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BACKGROUND AND AIMS: Necrotizing enterocolitis (NEC) is a
life-threatening disease and the most common gastrointestinal
emergency in premature infants. Accurate early diagnosis is
challenging. Modified Bell’s staging is routinely used to guide
diagnosis, but early diagnostic signs are nonspecific, potentially
leading to unobserved disease progression, which is problem-
atic given the often rapid deterioration observed. We investi-
gated fecal cytokine levels, coupled with gut microbiota
profiles, as a noninvasive method to discover specific NEC-
associated signatures that can be applied as potential diag-
nostic markers. METHODS: Premature babies born below 32
weeks of gestation were admitted to the 2-site neonatal
intensive care unit (NICU) of Imperial College hospitals (St.
Mary’s or Queen Charlotte’s & Chelsea) between January 2011
and December 2012. During the NICU stay, expert neonatologists
grouped individuals by modified Bell’s staging (healthy, NEC1,
NEC2/3) and fecal samples from diapers were collected
consecutively. Microbiota profiles were assessed by 16S rRNA
gene amplicon sequencing and cytokine concentrations were
measured by V-Plex multiplex assays. RESULTS: Early evalua-
tion of microbiota profiles revealed only minor differences.
However, at later time points, significant changes in microbiota
composition were observed for Bacillota (adj. P ¼ .0396), with
Enterococcus being the least abundant in Bell stage 2/3 NEC.
Evaluation of fecal cytokine levels revealed significantly higher
concentrations of IL-1a (P ¼ .045), IL-5 (P ¼ .0074), and IL-10
(P ¼ .032) in Bell stage 1 NEC compared to healthy in-
dividuals. CONCLUSION: Differences in certain fecal cytokine
profiles in patients with NEC indicate their potential use as
diagnostic biomarkers to facilitate earlier diagnosis. Additionally,
associations between microbial and cytokine profiles contribute
to improving knowledge about NEC pathogenesis.
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Introduction

Necrotizing enterocolitis (NEC) is a life-threatening
disease that primarily affects very low birthweight
(VLBW) preterm infants born weighing less than 1500g.1

The estimated average incidence of NEC cases across 27
studies conducted worldwide is w7% among VLBW in-
fants.2 However, contrasting regional differences are re-
ported in the literature, with a prevalence of NEC of
25.4% for enteral fed and low birthweight infants admitted
to public hospitals in Addis Ababa, Ethiopia,3 compared to
only 1.6% in VLBW infants in Japan.4

Although clinical manifestations of the disease have been
known since the 1940s,5 its etiology remains incompletely
understood and is often described as multifactorial.6 The most
important contributing factor for the development of NEC is
prematurity, including low birthweight and low gestational
age.7,8 Other potential factors are formula feeding,9 prolonged
parenteral feeding,10 and an abnormal microbial gut coloni-
zation,11 potentially leading to a perturbed state in the pre-
mature intestine.12,13 The gut of vaginally delivered and
breast-fed term babies is typically dominated by bacteria of
the genus Bifidobacterium,14,15 whereas preterm infants, who
are often born by caesarean section and receive antibiotic
treatment, are populated by genera such as Enterococcus,
Klebsiella, and Enterobacter.15 Overgrowth of these potentially
pathogenic bacteria within the gut microbiota, and/or colo-
nization of the preterm gut by hospital-acquired pathogens
plays a crucial role in the onset of NEC.16 Frequently detected
bacteria occurring in association with NEC include Clostridium
spp., Enterococcus spp., Escherichia coli, Pseudomonas

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.gastha.2023.03.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gastha.2023.03.003&domain=pdf


2023 NEC prediction by fecal cytokines 667
aeruginosa, Salmonella spp., Klebsiella spp., and Staphylococcus
spp. 16 These potential pathogens can be partially suppressed
by supplementation with probiotics including Bifidobacterium
spp. and Lactobacillus spp., which is also associated with a
50% reduction in NEC incidence.17,18

