel for univariate analyses. RSA images constructed from the deconvolved time-series GLM 
(see below) were later smoothed using a 6 mm3 smoothing kernel for group analyses.

Time-series GLM
For each participant we obtained time-series estimates of the BOLD signal by deconvolving the HRF 
using single trial regressors (Mumford and Poldrack, 2007; Ramsey et  al., 2010), concatenated 
across task runs. We also included separate trial regressors for choice and feedback onsets within each 
GLM (i.e., choice and feedback onsets were modeled simultaneously) to control for potential temporal 
correlations in the BOLD signal resulting from consecutive task events. For choice phase regressors, 
we modeled voxel activations during the choice duration, which occurred within a 3 s window. Feed-
back phase activations were modeled during a fixed 2 s duration. We included six motions regressors 
derived from realignment, along roll, pitch, yaw and x,y,z dimensions to control for motion artifact. 
We also included additional framewise displacement (FD) regressors, using a FD threshold = 1.2 to 
identify noisy images. We then regressed out noise from frames above the FD threshold, including 
the previous images and subsequent two images, based on recommendations (Power et al., 2012; 
Power et al., 2014).

Whole brain searchlight analysis
We conducted four independent searchlight analyses across the whole brain to measure represen-
tational dissimilarity during choice and feedback phases of the task, and separately for social and 
bandit tasks. For each participant and each task phase (choice and feedback), we first selected the 
relevant trial regressors (e.g. choice regressors for all trials in which the participant responded). We 
then constructed a 9 mm radius spherical searchlight, which we moved along x,y,z coordinates of 
participant-specific brain masks (binary mask of voxels with sufficient accompanying BOLD activa-
tions), with a step size of 1, such that the center of the searchlight was placed in each voxel once.

We then extracted single event (choice/feedback) beta coefficients from all voxels within the 
searchlight from the relevant phase regressors modeled in our deconvolved time-series GLM and 
noise normalized the coefficients (Walther et al., 2016). Beta coefficients from each phase regressor 
were then extracted and reorganized into a voxel by trial coefficient matrix (Figure  4A). To align 
the searchlight neural RDM with our state identity hypothesis matrix, we reorganized the coefficient 
matrix by nesting trial within each stimulus type. To obtain the searchlight RDM, we then computed 
the correlation distance (1 r) between each row and column element in the coefficient matrix. Correla-
tion distance values from the lower triangle (all elements off the identity line) of our neural RDM were 
then z-transformed and correlated with the lower triangle of our z-transformed predictors, using the 
following linear model to obtain a t-statistic estimating the effect of state identity for each searchlight 
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(neural correlation distance ~state identity +autocorrelation  term). We examined the effect of the 
state identity and expected value hypothesis matrices separately in our whole brain searchlight anal-
yses to avoid any systematic correlations that could potentially emerge from predictor collinearity but 
allowed state identity and expected value predictors to compete in our ROI analyses. The resulting 
first-level t-maps from the whole brain searchlights for choice and feedback and for each task were 
then spatially smoothed with a 6 mm3 Gaussian smoothing kernel before being submitted to second-
level analyses.

To avoid constructing task-biased ROIs, we created summed t-maps from each participant’s 
social and bandit searchlights using SPM’s imcalc function (images created using a simple summa-
tion method; social t-map +bandit t-map). We then conducted second-level analyses on the task-
combined t-maps for choice and feedback phases of the task. To correct for multiple comparisons, we 
conducted non-parametric permutation testing on the second-level analyses, using a cluster-forming 
threshold of p<0.0001 and a null distribution based on 5000 permutations. Permutation testing was 
conducted with the SnPM package (Hayasaka and Nichols, 2003). We then created binary masks of 
all voxels in our second-level analyses that were significant at the cluster-level (pFWE <.05) and at the 
peak level (p<0.0001) and used the task-combined corrected t-maps to identify ROIs. We used a data 
driven approach to identify two sets of ROIs for choice and feedback by extracting coefficients from 
statistically significant cluster peaks in corrected t-maps. We limited the cluster size of our ROIs to 
be no larger than the size our searchlight by placing a 9 mm radius sphere at the center of the local 
maxima and extracted all voxels from the sphere that survived permutation testing. Within each ROI 
from our two sets chosen from choice and feedback searchlights, coefficients from the model were 
then disaggregated to independently evaluate the strength of state representation in the social vs. 
bandit task (shown in Figure 5, B to C), which we computed from the following model (neural correla-
tion distance ~state-identity RDM + expected value RDM + autocorrelation term).

Valence-based RSA
For each participant, trial-level deltas (PEs) estimated from the valenced-ca model using the MLE opti-
mized parameters were z-scored to control for the extremity of experienced gains and losses across 
participants, to ensure we had sufficient trials from each stimulus within both positive and negative 
valence RDMs, and to ensure a roughly equivalent amount of data in each neural RDM. The z-trans-
formed PEs were then used to separate data into the appropriate RDM and our RSA procedure for 
each ROI was then separately applied for positive and negative RDMs and for choice and feedback 
phases.

Cross-timepoint RSA
Prior to computing the cross-timepoint correlations across task phases, we constructed a set of ROIs in 
candidate areas that were involved in state representation during both choice and feedback. To avoid 
constructing ROIs that were biased towards a particular task phase, we integrated task-combined t-
maps (choice t-map +feedback t-map). We then masked our task and phase-combined image using a 
binary conjunction t-map of voxels that survived permutation testing in both our choice and feedback 
phase analyses, using a 9 mm radius sphere centered at the local peaks to isolate voxels from statisti-
cally significant clusters and focusing specifically on voxels in the PFC. We then computed the cross-
timepoint correlation within each of our conjunction ROIs, separately for each task.