The prognosis for infants diagnosed with NEC is poor, with
survivors at risk of long-term neurodevelopmental limitations
and growth restrictions.19–21 The Bell staging criteria were
introduced in 1978 to classify different stages of illness severity,
suggest disease management, and guide treatment,22 and were
later refined in 1986.23 Various other staging criteria for NEC
have been proposed by expert neonatologists, including the
Vermont Oxford Network definition, Centers for Disease Con-
trol and Prevention definition, Gestational Age-Specific Case
Definition of NEC, 2 of 3 rule, Stanford NEC score, and Inter-
national Neonatal Consortium NEC workgroup definition.
However, modified Bell staging remains the most frequently
used,24 despite questions remaining about its reliability.25

Researchers have focused on additional measures
including the infant gut microbiota that could better predict
cases of NEC. Dobbler et al reported that both lower mi-
crobial diversity and bacteria belonging to the family
Enterobacteriaceae correlated with NEC, with Citrobacter
koseri and Klebsiella pneumoniae being the most abundant
species within this family.26 Low bacterial diversity in
combination with high abundance of Pseudomonadota prior
to the onset or at diagnosis of NEC has been confirmed by
other studies.27–33 In contrast, Cassir et al showed a strong
association between Clostridium butyricum and NEC inci-
dence and identified cytotoxic activity in the supernatant of
cultured C. butyricum isolates.34 The role of the gut micro-
biota in the development of NEC remains complex and is
likely to be dependent on NICU location (i.e. circulating
nosocomial pathogens) and underlying individual microbial
communities present in the preterm infant gut.

Human milk oligosaccharides (HMOs) are now a topic of
research interest due to their role in feeding specific bacteria,
especially Bifidobacterium, which are not typically abundant in
the preterm infant gut microbiota.35 Sodhi et al recently sug-
gested the HMOs 20-fucosyllactose and 60-sialylactose protect
against the development of NEC through the inhibition of Toll-
like receptor (TLR) 4 signaling.36 Masi et al showed that the
concentration of the HMO disialyllacto-N-tetraose was lower in
the breast milk of mothers of NEC infants and associated with
a lower abundance of Bifidobacterium species.37

The role of cytokines and pro-inflammatory mediators in
NEC has been extensively reviewed. In particular, increased
levels of TLR 4, interleukin (IL)-18, interferon (IFN)-g,
platelet-activating factor, IL-6, IL-8, IL-1b, and nuclear fac-
tor-kB have been linked to NEC severity, while deficiencies
of TLR 9, IL-1R8, IL-1Ra, transforming growth factor (TGF)-
b2, platelet-activating factor-acetylhydrolase, and IL-10 pave
the way for NEC-associated inflammation.38

Novel approaches are needed to provide guidance to cli-
nicians and healthcare professionals to select the appropriate
therapy.39 Previous studies have aimed to find suitable and
robust biomarkers that may be used to predict NEC, including
platelet counts,40 levels of C-reactive protein,41 serum amyloid
A,42 claudin proteins,43 plasma citrulline,44,45 endogenous
RNA molecules,46 volatile organic compounds,47 lipocalin-2,
and calprotectin.48 Systemic cytokine concentrations have
been suggested as potential biomarkers for the prediction of
NEC and disease outcome.38,49–52 Rising cytokine levels were
highly specific for the diagnosis of neonatal sepsis, but addi-
tional (noninvasively assayed) biomarkers are needed for
high specificity and sensitivity to predict NEC.53

In this study, we evaluate the gut microbiota profiles and
the measurement of fecal cytokine levels as a rapid and
noninvasive tool for the early detection of NEC.
Methods
Study design

Samples were provided from a study published in 2015.13

This exploratory study included infants born <32 weeks of
gestation, without severe congenital birth defects. Infants were
admitted to the Imperial College Healthcare National Health Ser-
vice Trust neonatal intensive care unit (NICU) between January
2011 and December 2012. In total, 39 individuals were included
in the study (Bell stage 1: n ¼ 7; Bell stage 2/3: n ¼ 11; healthy
controls: n ¼ 21). Probiotics and H2-receptor antagonists were
not used within the NICU at the time of recruitment and sampling.
Patient identification numbers were blinded. Only members of
this research group had access to patient information.

Sample collection
Research nurses collected fecal samples from diapers using

a sterile spatula, placed in sterile DNase-, RNase-free Eppendorf
tubes, stored in a �20 �C freezer on the neonatal unit within 2
hours of collection, and stored at �80 �C within 5 days. NEC
cases were diagnosed by the attending neonatal consultant and
confirmed by an independent neonatologist (Bell stage 2/3 by
Bells’ modified staging criteria). Multiple samples were taken
from individuals included in the study during their stay in
NICU. Sample numbers were as follows: Bell stage 1 NEC n ¼
23; Bell stage 2/3 NEC n ¼ 47; healthy controls n ¼ 86.

Cytokine measurement
One gram of fecal material was homogenized with one ml

phosphate-buffered-saline (PBS) using a FastPrep bead beater
(4.0m/s, 3min), centrifuged (14,000rpm, 15min) and 25ml of
supernatant was used for the assay. Samples were analyzed
using MULTI-SPOT plates, MESO Quickplex SQ120 and discov-
ery workbench software according to the manufacturer’s pro-
tocol. Pre-coated immunoassays V-PLEX Proinflammatory
Panel 1 (human) and V-PLEX Cytokine Panel 1 (human) were
used to detect a set of 20 different cytokines: IFNg, IL-1b, IL-2,
IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, tumor necrosis factor
(TNF)a, granulocyte-macrophage colony-stimulating factor
(GMCSF), IL-1a, IL-5, IL-7, IL-12p40, IL-15, IL-16, IL-17A, TNFb,
and vascular endothelial growth factor (VEGF)-A. If cytokine
values drastically exceeded comparable sample values, the
sample was excluded from the analysis. Samples not reaching
the lower limit of detection were generally considered as very
low and were taken into account without statistical resolving.
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DNA extraction, 16S rRNA gene amplification, and
sequencing

Information about sample preparation, gene amplification,
and sequencing is documented elsewhere.13

16S rRNA sequencing data analysis
Roche 454 pyrosequencing data in standard flowgram

format were transcribed to fastq format using Bio.SeqIO.SffIO
module in biopython. Single fastq files were remultiplexed us-
ing the perl script remultiplexor (available at https://www.
imngs.org). Remultiplexed sequencing data were processed
with the integrated microbial NGS platform,54 with parameters
set as follows: Barcode mismatches, 1; quality trim score, 10;
min. read length 100bp; max. read length 1000bp; max. rate of
expected error, 2% of sequence length; min. alignment id 70%.
Operational taxonomic units (OTUs) were clustered at 97%
sequence similarity, using a cutoff of �0.25% relative abun-
dance in at least one sample. Data were further analyzed and
visualized using RHEA,55 a modular pipeline for microbial
profiling, using R(v4.0.5) and Rstudio (v1.4.1106). Samples not
achieving specific quality control criteria (>1000 reads/sam-
ple; rarefaction curves Figure A1) were excluded from the
analysis, leading to reduced sample numbers: Bell 1 NEC 1 n ¼
18; Bell 2 NEC 2/3 n ¼ 41; healthy controls n ¼ 63.

Statistical testing
Cytokine profiles were evaluated pairwise between groups

using Mann-Whitney U test. The following methods were
applied for 16S rRNA gene amplicon data: Fisher’s exact test,
Wilcoxon rank sum, and Kruskal-Wallis rank sum test. The
method used is referenced in the respective paragraph or
figure. Multidimensional scaling plots are based on generalized
UniFrac distances. The P-values were calculated using permu-
tational multivariate analysis of variance.