Our approach for computing the cross-timepoint correlation was to first create two data sets for 
each participant by separating the data into even and odd trials that occurred with each partner/
bandit type (e.g. set 1: all even trials with low, high, neutral, random stimuli, set 2: all odd trials 
with low, high, neutral, random stimuli), so that representational correspondence could be measured 
across consecutive stimulus-matched trials that were temporally distanced in time (trial ordering was 
interleaved such that stimulus-matched trials were always 1–15 trials apart in the task; Figure 1D). We 
then constructed a data matrix for each of our even and odd data sets, including choice and feedback 
in same matrix. For each matrix, we extracted beta coefficients from each voxel on each trial within 
even and odd data sets, and concatenated choice and feedback patterns. For both even and odd 
data sets, we then averaged beta coefficients in each voxel, resulting in two voxel × stimulus matrices 
reflecting the average beta in each voxel at choice and feedback timepoints (rows) and activations for 
each stimulus during choice and feedback (columns). We then calculated the correlation distance (1 r) 
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between even and odd matrices. In the cross-timepoint quadrants of the resulting matrix, mean acti-
vations on even trials during the choice (choiceEven) were compared to mean activations on odd trials 
during the feedback (feedbackOdd), and even trials during feedback (feedbackEven) were compared 
to odd activations during choice (choiceOdd). The resulting matrix product of even and odd RDMs 
thus allowed us to evaluate the shared structure of state representations across task phases (the lower 
left and upper right quadrants of the cross-timepoint RDM; Figure 6A) and across independent trials, 
therefore breaking any systematic temporal or autocorrelation signals within the neural pattern. We 
then correlated only the cross-timepoint quadrants of the matrix product with a cross-timepoint state 
identity matrix to quantify the degree of representational alignment in the neural code across choice 
and feedback timepoints that preserved the state identity. The degree of shared information in the 
neural code (quantified as Pearson correlation coefficients) was subsequently submitted to further 
regression analyses to evaluate the association between shared representational geometry and credit 
assignment precision (Figure 6C). We constructed ROIs in the mPFC and lOFC, given that clusters 
in these regions emerged from our conjunction t-map and signaled cross-timepoint state encoding.

Parametric modulation analysis
We conducted univariate parametric modulation analysis to evaluate the effect of trial PEs on the 
amplitude of the BOLD signal, allowing us to capture differences in the strength of PE coding across 
tasks. For each participant, we constructed a first-level design matrix that included regressors for both 
choice and feedback onsets and durations, and trial-level PEs from our V-LR, V-CA model. Social and 
bandit task data were modeled in the same GLM, and we included additional regressors for motion 
(see time-series GLM section). In group analyses we then generated a t-contrast against 0 for the PE 
regressor. This contrast included data from both social and bandit tasks so that we were blinded to 
task condition when selecting ROIs. To correct for multiple comparisons, we performed permutation 
testing on the task-combined t-map (see procedure in the whole brain searchlight analysis section). 
We then selected ROIs from significant cluster peaks that survived permutation testing and extracted 
beta coefficients from ROIs separately for social and bandit tasks.

Acknowledgements
We thank Michael J Frank for comments and feedback and Eric Ingram for assisting with data collec-
tion. We also thank Avinash Vaidya for helpful RSA code and discussion. This work was supported by 
NARSAD grant 26210 to OFH.

Additional information

Funding

Funder Grant reference number Author

Brain and Behavior 
Research Foundation

26210 Oriel FeldmanHall

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Amrita Lamba, Conceptualization, Data curation, Software, Formal analysis, Investigation, Visual-
ization, Methodology, Writing – original draft, Project administration, Writing – review and editing; 
Matthew R Nassar, Software, Formal analysis, Supervision, Methodology, Writing – review and editing; 
Oriel FeldmanHall, Conceptualization, Formal analysis, Supervision, Funding acquisition, Method-
ology, Writing – review and editing

Author ORCIDs
Amrita Lamba ‍ ‍ https://orcid.org/0000-0002-8703-2886
Matthew R Nassar ‍ ‍ https://orcid.org/0000-0002-5397-535X
Oriel FeldmanHall ‍ ‍ https://orcid.org/0000-0002-0726-3861

https://doi.org/10.7554/eLife.84888
https://orcid.org/0000-0002-8703-2886
https://orcid.org/0000-0002-5397-535X
https://orcid.org/0000-0002-0726-3861


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Lamba et al. eLife 2023;12:e84888. DOI: https://doi.org/10.7554/eLife.84888 � 19 of 21

Ethics
Our study protocol was approved by Brown University's Institutional Review Board (Protocol 
#1607001555) and all participants indicated informed consent for both behavioral and neuroimaging 
portions of the study.

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.84888.sa1
Author response https://doi.org/10.7554/eLife.84888.sa2

Additional files
Supplementary files
•  Supplementary file 1. Additional tables with fMRI analysis ROI coordinates, cluster size, and 
peak statistics, and additional information about model parameters and performance. (a) Choice 
Phase ROI coordinates. (b) Feedback Phase ROI coordinates. (c) Conjunction ROI coordinates from 
cross-timepoint analysis. (d) Parametric modulation ROI coordinates. (e) List of RL Models included 
in model comparison, including their respective free parameters indicated with the ×. V denotes 
valenced terms for either the learning rate (LR) or credit assignment (CA) parameters in the model. 
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