All authors had access to the study data and had reviewed
and approved the final manuscript.

Results
A total of 39 preterm infants with a gestational age <32

weeks were included in this study, 7 were diagnosed with
Table. Cohort Information of Study Participants

Study characteristics All

Number of individuals 39

Received antibiotics 37

Received additional formula feeding 6

Received mechanical ventilation 25

DOL at NEC diagnosis (mean, min-max) -

Samples used for microbiota analysis >1000 reads 122

Samples used for cytokine analysis 156

Gestational age (mean � StDev) 27 þ 1 (190d)
2 þ 1 (15d)

Birthweight (mean � StDev) 922g � 283

Gender f ¼ 15
m ¼ 24
Bell stage 1 NEC, 11 were diagnosed with Bell stage 2/3
NEC, and 21 were healthy controls (not diagnosed with
NEC). Detailed information about participants and sample
numbers is represented in Table 1. All but 2 babies received
a first course of antibiotics from birth onward. Fecal sam-
ples from diapers were collected longitudinally during their
NICU stay.

Characterization of the neonatal gut microbiome of these
preterm infants was carried out using 16S rRNA gene
amplicon sequencing. An average of 7.8 (�3.6) OTUs (a
proxy for bacterial species) was detected across the 3 infant
groups. Healthy infants contained a mean of 8.4 OTUs/
sample, which was lower at 7.6 OTUs/sample in the NEC1
infants and 6.9 OTUs/sample in the NEC2/3 infants, but the
differences were not statistically significant (Figure 1A). The
multidimensional scaling plot of microbial profiles repre-
senting beta-diversity showed no significant differences
across the 3 study groups (P ¼ .106) (Figure 1B). To detect
age-dependent differences, samples were split up into 4
different time points (TP1: 0–10 days of life (DOL), TP2: 11-
20 DOL, TP3: 21-30 DOL, TP4: 31-maximum age). Signifi-
cant differences in the beta-diversity were detected at time
point 4 in the multidimensional scaling plot (P ¼ .02)
(Figure 1B). By comparing the groups at taxonomic levels,
the only detected significant differences were between Bell
stage 2/3 and healthy controls for the order Bifidobacter-
iales, including family Bifidobacteriaceae and genus Bifido-
bacterium (adj. P ¼ .0204 for all 3 taxonomic levels, Fisher’s
exact test, pairwise comparison) (Figure 1C).

At all taxonomic levels, no significant differences were
detected at TP1 and TP2. At TP3, a significantly higher
relative abundance of Escherichia-Shigella in Bell 2/3 was
detected compared to the healthy group (P ¼ .0003, Wil-
coxon rank sum test, pairwise, data not shown). At TP4, the
microbiota profiles became more clearly different. The
phylum Bacillota was lower in Bell 2/3 (mean rel. abun-
dance 10.0 %) compared to Bell 1 (mean rel. abundance
18.1%) and healthy (mean rel. abundance 15.6%) (adj. P ¼
.0396, Wilcoxon rank sum test, pairwise comparison, equal
P-value for both comparisons) (Figure 1C). Differences in
NEC2/3 NEC1 Healthy

11 7 21

11 7 19

1 3 2

10 4 11

29 (9–43) 29 (17–82) -

41 18 63

47 23 86

� 26 þ 6 (188d) �
2 þ 1 (15d)

27 þ 2 (191d) �
0 þ 5 (5d)

27 þ 2 (191d) �
2 þ 4 (18d)

g 843g � 204g 937g � 140g 959g � 348g

f ¼ 4
m ¼ 7

f ¼ 2
m ¼ 5

f ¼ 9
m ¼ 12

https://www.imngs.org
https://www.imngs.org


Figure 1. A: Alpha-diversity shown as richness. B: Inter-sample differences shown as multidimensional scaling plots based on
generalized UniFrac distances across all samples and separated by different time points. C: Taxonomic differences across al
samples (Bifidobacterium) and at time point 4. Numbers in brackets indicate the number of samples positive for the observation
D: Over time age-matched taxonomic profiles at the phylum level of preterm babies that developed NEC (left) compared to healthy
individuals (right). The DOL of NEC diagnosis is indicated after NEC samples. P-value summary: *<0.05; **<0.01.
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Bacillota were mostly represented by differences in the
family Enterococcaceae and the subordinate genus Entero-
coccus (NEC1 vs NEC2/3 adj. P ¼ .0142; NEC2/3 vs healthy
adj. P ¼ .0096, Wilcoxon rank sum test, pairwise, values are
equal for family and genus) (Figure 1C). Individuals that
developed NEC were further compared with age-matched
healthy preterm babies, with phylum profiles measured
longitudinally until NEC diagnosis. Only 2 NEC babies dis-
played high Actinomycetota abundance (N15, N18), whilst this
phylum was better represented in the healthy control babies.
Bacteroidota was generally underrepresented in the studied
individuals. Fusobacteria were also rare and only found in one
control baby at one time point (C27_3) (Figure 1D).

We also explored factors that could potentially impact
microbiota profiles, for example, condition at birth
(Appearance, Pulse, Grimace, Activity, Respiration,), total
parenteral nutrition (TPN), need for mechanical ventilation,
feeding type, and antibiotics usage. Appearance, Pulse,
Grimace, Activity, Respiration score can be used as prog-
nostic indicator for neonatal death in preterm infants,56

however, differences between study groups were minor
and not significant. TPN was performed for all but 4 babies,
and has been previously shown to impact the gut micro-
biota.57 In this study, all samples were taken after TPN
(average length of TPN NEC1 5.3 days, NEC2/3 5.7 days,
healthy 6.1 days) was finished, thus we were not able to
determine if there were any TPN-associated microbial
changes. The need for mechanical ventilation was hetero-
geneous across all groups. We did not observe any signifi-
cant differences in NEC1 and NEC2/3 groups. However,
within the healthy group, and only analyzing samples be-
tween 9 and 21 DOL to reduce the age bias, microbial
richness was significantly elevated in the non-ventilated
group (P ¼ .0087). In terms of feeding type, only 6 in-
dividuals (NEC2/3 n ¼ 1; NEC1 n ¼ 3; healthy n ¼ 2)
received formula milk (‘top-up’) in addition to maternal and/
or donor breast milk, and we did not observed any clear
differences. We did observe some changes in one individual in
the Bell stage 1 group, from 12 DOL to 14 DOL during formula
feeding (rise of Actinomycetota by 5%, an increase of Pseu-
domonadota by 13%, and a decrease of Bacillota by 18%),
however, this is only one individual and these changes may be
associated with normal microbiota changes over time.
Regarding antibiotics usage, only 2 individuals (both in the
healthy group) did not receive antibiotics during their NICU
stay, which correlated with high abundance of Actinomycetota
(genus Bifidobacterium, at TP2 and TP3).

Fecal cytokine concentrations were then analyzed to
determine differences in these host-associated immune fac-
tors. Pro- and anti-inflammatory cytokines play an important
role in the development and progression of NEC and systemic
levels are often measured. As NEC is essentially an intestinal
disease, cytokine concentrations measured in feces could be
more representative of immune activation in NEC.

In these infants almost all measured cytokine concen-
trations were significantly higher in the NEC 2/3 group
(Figure 2A). Significant differences between NEC1 and
NEC2/3 as well as between NEC2/3 and healthy were
observed for IL-2, IL-6, IL-10, IL-12p70, IL-12_IL23p40, IL-
13, IL-17A, and IFNg (P � .0001, Mann-Whitney U test)
(Figure 2A). Significantly higher concentrations in NEC1
compared to healthy were observed for IL-1a (P ¼ .045), IL-
10 (P ¼ .032), and IL-5 (P ¼ .0074), suggesting that these
could be potential markers for the onset and development
of NEC. The concentration of these cytokines was further
investigated at each time point (Figure 2B). For IL-1a, sig-
nificant differences were detected at TP1 (NEC1 vs NEC2/3,
P ¼ .0307, and healthy vs NEC2/3, P ¼ .0177) and TP4
(healthy vs NEC1, P ¼ .0057, and healthy vs NEC2/3, P ¼
.001). For IL-5, significant differences were observed at TP1
(NEC1 vs NEC2/3, P ¼ .0106, and healthy vs NEC2/3, P ¼
.0004), TP2 (healthy vs NEC1, P ¼ .0115, and healthy vs
NEC2/3, P ¼ .004), TP3 (healthy vs NEC2/3, P ¼ .0228), and
TP4 (healthy vs NEC2/3, P ¼ .0432). Significantly higher
levels of IL-10 were found in the NEC2/3 group at all time
points, TP1 (NEC1 vs NEC2/3, P ¼ .0045, healthy vs NEC1,
P ¼ .031, healthy vs NEC2/3, P < .0001), TP2 (NEC1 vs
NEC2/3, P < .0001, healthy vs NEC2/3, P < .0001), TP3
(healthy vs NEC2/3, P < .0001), and TP4 (NEC1 vs NEC2/3,
P ¼ .0275, healthy vs NEC2/3, P ¼ .0003).

Cytokine profiles were further analyzed 5–10 days
before the date that NEC was diagnosed and compared with
age-matched healthy preterm infants ( � 1 day difference).
Significantly higher levels of IL-10 (P ¼ .0013), IL-13 (P ¼
.0062), IL-4 (P ¼ .0293), and IL-6 (P ¼ .0322) were
measured in the Bell stage 2/3 group compared to healthy
controls (Figure 2C). The same analysis was performed
11–17 days before NEC diagnosis with significant differ-
ences again detected for IL-10 (P ¼ .0004), IL-13 (P ¼
.0335), and IL-6 (P ¼ .0122), with additional cytokines IL-
12p70 (P ¼ .0294), IL-17A (P ¼ .0004), IL-5 (P ¼ .0294),
and TNFb (P ¼ .0066) also differentiating between NEC and
healthy controls (Figure 2D).

When we analyzed cytokine profiles with additional
clinical variables (as outlined above), we only observed
significant differences for mechanical ventilation within the
healthy group (samples between 9 and 21 DOL were
analyzed to reduce the age bias) for IL-15, which was
significantly higher in the ventilated group (P ¼ .0427).
Discussion
Although known for decades, NEC remains a major

challenge for neonatologists, given the abrupt onset and
rapid progression of the disease. Targeted treatments are
still lacking, leading to high mortality rates and leaving
survivors with severe long-term disabilities. Prompt timing
of treatment is crucial to maximize the chance of survival. In
this study, we investigated the preterm infant gut micro-
biota in combination with fecal cytokine levels to shed light
on disease progression. The preterm intestinal microbiota
differs greatly from that of term infants: the number of
species present is reduced, patterns of colonization are
disrupted, and the abundance of pathogenic bacteria is



Figure 2. Cytokine levels measured in fecal samples of preterm infants in the 3 study groups: Bell stage 1 NEC, Bell stage 2/3
NEC, and healthy. A: Across all time points. B: Divided by time points for IL-1a, IL-5, and IL-10. At TP3, as only one sample
was present in the NEC 1 group, it was excluded from the analysis. Concentrations in pg/g are plotted on a log 10 scale for
better visibility. C: Significant cytokines 5–10 days before NEC diagnosis compared to age-matched controls. D: Significant
cytokines 11–17 days before NEC diagnosis compared to age-matched controls. Numbers in brackets indicate the number of
samples (one per individual) positive for the observation (if NA was reported, the number of samples is reduced). Comparisons
for panels A and B were statistically analyzed with Mann-Whitney U test. Comparisons for panels C and D were statistically
analyzed with Wilcoxon rank sum test. P-value summary: *<0.05; **<0.01; ***<0.001; ****<0.0001.
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increased.58–60 Many studies have reported that reduced gut
bacterial diversity is a risk factor for the onset of
NEC.26,28,31,61 In our study, samples from the NEC 2/3 group
contained the lowest number of OTUs per sample (mean of
6.9), but compared to the other study groups differences
were minor and not significant. In terms of taxonomic dif-
ferences, an enrichment of Pseudomonadota and a reduc-
tion of Bacillota and Bacteroidota have often been
associated with NEC development.12,62 However, this was
not observed in our study results, with similarly high levels
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of Pseudomonadota found in all study groups. We did detect
significantly lower levels of Bacillota in NEC 2/3 infants at
time point (TP4), representing higher Pseudomonadota
levels, but this was only the case for infants older than 31
days and was not associated with NEC.

A variety of reasons could account for differences be-
tween studies, including sampling technique, DNA extrac-
tion protocols, selection of 16S variable regions, sequencing
technique, bioinformatics pipelines, and databases used,63,64

making comparisons between studies difficult. As numerous
bacteria are potentially associated with NEC, that is, Clos-
tridium spp., Enterococcus spp., Escherichia coli, Pseudo-
monas aeruginosa, Salmonella spp., Klebsiella spp., and
Staphylococcus spp.,16 a single bacterial signature is not
expected. On the other hand, supplementation of probiotic
Bifidobacterium and Lactobacillus is associated with lower
abundance of common pathobionts in the preterm gut,17

which is associated with significantly reduced rates of
NEC and late onset sepsis.18 Indeed, we also observed
healthy preterms had higher relative abundance of Bifido-
bacterium, when compared to NEC 2/3 infants, even though
these infants did not receive probiotic supplementation.
Exploring additional clinical factors revealed that only me-
chanical ventilation significantly impacted microbial di-
versity, but this was only observed in ‘healthy’ premature
infants. Surprisingly, we did not see any major differences in
formula feeding or antibiotic usage, which would be ex-
pected to significantly alter microbiota profiles. This is most
likely linked to the low number of formula fed babies, and
the fact all were still receiving breast milk thus masking any
potential diet-induced changes,65 and although we observed
higher Bifidobacterium (which is highly susceptible to anti-
biotics) in nonantibiotic treated preterms, this was only 2
infants. Given the limited number of patients and samples,
this restricted our ability to do multiple robust comparisons
across key clinical parameters.

Although substantial differences in microbiota profiles
were not found in this study between NEC infants and
healthy controls, the impact of the microbiota on the im-
mune system, including signaling molecules such as cyto-
kines, is well-known.66 Therefore, the evaluation of fecal
cytokine levels is a key aspect of this study. Interestingly,
except for IL-1b, the fecal concentrations of all measured
cytokines were significantly higher in the NEC 2/3 group
compared to healthy controls. IL-1s (including IL-1a and IL-
1b) are pro-inflammatory cytokines, produced by a variety
of cell types that also induce inflammatory reactions such as
tissue damage and fever.67 IL-1 receptor binding triggers
the activation of pro-inflammatory transcription factors
such as NF-kB and AP-1, which can further induce the
production of IL-6, TNF, and IL-1 itself.67 Studies on human
IL-1a and IL-1b in NEC setting are rare. One study by
Benkoe et al could not identify differences in systemic IL-1b
levels in NEC babies compared to healthy controls,49

concordant with the results of our study. For IL-1a, we
could identify significantly higher levels in NEC2/3
compared to NEC1 and healthy at TP1, and significantly
higher levels in NEC2/3 and NEC1 compared to healthy at
TP1 (Figure 2B). Interestingly, this finding did not persist
during TP2 and TP3, and was again observed at TP4.
However, this may be due to the inconsistent number of
samples across all time points, which is a limitation of this
proof-of-concept study. Another study by Ng et al showed
increased systemic concentrations of IL-2, IL-4, IL-6, IL-10,
IFNg, and TNFa in neonatal septicemia, also including NEC
cases,68 corresponding with the results presented in this
study for fecal cytokines. We could also show that local IL-
10 levels were significantly higher in NEC2/3 compared to
NEC1 and healthy at all-time points (Figure 2B). Addition-
ally, the age-matched comparison of babies 5–10 or 11–17
days before NEC diagnosis revealed significantly higher
levels of IL-10 (Figure 2D), indicating an induced protective
role of IL-10 to counteract inflammation in the gut. This is
also supported by high levels of IL-10 in breast milk,69 while
low levels of IL-10 in breast milk are correlated with NEC
incidence.70 IL-5 primarily promotes activation, survival and
adhesion of eosinophils, and is therefore elevated in allergy
and parasitosis.71 Interestingly, we observed significantly
higher IL-5 concentrations in NEC2/3 at all-time points
(Figure 2B), suggesting a hyper-inflammatory state with
involvement of eosinophils, coinciding with a study from
2000.72 While IL-4 and IL-5 were involved in NEC pro-
gression in rats,73 Benkoe et al demonstrated significantly
lower IL-4 and IL-5 concentrations in NEC serum samples
compared to healthy controls.49 Although we explored a set
of twenty different cytokines, we may have missed addi-
tional and important cytokines involved in NEC onset/
development. Indeed, recently it was shown that transgenic
IL-37 may prevent dysregulation of adaptive immunity in
murine NEC, and that this cytokine modulates immune
homeostasis.74

We acknowledge as this a twin-center site proof-of-
concept study with a limited number of individuals (and
longitudinal samples), this is a limitation. A larger multi-
center study, with, for example, a greater divergence in
clinical care regimens, may allow additional key differences
to be teased apart, but this was not possible in our limited
study. Furthermore, samples were sequenced in 2014 and
could not be re-sequenced due to a lack of sufficient mate-
rial, which may have impacted our microbiota data. Shotgun
metagenomic sequencing could provide more specific re-
sults including at the species and functional level thus
providing a more comprehensive overview of microbiota
changes prior to NEC onset. Moreover, relative stool hy-
dration could have influenced the protein content in fecal
samples and thus, affected overall cytokine measurements.
For this reason, standardization of input material before
subjection to cytokine measurement may enhance robust-
ness and accuracy in further studies.
Conclusion
These findings suggest that fecal cytokine concentrations

could provide additional measures in the diagnosis of NEC.
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Particularly IL-1a, IL-10, and IL-5, which show a rise from
healthy to NEC 1 and to NEC2/3 could potentially be used as
accessory markers to the current Bell staging that is
routinely performed. The timing of sampling and a rapid
analysis yielding results within 24 hours would be essential
for the most effective use of fecal cytokine measurement in
aiding the diagnosis of NEC. Our data indicate that profiling
fecal cytokine levels, particularly IL-5 and IL-10, from 14
days onward, and regular testing every third day for
increasing levels could act as a predictive test, warning of
developing NEC, but this needs to be confirmed in a larger,
multicenter study. Furthermore, robust reference values of
healthy preterm infants and other NEC cases from other
NICUs will be required to define highly selective and sen-
sitive cytokine thresholds, in order to provide additional
information and guidance to neonatologists in the diagnosis
of NEC. Additional research will also need to test and vali-
date different platforms for fecal cytokine analysis, and
compare different preterm infant cohorts to explore cyto-
kine profile variation across different NICUs, as robust
markers would be key for next-stage studies. Although
further testing is required, development of an early diag-
nosis could refine therapeutic measures, mitigate disease
outcomes, increase survival rates, and reduce long-term
consequences for survivors.

Supplementary materials
Material associated with this article can be found in the

online version at https://doi.org/10.1016/j.gastha.2023.03.
003.
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